
Multi-Class Text Sentiment Analysis

Jihun Hong
Stanford University
hjihun@stanford.edu

Alex Nam
Stanford University
hjnam@stanford.edu

Austin Cai
Stanford University
acai21@stanford.edu

December 13, 2019

1 Introduction

Text sentiment analysis is an important research topic
for its wide applicability in real-world applications, and
recent breakthroughs in text embedding and classi-
fication models led to state-of-the-art results. This
project aims to apply recent innovations in machine
learning to fine-grained multi-class sentiment analysis
of Amazon reviews, contrasting different models in-
cluding Naive Bayes Classifiers, Textblob/Vader, ML
Classifiers, Neural Networks, and Text CNN to iden-
tify the most performant ML techniques. The objective
of this project is to: predict one of the three (positive,
neutral, negative) sentiment classes given an Amazon
text book review.

2 Related Work

Most professional literature on sentiment analysis fo-
cused on individual models, with few contrasting an en-
semble of models as we do in this paper. Projects that
do contrast multiple models have primarily focused on
a Yelp review dataset[9], which is limited in scope and
diversity compared to the Amazon dataset[6]. A paper
by Tan, Wang and Xu does use the Amazon dataset
to train a sentiment classifier[1], but their best model
(LSTM with GloVe) achieved only 70% accuracy. The
authors’ also simplified the problem into one of binary
classification and failed to account for category imbal-
ance. This project aims to extend the work of Tan et.
al. by performing multiclass classification, addressing
category imbalance, and applying new NLP techniques
developed since Tan et. al.’s project.

3 Dataset and Features

We used an Amazon review dataset[6] which associates
textual reviews with labels 1 through 5. We prepro-
cessed our data by only considering book reviews, and
defining a 3-class classification problem with label 1 as
negative, 3 as neutral, and 5 as positive. In order to

maintain consistency with our later approaches involv-
ing text-CNN, which requires a fixed example size, we
only included reviews of maximum 50 words. We used
40,000 examples in our training set and 5,000 examples
in our validation and test sets.

3.1 Managing Skew

Class imbalance was a major issue within our dataset,
with 81.1% of the training data labeled ”positive” and
2.7% labeled ”negative.” This led to many false positive
predictions for underrepresented examples, with the f1
score of 0.367 and 0.547 for ”negative” and ”neutral”
examples, respectively, from the best performing Naive
Bayes baseline, compared with 0.913 for the dominant
class. After experimenting with oversampling, under-
sampling, and SMOTE[8], we decided to use under-
sampling to enforce comparable class sizes within our
training set while maintaining balanced class represen-
tation in our training data.

3.2 One-Hot Encoding

For our naive Bayes implementation, we created a dic-
tionary of every word that appears at least 5 times from
the entire training dataset (of 40,000 reviews), which
generated a dictionary of size 20497. We then used a
sparse vector to represent the number of occurrences
of every word per text review.

3.3 Word Embeddings

To create vector representations for reviews, we used
300-dimension word2vec[11] embeddings pretrained on
Google’s news dataset and 25-dimension Global Vec-
tor for Word Representation (GloVe)[12] embeddings
pretrained on a Twitter dataset. To represent each
review as a vector, we converted each token to a 300-
dimensional vector then computed the average of to-
ken vectors to obtain a vector per review text. Figure
6 contains the t-SNE visualization of original review
data converted to vectors using the same method.

1

Figure 1: t-SNE visualization, colors represent different
labels.

For our text CNN model, we stacked the token vec-
tors within a sentence into a 50-by-300 matrix (where
300 is the dimensionality of word2vec embeddings), ex-
cluding reviews with more than 50 tokens. We also
experimented with the learned embeddings by using
the PyTorch Embedding layer, varying our embedding
dimensions between 5 and 150.

4 Methods

We adopted multiple methods from pretrained NLP
classifiers to text-based CNN to identify which best
predicts the three class sentiment from a review text.

4.1 Baseline - TextBlob, Vader

To establish the baseline, we ran predictions on
our testing set with pre-trained sentiment analysis
tools available on Python: TextBlob[2] and Vader[3].
TextBlob outputs a score for ’polarity’ and ’subjectiv-
ity’ based on the words observed in the text input and
Vader calculates a ’compound’ scores based on the lex-
ical features.

4.2 Baseline - Naive Bayes

Next, we implemented a Naive Bayes classifier with
multinomial event model where each lowercased word
in the training set is mapped to a distinct index in the
dictionary, and the review is represented by a sparse
vector of the number of occurrences for every word in
the dictionary. In order to filter out specific product de-
tails (e.g. author names, brands), we used pyenchant[4]
as a valid word check, excluded stopwords[5], and only
included words that appear more than 5 times in the
entire training set in our dictionary. For qualitative

analysis, we examined the top twenty word indicators
for each class.

4.3 ML Classifiers

We utilized a variety of ML Classifiers in the Scikit-
Learn library within Python.

1. Support Vector Machine - discriminative classifier
that finds a separating hyperplane between classes,
optimized to maximize margin

min
w,b

1

2
||w||2

s.t y(i)(wTx(i) + b) ≥ 1

2. Decision Tree - continuously splits data according
to certain parameters until examples are grouped
by class

3. Random Forest - aggregates the results of a set of
decision trees to predict classification

4. Multi-Layer Perceptron - deep neural network that
is only feedforward

5. K-Neighbors Classifier - each example is assigned
to the classification most common among its k
nearest neighbors

6. Quadratic Discriminant Analysis - Generative al-
gorithm that models each class as a normal distri-
bution

p(x|y = i) = c · exp(−1

2
(x− µi)

T Σ−1(x− µi))

p(y) = φy(1− φ)1−y

c =
1

(2π)d/2|Σ|1/2

7. Gaussian Naive Bayes - Naive Bayes algorithm ap-
plied on continuous data, assuming that the dis-
tribution of X given Y is Gaussian.

4.4 Linear Neural Net

We implemented several linear neural networks with a
small number of hidden layers (1 3) on top of GloVe and
Word2Vec embeddings. We experimented with differ-
ent hyper parameters including the number and sizes
of hidden layers, learning rates, activation (e.g. hard-
tanh, ReLU, Sigmoid) and optimizer types (e.g. SGD
and Adam with learning rate .001) to find the best
performing architecture.

2

Figure 2: Text CNN model architecture

4.5 Text CNN

We implemented a Text CNN model based on Yoon
Kim’s architecture[10] (see Figure2), which has been
shown to be effective in text sentiment analysis. The
architecture includes a convolutional layer with vary-
ing number of channels, followed by ReLU and Max-
Pool activation layers; in the final layer, the model uses
softmax function to output the probability predictions
for each class. We adopted the open source Pytorch
Text CNN implementation[13], on both learned em-
beddings of n-dimensions where the sparse vector rep-
resentation of a review was mapped to n dimensions
by the embedding layer trained concurrently with the
convolutional layer, and static Word2Vec embeddings.
In order to find the optimal hyper-parameters, we ma-
nipulated varied embedding schemes, filter sizes, and
training epochs.

5 Results

5.1 Baseline - TextBlob, Vader, Naive
Bayes

Table 1: Baseline Results.
Model Accuracy
TextBlob 0.646
Vader 0.741
Naive Bayes (v.1) 0.838
Naive Bayes (v.2) 0.793
Naive Bayes (v.3) 0.764

Table 2: F1 Scores for v.1 Naive Bayes.
Negative Neutral Positive

0.367 0.547 0.913

The Naive Bayes classifier with the common words
filter (v.1 in Table1) obtained 83.8% prediction accu-

racy on the testing set, while the same classifier with-
out the filter (v.2) achieved 79.3% accuracy. The Naive
Bayes classifier with the stop words filter on the under-
sampled training set (v.3) was least successful due to
the misrepresentation of the prior distributions in the
undersampled training set which did not match the ac-
tual skewed distribution in the testing set.

All three Naive Bayes classifiers outperformed the
pretrained sentiment analysis tools. For qualitative
analysis, we reviewed the top 20 indicator words for
each class. The top 5 examples per class are listed as
follows: Negative - [’waste’, ’pointless’, ’wasted’, ’re-
deeming’, ’puerile’]; Neutral - [’slower’, ’wordy’, ’de-
cent’, ’somewhat’, ’okay’]; and Positive - [’awesome’,
’beautifully’, ’wonderful’, ’loves’, ’wait’]. These indi-
cators suggest that our Naive Bayes classifier is able
to correctly identify sentiment associations for differ-
ent words to output an overall score per review. How-
ever, even the best performing Naive Bayes classifier
fell short in making predictions for under-represented
classes (e.g. ’Negative’ and ’Neutral’) due to the signif-
icant influence of the prior distributions which favored
the dominant class. The confusion matrix as well as
the F1 scores[Table 2] clearly shows that the model
outputs a significantly higher number of false positives
(predicting a positive sentiment when the true label is
negative or neutral) than false negatives to match the
skewed prior distribution of the sentiment classes.

5.2 ML Classifiers

The best performing classifier was the SVM with rbf
kernel trained on original distribution dataset, which
achieved 83.8% test accuracy (Table3). This model
performed significantly better than the same struc-
tured model trained on the undersampled set (accuracy
73.1%). Other methods, including SVM with Linear
kernel, K-Neighbors, Quadratic Discriminant Analysis
and MLP, also achieved comparable results, with all
four classifiers achieving accuracy greater than 81%.
As seen in Figure 1, the scattered nature of word rep-
resentations make it difficult for traditional machine
learning methods to obtain optimal accuracy on the
classification task. However, the SVM did show signif-
icantly greater results on the test set than the baseline
results. Although the SVM with rbf kernel improved
the prediction accuracy marginally than the best per-
forming Naive Bayes classifier, the SVM obtained F1
scores of 0.484, 0.321, and 0.911, for Negative, Neutral,
and Positive, respectively, meaning the SVM is better
at detecting Negative sentiments but shows a signifi-
cant bias towards Positive class.

3

5.3 Linear Neural Net

The linear neural net with 3 hidden layers over
Word2Vec (implemented with 3 ReLU activation, 0.1
dropout rate and final softmax layer using Adam op-
timizer with learning rate 0.001) obtained the high-
est testing accuracy of 69.2%. This significantly out-
performed other models, including the same architec-
ture over 100-dimensional GloVe embeddings (56.1%),
over 10-dimensional GloVe (43.4%), and a single hid-
den layer model over Word2Vec (43.3%). We started
with the simplest 1 hidden layer implementation as our
baseline and gradually increased the complexity of the
model to avoid overfitting. However, none of the linear
neural net models obtained decent prediction accuracy
over 70% without overfitting on the training set.

5.4 Text CNN

5.4.1 Learned Embeddings

We implemented a grid search of hyperparameters for
Text CNN architecture based on learned embeddings
varying embedding dimensions, learning rates, and the
number of kernels. We started with the baseline ar-
chitecture of 5 dimensional embedding for each word
and three kernel CNN (which achieved 48.6% accuracy)
and gradually increased the complexity of our model
to avoid overfitting. Between 0.005 and 0.01 for learn-
ing rate, 0.005 consistenly performed better in differ-
ent model architectures. The highest testing accuracy
was achieved by CNN based on 55-dimensional learned
embeddings with 5 convolutional kernels; 80.9% was
the highest testing accuracy from 500 epochs. Despite
decent performance, this model had its shortcomings
as it initially had a high dev set variance and soon
overfitted to the training data (see Figure3). Gen-
erally, regardless of the model complexity, Learned
Embeddings-CNN showed high dev set variance com-
pared to Word2Vec models (See Figure4 for another
example of high dev set variance).

5.4.2 Word2Vec

The Text CNN model with word2vec embeddings per-
formed the best among all other models, therefore
achieving state of the art results on the sentiment clas-
sification task. The model achieved 91.46% accuracy
on the test dataset, with high F1 scores across all
three classes. The training loss and validation loss
both steadily decreases over training, as seen in fig-
ure 3. Also, training accuracy and validation accu-
racy both increase over 150 epochs, showing no signs
of model overfitting. Since the model is heavy and we
had limited computing resources, we could only train
the model for up to 150 epochs even though training the
validation accuracy was marginally decreasing. The

Figure 3: Training and Validation Loss and Accuracy

Figure 4: Training and Validation Loss and Accuracy

validation accuracy and loss seems to start at a bet-
ter point that the training accuracy and loss, only be-
cause the model was outputting only positive labels as
predictions. Text CNN with 10 convolutional kernels
performed better than Text CNN with 5 convolutional
kernels, which achieved a test accuracy of 87.1%.

6 Discussion

In this project, we implemented an ensemble of ML
techniques for fine-grained text sentiment classifica-
tion and evaluated them against themselves and each
other. We experimented with different sampling and
embedding techniques, and utilized various visualiza-
tion frameworks to inform our hyperparameter search.
By achieving 91.46% classification accuracy with text
CNN, we replicated the findings of Kim[10] while also

4

Table 3: Experiment Results (display highest accuracy
from 500 epochs for NN/CNN).

Model Accuracy
SVM (Rbf) 0.837
SVM (Linear) 0.833
QDA 0.816
KNN-5 0.816
MLP 0.811
Random Forest 0.795
Decision Tree 0.720
NN + 10-dim GloVe 0.434
NN + word2vec 0.692
TextCNN + 5-dim 0.486
TextCNN + 20-dim 0.576
TextCNN + 45-dim 0.742
TextCNN + 55-dim 0.809
TextCNN + 100-dim 0.748
TextCNN + 150-dim 0.675
TextCNN + word2vec 0.914

Figure 5: Confusion Matrix (normalized)

Table 4: F1 Scores for Text CNN
Negative Neutral Positive

0.727 0.788 0.955

showing Text CNN can work on paragraphs of input
text of an arbitrary length.

Interesting extensions include generalizing our find-
ings by classifying review text to all five review cate-
gories. Since the model was only trained and tested
on the Amazon Book Reviews dataset, we can extend
the sentiment classification model to text data from
other domains. Other future projects might support
CNN input text of arbitrary length and experiment
with Transformer based models such as BERT or XL-
NET.

Figure 6: Training and Validation Loss and Accuracy

7 Contributions

Alex tested on TextBlob (as baseline), implemented
naive Bayes model (as baseline), the linear NN model
over Glove and Word2Vec embeddings, one hot en-
coding CNN model over raw text input, and tuned
the CNN model on learned embeddings. Austin im-
plemented under-, over-, and SMOTE sampling tech-
niques, hyperparameter grid search, and contributed
to the CNN model. Jihun tested on Vader (as base-
line), implemented ML classifiers, generated GloVe and
Word2Vec embeddings, implemented Word2Vec-input
CNN model, and tuned the CNN model on Word2Vec
embeddings.

References

[1] Tan, W., Wang, X. and Xu, X. (2018). Sentiment
Analysis for Amazon Reviews. CS 229, Stanford
University

[2] TextBlob Python Library:
https://textblob.readthedocs.io/en/dev/

[3] VADER (Valence Aware Dictionary
and sEntiment Reasoner) Analysis
https://pypi.org/project/vaderSentiment/

[4] pyenchant 2.0.0 https://pypi.org/project/pyenchant/

[5] nltk 3.4.5 stopwords
https://pypi.org/project/nltk/

[6] J. McAuley, C. Targett, J. Shi, A. van den Hengel
(2015). Image-based recommendations on styles and
substitutes. SIGIR

5

[7] Devlin, J., Change, M., Lee, K., Toutanova, K.
(2018). BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding.

[8] Chawla, N., Bowyer, K., Hall, L., Kegelmeyer., W.
(2002). SMOTE: Synthetic Minority Over-sampling
Technique. Journal of Artificial Intelligence Re-
search

[9] Yelp. (2019). Yelp Dataset. Kaggle
https://www.kaggle.com/yelp-dataset/yelp-dataset

[10] K., Yoon. (2014). Convolutional Neural Networks
for Sentence Classification EMNLP

[11] T., Mikolov, H., Sutskever, K., Chen, G., Cor-
rado, J., Dean. (2013). Efficient Estimation of Word
Representations in Vector Space. arXiv:1301.3781

[12] J., Pennington, R., Socher, C., Manning. (2014).
GloVe: Global Vectors for Word Representation.

[13] Open source CNN for Sen-
tence Classification Code in Pytorch
https://github.com/Shawn1993/cnn-text-
classification-pytorch

[14] Project Github Link: https://github.com/jihun-
hong/amazon-review.git

6

