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Abstract

In the semiconductor industry, the fall-outs of the production, or yield loss, are

no longer doomed to be scrapped. Thanks to the technology advancement, they can

be, and are now, sold to a value conscious market (the low-end market). While the

manufacturers are thrilled by this creative idea - turning scrap cost into sales profit,

we wonder whether such practice is always beneficial? What are the conditions under

which the manufacturers should consider switching back to the old practice - scrapping

at a cost? Building upon a standard marketing model for two differentiated markets,

we are able to characterize optimal decisions, including operational strategies-whether

to scrap the low quality product and whether to downgrade the high quality product,

and the corresponding production capacity, supply quantity to each market, and price

for each market. We find that when both the yield and the scrap cost are small, the

manufacturer should switch back to the old practice. Otherwise, the manufacturer

could lose up to 72.7% profit increase, shown by our comprehensive numerical study.

Moreover, we observe that the manufacturer may over sacrifice the low-end market

with negative profit when balancing the profit earned from each market. Counter

intuitively, the manufacturer may be worse off when l-market consumers are willing

to pay more.
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Chapter 1

Introduction

In the semiconductor industry, in the past, the production yield of any new product is

usually unstable; the fall-outs, or the yield loss, need to be scrapped. The traditional

practice is selling only the regular yield to its demanding market, which we refer

to as the high-end market. Thus production planning with yield uncertainty is an

important topic for both practice and academia. There has been extensive research

on this topic (for example, Lee and Yano 1988, Kazaz 2004). Today, as the technology

advances rapidly, the production process has become much more mature and stable,

with little yield variation. As a matter of fact, production for any product will ramp

only when the yield is stable enough. Thus, yield uncertainty is no longer a primary

factor.

Furthermore, the fall-outs show reasonably good quality and significant demand

for them has emerged. The current practice is selling the fall-outs to a value conscious
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market, which we refer to as the low-end market, in addition to selling the regular

yield to the high-end market.

The current practice can be described by a coproduction system, in which multiple

products are produced simultaneously in each batch or continuous production run

(Bitran and Gibert 1994). The final products can be completely different in nature

(i.e., horizontally differentiated), such as gasoline, kerosene, diesel, etc. in an oil

refining process. Alternatively, the final products may be the same in nature, but

varied in one or more key performance factors (i.e., vertically differentiated), such as

the regular yield (the high-quality output) and the fall-outs (the low-quality output)

in the semiconductor industry. As noted in Tomlin and Wang (2008), high-quality

outputs could be used to fulfill the demand for low-quality outputs, but not visa versa.

This, however, requires either down-conversion or down-grading of the high-quality

outputs. Down-conversion means converting a high-quality product to a lower-quality

product at a conversion cost, while down-grading is the practice of direct substitution.

For example, high-quality memory chips can be down-graded at no additional cost by

simply being affixed with a lower brand name or being labeled as low-quality chips.

The semiconductor industry is currently enjoying a creative trick: selling, instead

of scrapping, the fall-outs to turn scrap losses into profits. Take DRAM (Dynamic

Random Access Memory) memory chips as an example. There are different quality

levels of memory chips: high-quality ones are with full data sheet parts, verified

good and tested, while the low-quality ones are the fall-out parts, confirmed as not
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being full data sheet parts. On one hand, the low-quality DRAMs may be sold

under a different brand name at a lower price to recover the manufacturing cost

partially or even to make profits, such as Spectek (for Micron), Elixir (for Nanya),

and Aeneon (for Infineon). Most module manufacturers sell memory chips of both

quality levels to cater the demands for both the high-end and low-end markets. For

the high-end market, it is supplied with high-quality branded chips; for the low-end

market, it is supplied with unbranded chips, which include fall-outs and downgraded

high-quality chips. Similar arrangements can also be applied to other semiconductor

products, such as Flash memory, SRAM, Fusion memory etc. On the other hand, the

quality requirements for DRAM memory chips are dependent on the final consumer

applications and the low-quality DRAMs can be diverted to produce certain electronic

products with less stringent requirements. For example, Samsung is offering a wide

spectrum of consumer electronics devices - digital TVs, DVD recorders, and digital

cameras - as well as hard disk drives, printers, networking equipment, automotive

devices and other digital applications, among which the DRAM quality requirements

are very much application specific. For instance, the printers/networking equipment

can take a full range of DRAM offerings, while high-quality cameras will require

high-density and high-performance DRAMs.

Although the semiconductor manufacturers are thrilled by the magic of turning

scrap costs into sales profits, we wonder whether it is always the best strategy? When

should they switch back to the traditional practice: scrapping at a cost? What does
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the choice of strategy depend on? Intuitively since the yield is fixed, the manufacturer

is obviously better off if the fall-outs are now generating profits, rather than generating

scrapping costs. However, because the price for each market is driven by its own

supply, supplying the right amount of the fall-outs may drive up the supply of the

high-quality products and thus lowering the price for high-end market. Thus the total

profit earned from both markets might be worse than that with scrapping. Thus to

answer the above questions, we build a singe-period model, by generalizing a standard

marketing model for two differentiated markets. Consumers in high-end market only

demand high-quality products, while consumers in low-end market are price-sensitive,

but indifferent to product quality, and thus consume low-quality products as well as

downgraded high-quality products, if available. The production flow and decisions

(indicted by question marks) are shown in the Figure 1.1.

Figure 1.1: Manufacturer Production Flow and Decisions
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We characterize the optimal decisions, including operational strategies - whether

to scrap (major strategy) the low-quality product and whether to downgrade (minor

strategy) the high-quality product, and the supporting production capacity, supply

to each market, and price for each market for each strategy. We find that manufac-

turer with low scrap cost and low yield should switch back to the scrapping practice.

Indeed, we characterize explicitly conditions on external factors (e.g., the difference

between the two markets) and internal factors (e.g., the yield and scrap cost) for a

manufacturer under which one particular operational strategy should be adopted. As

discussed above, there is extensive literature on production control with yield uncer-

tainty (for the past practice) and on coproduction systems (for the current practice).

To the best of our knowledge, however, we are the first to compare the two practices

and identify conditions for certain strategy to be optimal. Thus, we not only con-

tribute to the relevant literature, but also provide the semiconductor manufacturers

with valuable guidance on how to choose optimal operational strategies.

The rest of the paper is organized as follows. Chapter 2 reviews the existing

literature related to our project. We will introduce the model formulation in Chapter

3. It is followed by the analysis of the past practice - scrapping strategy is adopted

and the analysis of the current practice - non-scrapping strategy is adopted in Chapter

4 and Chapter 5 respectively. Complete comparison between scrapping strategy and

non-scrapping is stated in Chapter 6, following with the numerical study is in Chapter

7. Conclusion and future research opportunities will be discussed in Chapter 8.
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Chapter 2

Literature Review

2.1 Operations Management Literature Review

There are considerable studies on single-product random yield problems. Yano and

Lee (1995) provide an extensive and good review of lot sizing problem with ran-

dom yield in production or procurement, and discuss important issues related to the

modeling of costs, yield uncertainty and performance.

The joint quantity-and-pricing problem has been studied extensively, however a

large number of the existing studies are focusing on perfectly reliable supply and

a single product. Van Meighem and Dada (1999) investigate operational recourse

actions and show that the benefit from production postponement is minimal if price

postponement is also implemented. Chen and Simchi-Levi (2004), Monahan et al.

(2004), and Xu and Hopp (2004) compare the dynamic pricing with static pricing
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in a multiperiod setting. Li and Zheng (2006) consider the joint quantity-and-price

setting problem of a single product with supply uncertainty and establish a periodic

review model with inventory replenishment and pricing setting at the beginning of

each period. Kazaz (2004), Kazaz (2008) and Kazaz and Webster (2010) consider a

single-product production planning and pricing problem with yield uncertainty and

investigate the impact of yield-dependent cost.

Comparably, there is less focus for joint quantity-and-price problem with multiple

products. Bish and Wang (2004) study the benefits of flexible resource as compared

to dedicated resource, while Chod and Rudi (2005) focus on a single flexible re-

source and investigate the effect of demand variability on the optimal resource level.

Price-dependent aggregate demand models are used in both papers, however product

differentiation is horizontal instead of vertical as in our paper.

Coproduction is a special type of multiproduct production system with a single

input and production process whereas multiple products are produced simultaneously.

Furthermore, among all the multiple-product systems, coproduction system with ver-

tical product differentiation is characterized with downward flexibility, that is, the

high-level product supply can be used to satisfy the low-level product demand. Most

existing coproduction system literature consider the production quantity and substi-

tution decisions under the following assumptions: price and customer preferences are

exogenous, and each customer class has a different preferred product.

Bitran and Dasu (1992), Bitran and Leong (1992) and Bitran and Gilbert (1994)
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all study the multi-period, multi-product, deterministic-demand coproduction prob-

lem with random yield. Bitran and Dasu (1992) assume that the production yield

is discrete and the given production output quantities are given. It determines the

optimal allocation policies for single and multi-period problems. Bitran and Leong

(1992) consider the same scenario, but assume the demand for each of the products

must be satisfied with a certain probability and the quantity to be substituted is

determined before the demand is observed. Both studies use deterministic models to

approximate the stochastic problem. The same problem is also studied in Bitran and

Gilbert (1994), with the objective to minimize the expected production, inventory

holding and storage costs over a finite horizon, and where two downgrading policies

are evaluated.

Gerchak and Grosfeld-Nir (1992) incorporate coproduction problem into a single

period model with demands that must be satisfied to minimize the total setup and

variable production costs. Gerchak et al (1996) evaluate several different models of a

single-period, deterministic-demand, two-product substitution problem with random

yield, and identify structuring properties of the optimal policy. Gerchak and Grosfeld-

Nir (1999) formulate a multiple-lot-sizing production-to-order (MLPO) problem and

solve for the optimal lot size by minimizing the total cost. Hsu and Bassok (1999)

study a single-period, N-product, full downward substitution problem and formulate

it as a two-stage stochastic program. Different solution methods for finding the opti-

mal production decision under demand uncertainty and random yield are developed.
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Netessine et al. (2002) investigate the resource-investment problem in a downwardly

flexible system, however, separate investment is required for each resource and no

yield uncertainty is involved.

Tomlin and Wang (2008) assess a single-period, two-product coproduction prob-

lem with supply uncertainty, stochastic demand and downward flexibility, for the

optimal production quantity, product pricing, down-conversion quantity, and alloca-

tion decisions, which is one of the two studies most closely related to ours. Utility-

maximizing customer models are used. This paper mainly studies product down-

conversion, with down-conversion cost involved. In contrast, we characterize situa-

tions under which monopoly manufacturer should prefer downgrading to scrapping

or vice versa. For their two-class coproduction model, they do not characterize the

heterogeneity of consumer preferences for the two classes, that is, the two classes may

prefer different or the same products, thus priority-based allocation policy is pro-

posed. We differentiate the two consumer classes by the highest willingness-to-pay

and investigate the impact of some market parameters, which include the size and

highest willingness-to-pay for the low-end market relative to the high-end market.

2.2 Marketing and Economics Literature Review

Many marketing and economics literature have studied the marketing competition

strategy with product and demand vertical differentiation. There are a wide range

of empirical studies on heterogeneity of consumer preferences. Soberman and Parker
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(2004) summarize the empirical studies about the existence of heterogeneity of con-

sumer preferences for national brands and private labels, and mention that some

consumers are willing to pay more for name-brand products while the others believe

that private-label products are the same as name brands. Pauwels and Srinivasan

(2004) empirically show that the new entrants of private-label products may be ben-

eficial for the name-brand goods if consumers consider the quality of the name-brand

as higher than that of the private-label. Thus it is crucial for firms that produce

high-end products to create the perception of its brand as premium to high-end con-

sumers. Randall et al. (1998) show that the presence of high-quality products in its

product line can enhance brand equity and investigate the correlation of brand equity

between the brand and its other high-quality products in its product line.

Mussa and Rosen (1978) consider the monopoly pricing problem for quality-

differentiated products. It analyzes the utility functions and proposes optimal price-

quality schedule to allocate customers along the quality spectrum by a process of

self-selection.

Competition in heterogeneous markets features either cannibalization within the

firm’s own product line or competition across firms, while the monopoly problem will

mainly focus on cannibalization. Moorthy (1984) studies the problem of implementing

market segmentation through consumer self-selection and shows that the fundamen-

tal effect of consumer self-selection is cannibalization, and thus a monopolist must

determine the optimal product and price for the whole product line simultaneously.
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Moorthy and Png (1992) study two-period, two differentiated customer segments,

stationary and known demand for a durable product problem. It compares the si-

multaneous and sequential introduction of low-end product by analyzing the trade-off

between reducing cannibalization and the postponement of profits. Seller’s marginal

costs are assumed to be quadratic in quality. Desai (2001) investigates whether the

cannibalization problem affects the price and quality decisions in a model with con-

sumer differentiated in quality valuations and taste preferences for both the monopoly

and duopoly. In the model where the market is made up of two segments, with one

segment valuing quality more than the other, it is concluded that the monopolist

finds it optimal to provide each segment with its preferred quality. When both seg-

ments are incompletely covered, under some conditions, the monopolist’s price and

quality choices are not determined by the cannibalization problem. Takeyama (2002)

integrates durable goods time inconsistency problem with the self-selection issues of

the static price discrimination problem in a two-period framework. It suggests that

cannibalization of high-quality markets by low-quality goods may in fact be benefi-

cial for durable-goods producers. Ghose, Telang and Krishnan (2005) investigate the

competitive implications of newly emerging secondary markets on supply-chain profits

and new good prices. The motivation is to capture additional surplus from consumers

who were unable to buy in the new good market. It finds that new good prices might

be lower with secondary markets, under both monopolistic and competitive scenarios.

Several theoretical literature has discussed the impact of competition from new
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entrants. Coughlan and Soberman (2005) consider a manufacturer distribution prob-

lem and show that manufacturer’s own outlet stores may benefit independent primary

retailers. Chen and Riordan (2007) build a monopolistic competition model with hori-

zontal differentiation and reveal that under certain condition, new entry may increases

the profits of the existing firms.

Ishibashi and Matsushima (2009) develop a quantity competition model and a

price competition model for two high-end firms (producing high-quality products

only), with the existence of vertical differentiation of products and demands, which

is the other paper most closely related to our paper. It is shown that, under certain

conditions, firms in the high-end market can earn more with the presence of the low-

end firms than without. Without the low-end firms, the high-end firms will not be

able to maintain high prices because each firm has the incentive to compete for the

price-sensitive customers in the low-end market. The emergence of the low-end firms

induces the high-end firms not to overproduce and sell only to high-end consumers

as the low-end market is unprofitable for the high-end firms. Thus, the existence

of low-end firms may help high-end firms. In our paper, we will study the profit

maximization model with the optimal supply allocation and pricing strategies for the

monopoly manufacturer, who produces high-quality and low-quality products and

supplies to high-end and low-end markets.

12



Chapter 3

Model Formulation

We will focus on a monopoly manufacturer model with a single product for which the

production output has two different quality levels, High-quality (H-product) and Low-

quality (L-product). We believe that our monopoly model fits the practice reasonably

well. Samsung is seen to be leading and dominating the memory market. For example,

data for the third quarter of the past 3 years from IHS iSuppli Research, the world

leader in technology, media, and telecommunications market intelligence and advisory

services, show that Samsung’s market share in DRAM market has soared from 29.5%

to 40.7%. It is now almost the same as the total of all the other large manufacturers,

including Hynix, Elpida and Micron.

Following the coproduction literature, we assume H-product and L-product incur

the same manufacturing cost. These products can be used to serve two differentiated

consumer groups, high-end market (h-market) and low-end market (l-market). Note
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that throughout the paper, we will use upper case letters, H and L, for the two outputs

of different quality; we will use lower case letters, h and l, for the two different types

of consumer markets. The manufacturer will need to make decisions on different

combinations of major strategy, scrapping L-product or not, and minor strategy,

downgrading H-product or not. We assume that scrapping will incur additional costs,

while downgrading does not (since it is through a direct substitution, as explained

earlier).

3.1 Different Strategies to Explore

As discussed above, the manufacturer may choose to combine any scrapping strategy,

scrap (S) or not scrap (S̄) L-product, with any downgrading strategy, downgrade (D)

or not downgrade (D̄) H-product. Thus we will compare the four combined strategies

listed below in Table 3.1 to identify conditions under which each strategy is optimal.

S Strategy L-product is scrapped

SD̄ H-product is sold to h-market only

SD H-product is sold to both h-market and l-market (after downgrading)

S̄ Policy L-product is not scraped, but sold to l-market

S̄D̄ H-product is sold to h-market only

S̄D H-product is sold to both h-market and l-market (after downgrading)

Table 3.1: Scrapping and Downgrading Strategies

14



3.2 Notation

Demands for both markets are assumed linear to the prices charged by the manufac-

turer. The demand model for each market will be carefully introduced in the next

section. To help the readers, we now explain the notation used in the model. Please

refer to Figure 3.1, describing our problem setup in details, when going through the

notation list below.

Figure 3.1: Scrap and Non-Scrap Strategies
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Parameters:

• ρ ∈ (0, 1): the production yield, i.e., the portion of the production output that

is H-product. Thus 1− ρ represents the portion of the production output that

is L-product.

• a ∈ (0, 1): the highest willingness-to-pay for l-market consumers.

• b: the size of l-market. Note that the size of h-market is 1.

• Di: the price-dependent linear customer demand in i-market, i = h, l.

• c: unit scrapping cost of L-product.

Decisions:

• Q: the total production capacity invested for the product.

• Qh ∈ [0, ρQ]: the supply quantity to h-market.

• Ql ∈ [0, Q]: the total supply quantity to l-market, which consists of the down-

graded H-product and L-product, if not scraped. For S strategy, Ql = ρQ−Qh;

for S̄ strategy, Ql = Q−Qh.

• pi(= ri − c): the gross margin/price for sales in i-market, i = h, l, where ri is

the price charged to i-market customers and c is the unit production cost. Since

the cost, c for each unit, is the same for the supply to both markets, setting pi

is equivalent to setting ri. Thus we will focus on pi and will also refer to it as

the price throughout the paper.
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3.3 Price-Dependent Linear Demand Function

We follow the linear demand model used in Ishibashi and Matsushima (2009), denoted

by IM, where the demand is linear to the gross margin for each market. In contrast,

IM studies a same supply to each market and thus assumes ph = pl. For our model

with differentiated supply, however, we must assume the following to guarantee the

existence of l-market.

Assumption 1 ph > pl.

Note that if ph ≤ pl, consumers in the value conscious market, i.e., l-market, would

buy H-product only and thus l-market would disappear.

Following IM, we assume for h-market that its consumers demand H-product only

and their willingness-to-pay is uniformly distributed on [0, 1]. The h-market size is

assumed 1. Thus, the price-dependent demand function for h-market, Dh, can be

derived as:

Dh(ph) =


1− ph, if ph ∈ [0, 1];

0, if ph ∈ (1,∞).

When confusion does not arise, we will omit the dependent variable in the price

functions, such as, using Dh for Dh(ph).

Similarly, for l-market, we assume its consumers are price sensitive, but indifferent

to H-product and L-product, with willingness-to-pay uniformly distributed on [0, a],

a ∈ (0, 1). Recall that the size of l-market is denoted by b. Thus, the demand function

for l-market, Dl, is given as:
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Dl(pl) =


b(1− pl/a), if pl ∈ (−∞, a];

0, if pl ∈ (a,∞).

To keep the model general and practical, we allow the gross margin pl to be

negative, which reflects the observed practice that manufacturers may choose to sell

low-quality products at a price lower than their production cost to partially recover

the manufacturing cost. Therefore, b indeed represents the maximum demand in l-

market if the gross margin pl is non-negative; however when we allow for negative

gross margin pl, the demand can exceed b.
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Chapter 4

S Strategy: L-Product Is Scrapped

In this section, we study the case that the manufacturer has decided to use scrap (S)

strategy. In other words, we analyze the manufacturer’s optimal decisions in the past

practice. Note that the manufacturer still need to choose how to optimally allocate

the supply to h-market and l-market. In other words, the manufacturer needs to

decide whether to downgrade (D) H-product, and thus use SD strategy and serve

both markets, or not downgrade H-product (D̄), and thus adopt SD̄ strategy and

serve h-market only. The manufacturer also need to determine the corresponding

optimal decisions, including the production capacity, the downgrading quantity, and

the price charged to each market. Please refer to the top two figures in Figure 3.1 for

the flow chart.

To determine the price for each market, we match its supply to the demand as
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follows:

Qh = Dh = 1− ph and Ql = ρQ−Qh = Dl = b(1− pl
a
), (4.1)

which implies the following price function:

ph = 1−Qh and pl =
a

b
(b+Qh − ρQ). (4.2)

Note that the market prices are now functions of Q, the production capacity, and

Qh, the supply amount to h-market. The supply amount to l-market, Ql is also a

function of Q and Qh. Therefore, the manufacturer’s decisions reduces to Q and Qh

only. We thus state the manufacturer’s profit maximization problem as:

max ΠS(Qh, Q) = phQh + plQl − c(1− ρ)Q (4.3)

s.t. 0 ≤ Qh ≤ ρQ,

Ql = ρQ−Qh,

pl < ph ≤ 1.

Note that this is a non-linear program and the subscript in the profit function

ΠS(Qh, Q) represents the chosen strategy.

Here it is most appropriate to explain the real meaning of the scrap cost c. Let α ∈

[0, 1] denote the portion of manufacturing cost that can be recovered in scrapping (via

using the scrapped for evaluation or re-work), where α = 0 and α = 1 correspond to

zero recovery and full recovery, respectively. Then the manufacturer’s profit function

can be rewritten as ΠS(Qh, Q) = (rh − c)Qh + (rl − c)Ql − c(1− ρ)Q+ αc(1− ρ)Q =
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phQh + plQl − c(1 − ρ)Q, where c = (1 − α)c. This implies that c indeed represents

the unit non-recoverable manufacturing cost in scrapping. More importantly, the

scrapping cost can be viewed as an indirect cost for H-product, the only supply to

both markets.

Definition 1 The “indirect cost due to scrapping” for each unit of supply is c(1−ρ)
ρ

.

Note that at the supply amount of ρQ = Qh + Ql for H product, the total scrap

cost is c(1− ρ)Q. Therefore, c(1−ρ)Q
ρQ

= c(1−ρ)
ρ

can be perceived as the scrapping cost

incurred for each unit of supply.

We solve the manufacturer’s problem as follows. We start by solving a relaxed

program by removing the first constraint. We then incorporate this constraint using

the joint concavity of the objective function. We thus identify when to adopt SD

or SD̄ strategy and the corresponding optimal production quantity and allocation to

the respective marekts.

The following assumption must be made such that the scrapping strategies are

worth considering.

Assumption 2 1− c(1−ρ)
ρ

> 0, i.e., c < ρ
1−ρ

.

Note that 1 is the highest willingness to pay for h-market consumers. This assumption

is used to guarantee a positive profit earned from the sales in h-market. If this

assumption is not satisfied, the manufacturer, who decides to scrap, will not profit

from any production and thus should not produce at all.
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As shown below, the choice between the single-market strategy (SD̄) and the dual-

market strategy (SD) depends on internal parameters, c and ρ, and external/market

parameter a. Indeed, it requires the manufacturer to assess the profitability of the

l-market.

Proposition 1 If a < c(1−ρ)
ρ

, the manufacturer should choose the non-downgrading

strategy SD̄; if a ≥ c(1−ρ)
ρ

, the manufacturer should choose the downgrading strategy

SD. Details of each policy are presented in Table 4.1.

Strategy Optimal If p∗h p∗l Q∗
h Q∗

l

SD̄ a < c(1−ρ)
ρ

1+c(1−ρ)/ρ
2 − 1−c(1−ρ)/ρ

2 0

SD a ≥ c(1−ρ)
ρ

1+c(1−ρ)/ρ
2

a+c(1−ρ)/ρ
2

1−c(1−ρ)/ρ
2

b−cb(1−ρ)/aρ
2

(Continued..)

Strategy Optimal If Q∗ Π∗

SD̄ a < c(1−ρ)
ρ

1−c(1−ρ)/ρ
2ρ

[1−c(1−ρ)/ρ]2

4

SD a ≥ c(1−ρ)
ρ

1+b−(a+b)c(1−ρ)/aρ
2ρ

(1−c(1−ρ)/ρ)2+ b
a
(a−c(1−ρ)/ρ)2

4

Table 4.1: Optimal Policy for Scrapping Strategies

Note that the choice between SD and SD̄ depends on the relative size of a and

c(1−ρ)
ρ

, as shown in Figure 4.1, where a is the highest willingness-to-pay in l-market

and c(1−ρ)
ρ

is the indirect cost due to scrapping for each unit of supply. If this indirect

cost exceeds what l-market consumers can pay, i.e., c(1−ρ)
ρ

> a, entering l-market

brings no profit and thus the manufacturer should serve h-market only. Otherwise,
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it is profitable for the manufacturer to enter l-market and thus both markets should

be served. Note that the choice between SD and SD̄ is independent of the size of

h-market, b. As explained above, it is solely determined by the profitability when

entering l-market. b, however, does play a role in the optimal production capacity

when SD is chosen, i.e., when both markets are served.

Figure 4.1: Scrap Strategy Optimal Downgrading Policy: a vs. c

Corollary 1 Comparing SD̄ to SD, we find Q∗
h stays unchanged, but Q∗ increases

and so does the profit.

When Scrapping strategies are implemented, the two types of consumers are served

separately with completely controlled supply amount, thus the optimal amount of

supply to h-market is constant, regardless whether the low-end consumers are served,

i.e., regardless whether SD̄ or SD strategy is chosen. However, when SD strategy is

chosen, the manufacturer will benefit by expanding his production capacity with the

additional downgraded H-product catering for the low-end consumers.

Corollary 2 As ρ increases, SD̄ is more preferred; p∗h and p∗l drop; but Q∗
h and Q∗

l
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rise and so does the profit, regardless of the choice of downgrading.

Intuitively, as the yield increases, for a same amount of supply, less would be

needed to be scraped and thus the indirect cost, c(1−ρ)
ρ

, will drop. This will induce

the manufacturer to produce more, which drives down the prices for both markets,

p∗h and p∗l , and more likely to serve l-market. That is, the single-market policy SD̄ is

more preferred.
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Chapter 5

S̄ Strategy: L-Product is Not

Scrapped but Sold

In this section, we study the case that the manufacturer has decided to use non-

scrapping (S̄) strategy. In other words, we analyze the manufacturer’s optimal deci-

sions in the current practice. Similarly as in the previous section, we determine for

the manufacturer whether to adopt the downgrading option (i.e., choosing between

S̄D and S̄D̄ strategies), and the corresponding decisions of production capacity, the

allocation of the supply to each market, and the price charged to each market. Please

refer to the bottom two figures in Figure 3.1 for the flow chart.

To determine the price for each market, we match its supply to the demand as

follows:

Qh = Dh = 1− ph and Ql = (ρQ−Qh) + (1− ρ)Q = Dl = b(1− pl
a
), (5.1)
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which implies the following price function: To assure the existence of both h-market

and l-market, we assume ph > pl and pl ≤ a. For dual-market strategies, basic

transformation leads to the following price function:

ph = 1−Qh and pl =
a

b
(b+Qh −Q). (5.2)

Plugging in the profit functions, we state the manufacturer’s profit maximization

problem as:

max ΠS̄(Qh, Q) = phQh + plQl (5.3)

s.t. 0 ≤ Qh ≤ ρQ,

Ql = Q−Qh,

pl < ph ≤ 1.

We follow the solution procedure for the scraping case stated in the previous

section and obtain the following optimal policy. To express the policy, we define

p∗h,S̄D̄ = (2a+ab+b)ρ2−(ab+4a)ρ+2a
2a(1−ρ)2+2bρ2

, p∗l,S̄D̄ = a[(a+2b+1)ρ2−(2a+1)ρ+a]
2a(1−ρ)2+2bρ2

, Q∗
h,S̄D̄ = bρ[ρ+a(1−ρ)]

2a(1−ρ)2+2bρ2
,

Q∗
l,S̄D̄ = b(1−ρ)[ρ+a(1−ρ)]

2a(1−ρ)2+2bρ2
, Q∗

S̄D̄ = b[ρ+a(1−ρ)]
2a(1−ρ)2+2bρ2

, Π∗
S̄D̄ = b[ρ+a(1−ρ)]2

4a(1−ρ)2+4bρ2
.

Proposition 2 If 0 ≤ ρ ≤ 1
1+b

, the manufacturer should choose the non-downgrading

strategy S̄D̄; if 1
1+b

< ρ ≤ 1, the manufacturer should choose the downgrading strategy

S̄D. Details of each policy are presented in Table 5.1.

We first note that the choice of downgrading or not depends on the comparison

between the yield ρ and 1
1+b

, which is illustrated in Figure 5.1. We also note that when
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Strategy Optimal if p∗h p∗l Q∗
h Q∗

l Q∗ Π∗

S̄D̄ 0 ≤ ρ ≤ 1
1+b p∗

h,S̄D̄
p∗
l,S̄D̄

Q∗
h,S̄D̄

Q∗
l,S̄D̄

Q∗
S̄D̄

Π∗
S̄D̄

S̄D 1
1+b < ρ ≤ 1 1

2
a
2

1
2

b
2

1+b
2

1+ab
4

Table 5.1: Optimal Policy for Non-Scrap Strategies

Figure 5.1: Non-Scrap Strategy Optimal Downgrading Policy: ρ vs. b

the yield is large enough, i.e., when ρ > 1
1+b

, the manufacturer can use the down-

grading strategy, S̄D strategy, to optimize the supply to both markets, extracting the

maximum profit from each market. Specifically, the manufacturer should produce to

serve half of the potential market, i.e., Q∗
h = 1

2
and Q∗

l = b
2
, and charge half of the

maximum price the consumers are willing to pay for both markets, i.e., p∗h = 1
2
and

p∗l =
a
2
. We refer to this solution as the global optimal.
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To help explain the intuition behind the optimal policy, we need to introduce the

following definition.

Definition 2 The “optimal ratio of supply” to h-market and l-market is the ratio of

the respective market size, 1 : b.

The optimal ratio of supply is naturally achieved when ρ = 1
1+b

as ρQ : (1−ρ)Q =

1 : b; it can be manipulated via downgrading when ρ > 1
1+b

. As shown above, the

optimal ratio of supply leads to the global optimal for the manufacturer. When

ρ < 1
1+b

, however, the optimal ratio of supply is unreachable; downgrading will further

distort the ratio of supply. In this case, the manufacturer should not downgrade and

supply Q∗
h,S̄D̄ and Q∗

l,S̄D̄ to h-market and l-market, respectively.

Corollary 3 Comparing S̄D̄ to S̄D, we find that Q∗
h,S̄D̄ < 1

2
; Q∗

l,S̄D̄ > b
2
; Q∗

S̄D̄ ≥ 1+b
2

if ρ ∈ [ a
a+b

, 1
1+b

] and Q∗
S̄D̄ < 1+b

2
if ρ < a

a+b
.

When the yield ρ is less than 1
1+b

, the optimal ratio of supply is not attain-

able and neither is the global optimal. Specifically, the optimal supply to h-market,

Q∗
h,S̄D̄, is less than the global optimal, 1

2
(referred to as under-supply); the optimal

supply to l-market, Q∗
l,S̄D̄, is, however, more than the global optimal, b

2
(referred to as

over-supply). Consequently, h-market consumers will suffer the resulted higher price,

higher than the global optimal, 1
2
; l-market consumers will benefit from the resulted

lower price, lower than the global optimal, a
2
.

Combining the supply to both markets, the total production, Q∗
S̄D̄, however, may

or may not exceed the global optimal, 1+b
2
. It depends on the magnitude of the
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production yield ρ. The manufacturer with low yield (lower than a
a+b

) should produce

less than the global optimal, while the manufacturer with high yield (higher than a
a+b

)

should produce more than the global optimal.

We find two counter-intuitive phenomena for the manufacturer utilizing S̄D̄ strat-

egy. First, when balancing the profit earned from each market, the manufacturer’s

decision can be a little extreme - over sacrificing the profitability in l-market (such

that negative gross margin is incurred) for better profitability in h-market. Second, a

better l-market with its consumers’ willing to pay more can make the manufacturer

worse off (i.e., may lower his profit).

Corollary 4 When 2a+1−
√
1−8ab

2(a+2b+1)
< ρ < 2a+1+

√
1−8ab

2(a+2b+1)
(< 1

1+b
) and ab < 1

8
, we find: (1)

p∗l,S̄D̄ < 0, with minimum occurred at ρ = 2a+1
2(a+2b+1)

, and (2) Π∗
S̄D̄ decreases in a, albeit

it always increases in b.

Such an extreme sacrifice, however, only occurs when ab < 1
8
, where a and b are the

highest willingness-to-pay and the market size, respectively, for l-market. ab can be

interpreted as the profit upper bound for l-market. Similarly, the profit upper bound

for h-market is 1. As such, ab can also be viewed as the relative market profitability

of l-market, compared to h-market. Thus the l-market is worth sacrificing only when

its relative market profitability is no more than 1
8
. Clearly, the sacrifice motive is

justified as the profit obtained from h-market can compensate the loss in l-market.

A typical behavior of the optimal supplies and profits with respect to the yield, ρ, is

shown in Figure 5.2.
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Figure 5.2: Negative Gross Margin in l-market

Under the same condition, a better l-market with a higher a leads to a lower profit

for the manufacturer surprisingly. One examples is shown in Figure 5.3.

With higher willingness-to-pay in l-market, the L-product price will be set higher,

thus lower demand will be incurred and lower production capacity will be required

for the same production yield. But in total, higher profits from l-market can be

generated. Since the manufacturer will produce less, lower supply of H-product will
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Figure 5.3: Profit Decrease in a

enable the manufacturer to charge a higher price for H-product. Consequently, the

profit generated from H-product will be slightly lower for the low production yield

region, but it can be compensated by the higher L-product profits. Therefore, in

total, the increasing in a will lead to higher overall profits with reasonably large a.

a ↑ ⇒



p∗l (↓) ↑ Q∗
l ↓ Π∗

l (↓) ↑

Q∗ ↓

p∗h ↑ Q∗
h ↓ Π∗

h ↓


⇒ Π∗(↓) ↑,

where p∗l (↓) ↑,Π∗
l (↓) ↑, and Π∗(↓) ↑ mean p∗l , Π

∗
l and Π∗ first decrease then increase

in a respectively.

The impact of b on the manufacturer’s profit is, however, always positive. With
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larger l-market market size, thus larger market capability for L-product, for the same

production yield, the manufacturer can produce more, which results in larger supply

for H-product but lower H-product price. But on the whole, increasing of l-market

size will lead to higher profit from H-product. On the other hand, with larger b,

the manufacturer will produce more, but not too much to drive down the L-product

price. Thus, with larger l-market market size will lead to higher price, and supply

for L-product. Since non-downgrading strategy is only preferred when 0 ≤ ρ ≤ 1
b+1

,

whereas global optimal can be achieved when 1
b+1

< ρ ≤ 1 with downgrading strategy.

When b is increasing, the production yield requirement to achieve global optimal will

be lower.

b ↑ ⇒



p∗l ↑ Q∗
l ↑ Π∗

l (↓) ↑

Q∗ ↑

p∗h ↓ Q∗
h ↑ Π∗

h ↑


⇒ Π∗ ↑
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Chapter 6

Comparison Between S Strategy

and S̄ Strategy

Using the results from the previous two sections, we can now allow the manufacturer

to choose freely between all the strategies, SD, SD̄, S̄D and S̄D̄. As shown in

the previous section, S̄D strategy achieves the global optimal when ρ > 1
1+b

. Thus,

when the yield falls in this range, S̄D is the best strategy, regardless of the other

model parameters. However, when ρ ≤ 1
1+b

, the manufacturer might be better off by

switching back to the past practice - scrapping.

To help describe the optimal conditions, we define c1 =
aρ
1−ρ

, c2 =
ρ

1−ρ
(1−2

√
Π∗

S̄D̄
),

c3 = aρ
(a+b)(1−ρ)

[
(1 + b)−

√
b2(1−a)(1+b)ρ+ab+2a−1

a(1−ρ)2+bρ2

]
, ρ1 = 1+b−a−

√
b2+2b−ab

1−a
, ρ2 = 1

2(1+b)
−

a
2(1−a)

, and ρ3 =
1

1+b
.

Proposition 3 Comparing the profit for various strategies, we obtain the comparison
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results summarized in Table 6.1 below.

Strategy Optimal If Π∗

SD̄ c1 ≤ c < c2, 0 ≤ ρ < ρ1
[1− c(1−ρ)

ρ
]2

4

SD c < c1 ∧ c3, ρ2 ≤ ρ ≤ ρ3

or
(1− c(1−ρ)

ρ
)2+ b

a
(a− c(1−ρ)

ρ

2

4

c < c1, 0 ≤ ρ < ρ2

S̄D̄ otherwise b[ρ+a(1−ρ)]2

4a(1−ρ)2+4bρ2

S̄D ρ > 1
1+b

1+ab
4

Table 6.1: Optimal Policy with Free Choice of Strategies

Recall that out of the four strategies listed in Table 6.1, only the first, SD̄, cor-

responds to that the manufacturer sells to a single market, i.e., the h-market. A

close examination of the optimal conditions for this strategy shows that if the other

market, i.e., the l-market, is profitable enough, SD̄ strategy is never optimal and thus

the manufacturer should always sell to both markets.

Corollary 5 If b ≥ (1−a)2

a
, the manufacturer should always sell to both markets.

This result implies the profitability of l-market can be characterized by its market

size, b, and its customers’ highest willingness-to-pay, a. It also provides a benchmark

that is simple and easy to check. Specifically, if b or/and a is large enough such that

condition b ≥ (1−a)2

a
is satisfied, the manufacturer should always serve both markets.
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For example, if the l-market consumers are willing to pay half of what the h-market

consumers are willing to pay, i.e., if a = 1
2
, the size of h-market needs to be at least

half of the size of h-market such that l-market is worth entering for the manufacturer.
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Chapter 7

Numerical Study

To better understand the strategy selection conditions and the impacts of the model

parameters, we supplement our analytical results with a through numerical study.

7.1 Strategy Preference Based on c and ρ

To help visualize when each of the four strategies, SD̄, SD, S̄D̄ and S̄D, is optimal

and thus should be adopted, we provide Figure 7.1, consisting of four figures all drawn

in the scrap cost, c, versus the production yield, ρ. Note that in each figure, the zones

in which each strategy is optimal are shaded in different colors.

For reference convenience, we next define the curves that separate the various

optimal zones. The curve associated with c = aρ
1−ρ

is dividing the zone associated

with scraping strategies into two, one for SD̄ and the other for SD. Thus, we define

this curve as SD̄/SD critical curve. For any combination of c and ρ on this curve,
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Figure 7.1: Policy Preference Based on ρ and c

the manufacturer is indifferent to SD̄ and SD. Above the curve, the scrapping cost

is high and thus the manufacturer should cover h-market only; below the curve, scrap

cost is lower and the manufacturer should cover both markets. Similarly, we define

the bell-shaped curve as S̄D̄/S critical curve, where S includes SD̄ and SD. For any

combination of c and ρ on this curve, the manufacturer is indifferent to S̄D̄ and SD̄

or SD.
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7.1.1 Strategy Shifting in a

Comparing the top two figures to their respective figures below in Figure 7.1, we find

that as a increases, the region for SD̄ shrinks and the SD̄/SD critical curve shifts up.

This means that SD̄ strategy is less preferred. Recall that SD̄ strategy is the only

single-market strategy among the four. As the l-market consumers are willing to pay

a higher price (i.e., as a, the highest willingness to pay for l-market, increases towards

1, the highest willingness to pay for h-market), the difference between the two markets

will be smaller. Therefore, l-market will be more attractive; the manufacturer would

have more incentive to cover both markets.

7.1.2 Strategy Shifting in b

Comparing the two figures to the left to their respective figures to the right in Figure

7.1, we find that as the size of l-market, b, increases, the region for S shrinks and

so does the S̄D̄/S critical curve. This means that S strategy is less preferred. The

S̄D̄/S critical curve corresponds to the balance between the scrap cost in S strategy

and the gross margin loss from over-supplying l-market in S̄D̄ strategy. Recall that

over-supply is defined in comparison to the global optimal. We can further quantify

the degree of over-supply to l-market by Ql−b/2
b/2

. Intuitively, we note that under S̄D̄

strategy, as b increases, the degree of over-supply drops, constrained by the profit

maximization for h-market, and so does the gross margin loss due to over-supply.

Given the same scrap cost, this raises the manufacturer’s incentive to adopt S̄D̄
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strategy.

In addition, we find that as the size of l-market, b, increases, S̄D strategy is more

preferred. As Figure 7.1 shows, the vertical black line at ρ = 1
1+b

separates the region

for S̄D from the other three regions. We define 1
1+b

as the critical yield level at which

the ratio of the supply is the optimal ratio, 1 : b. Clearly, as the size of l-market, b,

increases, the critical yield level will decrease. This corresponds to the expansion of

the region for S̄D strategy in Figure 7.1, i.e., S̄D strategy is more preferred.

7.1.3 Strategy Shifting in ρ

For any given scrap cost, c, as the yield, ρ, increases from 0 to 1, the optimal strategy

will evolve as: S̄D̄ → SD̄ → SD → S̄D̄ → S̄D, when c is low; S̄D̄ → S̄D, when c is

high. As shown in Figure 7.2, we define the corresponding ranges of ρ as Segment I,

II, III, IV, V. Recall that as discussed earlier and in Section 5, when ρ is below the

critical yield level, 1
1+b

(i.e., in Segments I-IV), the manufacturer, who chooses S̄D̄,

will over-supply l-market, but under-supply h-market.

In Segment I, ρ is very small and thus the indirect cost due to scrapping, c(1−ρ)
ρ

,

is very high and the dominant output is L-product. The manufacturer should not

scrap L-product but collect most of his profit from l-market sales. Note that for this

strategy H-product costs the same as L-product, but is sold at a much higher price.

Therefore, the manufacturer should not consider downgrading any H-product. In

summary, when ρ is very small, S̄D̄ strategy should be adopted.
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Figure 7.2: Policy Preference Evolved with ρ

As ρ increases, the indirect cost c(1−ρ)
ρ

drops and the output of H-product increases.

In Segments II and III, the indirect cost due to scrapping drops below the gross margin

loss due to over-supply, making S strategy preferred (to S̄ strategy). Moving from

Segment II to III, the indirect cost drops and goes below the gross margin earned in

l-market. Thus the manufacturer will earn profits from both market by downgrading

some H-product.

As ρ further increases to Segment IV, although the indirect cost due to scrapping

further drops, it cannot catch up with the reduction of the gross margin loss due

to over-supply. Therefore, the manufacturer will choose S̄D̄ strategy. Finally, as ρ

crosses the critical yield level, 1
1+b

, (i.e., in Segment V), the manufacturer should use

downgrading to achieve the optimal supply ratio to both market, i.e., should adopt
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S̄D strategy.

7.2 Sensitivity Study for S̄D̄ Strategy

In this section, we focus on S̄D̄ strategy and study how the manufacturer’s profit

and optimal decisions are affected by the l-market parameters, a and b. The reasons

of focusing on this strategy are as following. First, the sensitivity study for the

other three strategies are straightforward and important results are already stated in

analytically. Second, S̄D̄ is the only one among the four under which the optimal ratio

of supply is not attainable. Under SD and SD̄, the manufacturer has a single source of

supply (i.e., H-product) and thus can completely control the ratio of supply to the two

markets. The selection between them solely depends on the profitability of entering

l-market. Under S̄D, the manufacturer can leverage on the downgrading option to

control the ratio of supply to the two markets, albeit two sources of supply (i.e.,

H-product and L-product). Third, as S̄D is associated with the global optimal, only

manufacturers who are currently utilizing S̄D̄ strategy could be better off switching

back to the past practice and use either SD or SD̄.

Our numerical results show that the two parameters for l-market, the highest

willingness-to-pay a and the market size b, will affect the manufacturer’s optimal

profit in a different degree. A same percentage of increase or decrease in b will result

in a higher percentage change of the optimal profit than that in a will, as shown in

Figure 7.3. This implies that b has a stronger impact on the profit; the manufacturer
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would prefer a doubled l-market size to a doubled highest willingness-to-pay.

Figure 7.3: Impact of Increase/Decrease in a and b on Optimal Profit
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Chapter 8

Conclusions

In our paper, we extend the joint quantity-and-price setting problem in the semi-

conductor manufacturing industry and integrate it with supply and demand differ-

entiation. Building upon a standard marketing model for two differentiated markets,

we come out with supply strategy (scrapping and downgrading) and market strategy

(single market vs. dual market), supported with the optimization of product pric-

ing, production capacity, and product profit. We find that when both the production

yield and the scrapping cost are small, the manufacturer should switch back to the old

practice. Otherwise, the manufacturer could lose up to 72.7% profit increase, shown

by our numerical study (softcopy excel calculation file is included in the CD). We

observe that when the yield fraction is large, with the downward flexibility, the global

optimum can be achieved with the best economical setting and maximal profitability.

Moreover, we observe that the manufacturer may sacrifice the low-end market with
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negative profit when balancing the profit earned from each market. Counter intu-

itively, the manufacturer may be worse off when l-market consumers are willing to

pay more.

Following the analysis for monopoly manufacturer in the market, the market com-

petition strategy for duopoly manufacturers can be explored. Furthermore, in our

paper, we assume that the consumers in high-end market only demand high-quality

product and will never buy low-quality product regardless the price difference for

both. Future research can be extended to the product cannibalization.
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Appendix

Proof of Table 4.1:

Step 1. We first ignore the constraints on Qh for single-market and dual-market

cases for analysis convenience. We will incorporate them later after we fragment this

scrap model into two sub-models.

Using price expressions derived, we can rewrite the manufacturer’s profit function

as:

max ΠS(Qh, Q) = phQh + plQl − cs(1− ρ)Q

= (1−Qh)Qh +
a

b
(b+Qh − ρQ)(ρQ−Qh)− cs(1− ρ)Q

s.t. 0 ≤ Qh ≤ ρQ,

ph > pl.

Differentiating the profit function with respect to (w.r.t.) Qh, we obtain

∂ΠS(Qh, Q)

∂Qh

= 1− 2Qh +
a

b
(b+Qh − ρQ)(−1) +

a

b
(ρQ−Qh)

=
1

b
[b− ab+ 2aρQ− 2(a+ b)Qh],

which is decreasing in Qh. Thus we know that for any given Q, ΠS(Qh, Q) is concave

in Qh and has a unique optimum. Let Q̃h denote this value, that is, ∂ΠS(Q̃h,Q)

∂Q̃h
= 0.

Q̃h represents the optimal supply to h-market without considering all the constraints.

Solving the first order condition, we have

Q̃h =
b− ab+ 2aρQ

2(a+ b)
> 0. (8.1)
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Using the concavity property of ΠS(Qh, Q), we can compare Q̃h to ρQ, the maxi-

mum supply available for the h-market, and obtain the following two scenarios to be

analyzed individually:

1. SD̄ strategy is optimal: Q∗
h = arg0≤Qh≤ρQ ΠS(Qh, Q) = ρQ, when Q ≤ 1−a

2ρ
,

that is, where Q̃h ≥ ρQ. In this case, the manufacturer with low capacity is

better off by focusing on the h-market only.

2. SD strategy is optimal: Q∗
h = arg0≤Qh≤ρQΠS(Qh, Q) = Q̃h, when Q > 1−a

2ρ
, that

is, where Q̃h < ρQ. In this case, the manufacturer with high capacity should

enter both markets.

Step 2. We then solve for the optimal strategy when SD̄ strategy, serve high-end

market only, is optimal.

As discussed earlier, we now incorporate the constraints on Qh(= ρQ) to meet the

price requirement for the h-market, i.e., we should guarantee Qh = ρQ < a
a+b

ρQ +

b
a+b

(1− a), such that ph > pl, from which we obtain Q < 1−a
ρ
. We start by rewriting

the manufacturer’s profit function as a single-variable function as follows:

max ΠSD̄(Q) = ph(ρQ) = ρQ− ρ2Q2 − cs(1− ρ)Q

s.t. Q ≤ 1− a

2ρ
, ( i.e., Q̃h ≥ ρQ),

0 ≤ Q <
1− a

ρ
, ( i.e., ph > pl). (8.2)

Solving the non-linear Equation 8.2, we first note that ΠSD̄(Q) is a concave

quadratic function of Q with a single optimum at Q = ρ−cs(1−ρ)
2ρ2

> 0. Using the
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convexity property of ΠSD̄(Q), we can conclude that the optimal capacity, denoted

by Q∗
SD̄, satisfies Q

∗
SD̄ = ρ−cs(1−ρ)

2ρ2
∧ 1−a

2ρ
∧ 1−a

ρ
= ρ−cs(1−ρ)

2ρ2
∧ 1−a

2ρ
, where a∧b = min{a, b}

and a ∨ b = max{a, b}.

Further, we can check the difference for the two potential optimum,

ρ− cs(1− ρ)

2ρ2
− 1− a

2ρ
=

1

2ρ2
[aρ− cs(1− ρ)].

We then conclude that the optimal production capacity for case SD̄ is:

Q∗
SD̄ =


1−a
2ρ

if a > cs(1−ρ)
ρ

, (S1 ≼ S2),

1−cs(1−ρ)/ρ
2ρ

if a ≤ cs(1−ρ)
ρ

, (S1 ≻ S2),

where a ≼ b means a is not better than b, and a ≻ b means a is superior to b.

If a > cs(1−ρ)
ρ

, SD̄ strategy is not better than SD strategy. We will further explore

this case in the next step.

Therefore, SD̄ strategy is preferred when a ≤ cs(1−ρ)
ρ

, and the optimal production

capacity is 1−cs(1−ρ)/ρ
2ρ

.

The optimal strategy for SD̄ strategy is shown in table below.

Strategy Optimal If p∗h p∗l Q∗
h Q∗

l Q∗ Π∗

SD̄ a ≤ cs(1−ρ)
ρ

1+cs(1−ρ)/ρ
2 − 1−cs(1−ρ)/ρ

2 0 1−cs(1−ρ)/ρ
2ρ

[1−cs(1−ρ)/ρ]2

4

Step 3. We then solve for the optimal strategy when SD strategy, serve both markets,

is optimal.

As shown earlier, in this case the optimal quantity of H-product allocated to the
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h-market is Qh(= Q̃h = b−ab+2aρQ
2(a+b)

). We can analyze this two-market scrap model

similarly to we do for the single market scrap model. We incorporate the constraints

on Qh to meet the requirement for ph and pl, where Q̃h is defined by (8.1). That

is, we should guarantee Q̃h ≤ a
a+b

ρQ + b
a+b

(1 − a), i.e., ph > pl, and Q̃h < ρQ, i.e.,

pl ≤ a, where the first inequality is automatically satisfied. We then rewrite the

manufacturer’s profit function as follows:

max ΠSD(Q) = phQ̃h + pl(ρQ− Q̃h)− cs(1− ρ)Q

=
1

4(a+ b)
[−4aρ2Q2 + 4a(b+ 1)ρQ+ b(1− a)2]− cs(1− ρ)Q

s.t. Q >
1− a

2ρ
, ( i.e., Q̄h < ρQ),

Q ≥ 1− a

2ρ
, ( i.e., pl ≤ a). (8.3)

Solving the non-linear Equation 8.3, we first note that ΠSD(Q) is a concave

quadratic function of Q with a single optimum at Q = (1+b)−(a+b)cs(1−ρ)/aρ
2ρ

> 0.

Using the convexity property of ΠSD(Q), we can compare this optimum with the

constraints and obtain the following result for the optimal capacity, denoted by Q∗
SD,

Q∗
SD = 1−a

2ρ
∨ (1+b)−(a+b)cs(1−ρ)/aρ

2ρ
.

With further comparison, using the fact that

1− a

2ρ
− (1 + b)− (a+ b)cs(1− ρ)/aρ

2ρ
=

(a+ b)[cs(1− ρ)/ρ− a]

2aρ
,

we can obtain the optimal production capacity for case SD is:

Q∗
SD =


(1+b)−(a+b)cs(1−ρ)/aρ

2ρ
if a > cs(1−ρ)

ρ
, (S2 ≻ S1),

1−a
2ρ

if a ≤ cs(1−ρ)
ρ

, (S2 ≼ S1).
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Therefore, SD strategy is preferred when a > cs(1−ρ)
ρ

, and the optimal production

capacity is (1+b)−(a+b)cs(1−ρ)/aρ
2ρ

.

The optimal strategy for SD strategy is shown as in table below.

Case Optimal If p∗h p∗l Q∗
h Q∗

l

SD a > cs(1−ρ)
ρ

1+cs(1−ρ)/ρ
2

a+cs(1−ρ)/ρ
2

1−cs(1−ρ)/ρ
2

b−bcs(1−ρ)/aρ
2

(Continued..)

Case Optimal If Q∗ Π∗

SD a > cs(1−ρ)
ρ

1+b−(a+b)cs(1−ρ)/aρ
2ρ

(1−cs(1−ρ)/ρ)2+ b
a
(a−cs(1−ρ)/ρ)2

4

Combining results in the previous two tables, we can obtain the optimal policy

for scrap strategy as in Table 4.1.

Proof of Table 5.1:

Step 1. We first ignore the constraints on Qh for single-market and dual-market

cases for analysis convenience. We will incorporate them later after we fragment this

non-scrap model into two sub-models.

Using the expressions derived, we then rewrite the manufacturer’s profit function

as:

max ΠS̄(Qh, Q) = phQh + plQl − cs(1− ρ)Q

= (1−Qh)Qh +
a

b
(b+Qh −Q)(Q−Qh)
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s.t. 0 ≤ Qh ≤ ρQ,

ph > pl,

Differentiating the profit function w.r.t Qh, we get

∂ΠNS(Qh, Q)

∂Qh

= 1− 2Qh +
a

b
(b+Qh −Q)(−1) +

a

b
(Q−Qh)

=
1

b
[b− ab+ 2aQ− 2(a+ b)Qh],

which is a decreasing function of Qh. Thus for any given Q, ΠNS(Qh, Q) is concave in

Qh and has a unique optimum. Let Q̃h denote this value, i.e.,
∂ΠS̄(Q̃h,Q)

∂Q̃h
= 0. Note that

the subscript stands for non-scrapping strategy. Q̃h represents the optimal supply to

h-market without considering all the constraints. Thus, based on the concavity of the

objective function, the optimal Qh without considering the price constraints is

Q̃h =
b− ab+ 2aQ

2(a+ b)
> 0. (8.4)

Thus,

Q∗
h =

b− ab+ 2aQ

2(a+ b)
∧ ρQ.

Further, based on the concavity property of ΠS̄(Qh, D), we can compare Q̃h to ρQ,

the maximum available supply to h-market, and obtain the following two scenarios

to be analyzed individually:

1. Model S̄D̄ is optimal: Q∗
h = arg0≤Qh≤ρQΠS̄(Qh, Q) = ρQ, when
Q ≤ b(1−a)

2[(a+b)ρ−a]
if ρ > a

a+b
,

Q ≥ 0 if ρ ≤ a
a+b

.
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The price for all the H-product will be too high for the l-market customers,

thus they will only purchase L-product. In this case, the manufacturer with low

capacity is better off by focusing on the h-market only.

2. Model S̄D is optimal: Q∗
h = arg0≤Qh≤ρQ ΠS̄(Qh, Q) = Q̃h, when Q > b(1−a)

2[(a+b)ρ−a]

and ρ > a
a+b

. The price for ρQ − Qh portion of H-product is lower than the

highest willingness to pay of l-market customers, thus customers in l-market

will purchase both H-products and L-product. In this case, the manufacturer

with high capacity should enter both markets.

Step 2. We then solve for the optimal policy when S̄D̄ strategy, H-product sold to

h-market market only, is optimal.

Incorporating the constraints on Qh(= ρQ) to meet the price requirement for h-

market, i.e., we should guarantee Qh = ρQ < a
a+b

Q + b
a+b

(1 − a), such that ph > pl,

and Qh ≤ Q, such that pl ≤ a. We start by rewriting the manufacturer’s profit

function as a single-variable function as follows:

max ΠS̄D̄(Q) = ph(ρQ) + pl(1− ρ)Q = (1− ρQ)ρQ+
a

b
(b+ ρQ−Q)(Q− ρQ),

s.t. ρ ≤ a

a+ b
, ( i.e., Q̄hs ≥ ρQ),

or ρ >
a

a+ b
, & Q ≤ b(1− a)

2[(a+ b)ρ− a]
, ( i.e., Q̄hs ≥ ρQ). (8.5)

Taking first order condition for non-linear Equation 8.5 w.r.t Q, we have,

dΠS̄D̄(Q)

dQ
= ρ− 2ρ2Q+ a(1− ρ)− 2a(1− ρ)2

b
Q,
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which implies that ΠS̄D̄(Q) has a single optimum at Q = b[ρ+a(1−ρ)]
2a(1−ρ)2+2bρ2

> 0. Using

the convexity property of ΠS̄D̄(Q), we can analyze the constraints and conclude that

the optimal capacity, denoted by Q∗
S̄D̄, satisfies

Q∗
S̄D̄ =


b[ρ+a(1−ρ)]

2a(1−ρ)2+2bρ2
∧ b(1−a)

2[(a+b)ρ−a]
if ρ > a

a+b
,

b[ρ+a(1−ρ)]
2a(1−ρ)2+2bρ2

if ρ ≤ a
a+b

.

Then we can obtain the optimal production capacity for case S̄D̄ is:

Q∗
S̄D̄ =


b[ρ+a(1−ρ)]

2a(1−ρ)2+2bρ2
if 0 < ρ ≤ 1

b+1
, (NS1 ≻ NS2),

b(1−a)
2[(a+b)ρ−a]

if 1
b+1

< ρ ≤ 1, (NS1 ≼ NS2).

Therefore, S̄D̄ strategy is preferred when 0 < ρ ≤ 1
b+1

, and the optimal production

capacity is b[ρ+a(1−ρ)]
2a(1−ρ)2+2bρ2

.

The optimal decisions for S̄D̄ strategy are summarized in table below.

Strategy Optimal If p∗h p∗l Q∗
h

S̄D̄ 0 < ρ ≤ 1
b+1

(2a+ab+b)ρ2−(ab+4a)ρ+2a
2a(1−ρ)2+2bρ2

a[(a+2b+1)ρ2−(2a+1)ρ+a]
2a(1−ρ)2+2bρ2

bρ[ρ+a(1−ρ)]
2a(1−ρ)2+2bρ2

(Continued..)

Strategy Optimal If Q∗
l Q∗ Π∗

S̄D̄ 0 < ρ ≤ 1
b+1

b(1−ρ)[ρ+a(1−ρ)]
2a(1−ρ)2+2bρ2

b[ρ+a(1−ρ)]
2a(1−ρ)2+2bρ2

b[ρ+a(1−ρ)]2

4a(1−ρ)2+4bρ2

Step 3. We then solve for the optimal policy when S̄D strategy, H-product sold to

both markets, is optimal.

As shown earlier, in this case the optimal quantity of H-product allocated to h-

market is Qh(= Q̃h = b−ab+2aQ
2(a+b)

). We can analyze this two-market non-scrap model
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similarly as we do for the previous models. We incorporate the constraints on Qh to

meet the requirement for ph and pl. That is, we should guarantee Q̃h < a
a+b

Q+ b
a+b

(1−

a), such that ph > pl, and Q̃h ≤ Q, such that pl ≤ a, where the first inequality is

automatically satisfied. We then rewrite the manufacturer’s profit function as follows:

max ΠS̄D(Q) = phQ̃h + pl(Q− Q̃h)

=
1

4(a+ b)
[−4aQ2 + 4a(b+ 1)Q+ b(1− a)2]

s.t. Q >
b(1− a)

2[(a+ b)ρ− a]
with ρ >

a

a+ b
, i.e., Q̃h ≤ ρQ

Q ≥ 1− a

2
, i.e., pl ≤ a. (8.6)

Solving the non-linear Equation 8.6, we first note that ΠS̄D(Q) is a concave

quadratic function of Q with a single optimum at Q = 1+b
2

> 0. Using the con-

vexity property of ΠS̄D(Q), we can compare this optimum with the constraints and

obtain the following result for the optimal capacity, denoted by Q∗
S̄D:

Q∗
S̄D =


b(1−a)

2[(a+b)ρ−a]
if 0 < ρ ≤ 1

b+1
, and where NS2 ≼ NS1,

1+b
2

if 1
b+1

< ρ ≤ 1, and where NS2 ≻ NS1.

Therefore, S̄D strategy is preferred when 1
b+1

< ρ ≤ 1, and the optimal production

capacity is 1+b
2
.

The optimal decisions for S̄D strategy is summarized in table below.

Strategy Conditions p∗h p∗l Q∗
h Q∗

l Q∗ Π∗

S̄D 1
1+b < ρ ≤ 1 1

2
a
2

1
2

b
2

1+b
2

1+ab
4
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Combining results in the previous two tables, we can obtain the optimal policy

for scrap strategy as in Table 5.1.

Proof of Corollary 3: As summarized in Table 5.1, for case S̄D̄, Q∗
l =

b(1−ρ)[ρ+a(1−ρ)]
2a(1−ρ)2+2bρ2

.

The global optimal of product supply to l-market is b
2
. Q∗

l − b
2
= bρ[1−(1+b)ρ]

2a(1−ρ)2+2bρ2
. Since

0 ≤ ρ ≤ 1
1+b

, Q∗
l − b

2
≤ 0, that is, Q∗

l ≥ b
2
. Therefore, under S̄D̄ strategy, the

manufacturer will ‘over-supply’ l-market.

Meanwhile, Q∗
h = bρ[ρ+a(1−ρ)]

2a(1−ρ)2+2bρ2
. The global optimal of product supply to h-market

is 1
2
. Q∗

h − 1
2
= a(1−ρ)[(a+b)ρ−a]

2a(1−ρ)2+2bρ2
. Since 0 ≤ ρ ≤ 1

1+b
and a

a+b
< 1

1+b
, Q∗

h − 1
2
< 0,

that is, Q∗
h < 1

2
. Therefore, under S̄D̄ strategy, the manufacturer will ‘under-supply’

h-market.

Proof of Corollary 4: From Table 5.1, we can see that p∗l,S̄D̄ = a[(a+2b+1)ρ2−(2a+1)ρ+a]
2a(1−ρ)2+2bρ2

.

Solving equation a[(a+2b+1)ρ2−(2a+1)ρ+a]
2a(1−ρ)2+2bρ2

< 0, we can obtain 2a+1−
√
1−8ab

2(a+2b+1)
< ρ < 2a+1+

√
1−8ab

2(a+2b+1)
,

which only exists when ab < 1
8
. Similarly, from Π∗

S̄D̄ = b[ρ+a(1−ρ)]2

4a(1−ρ)2+4bρ2
, we can obtain

that
∂Π∗

S̄D̄

∂a
= b(1−ρ)[ρ+a(1−ρ)][(2b+a+1)ρ2−(2a+1)ρ+a]

[2a(1−ρ)2+2bρ2]2
. Let

∂Π∗
S̄D̄

∂a
< a, we can get the same

constraint as above. Therefore, we obtain Proposition 4.

Proof of Corollary 5: As summarized in Table 6.1, case SD̄ is preferred when

0 ≤ ρ ≤ 1−ab
1−ab+2b

and ρ < 1+b−a−
√
b2+2b−ab

1−a
. If ρ < 0, case SD̄ will never be preferred.

From 1+b−a−
√
b2+2b−ab

1−a
≤ 0, we obtain that b ≥ (1−a)2

a
. Therefore, Proposition 5 is
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proven.

Proof of Table 6.1:

Step 1. We first compare SD̄ strategy and S̄D̄ strategy.

S̄D̄ strategy is preferred when ρ is small. When ρ is small, 1−ρ
ρ

will be large, thus

a < cs(1−ρ)
ρ

is easier to be satisfied. Comparing the optimal profits for SD̄ strategy

and S̄D̄ strategy, when there is no down-grading for H-product,

Π∗
SD̄ − Π∗

S̄D̄

=
[1− cs(1− ρ)/ρ]2

4
− b[ρ+ a(1− ρ)]2

4a(1− ρ)2 + 4bρ2

and together with the assumption that cs <
ρ

1−ρ
, we can obtain that,

if 0 ≤ ρ < 1−ab
1−ab+2b

, i.e. 2
√
Π∗

S̄D̄
< 1, then

Π∗
SD̄ > Π∗

S̄D̄ when cs <
ρ

1−ρ
(1− 2

√
Π∗

S̄D̄
),

Π∗
SD̄ ≤ Π∗

S̄D̄ when ρ
1−ρ

(1− 2
√
Π∗

S̄D̄
) ≤ cs <

ρ
1−ρ

;

if 1−ab
1−ab+2b

≤ ρ ≤ 1, i.e. 2
√
Π∗

S̄D̄
≥ 1, then Π∗

SD̄ ≤ Π∗
S̄D̄.

Combined with the preferred condition for SD̄ strategy and S̄D̄ strategy, the above

correlations can be re-written as below:
Π∗

SD̄ > Π∗
S̄D̄ when cs <

ρ
1−ρ

(1− 2
√
Π∗

S̄D̄
), a ≤ cs(1−ρ)

ρ
, & 0 ≤ ρ < 1−ab

1−ab+2b
,

Π∗
SD̄ ≤ Π∗

S̄D̄ when ρ
1−ρ

(1− 2
√
Π∗

S̄D̄
) ≤ cs <

ρ
1−ρ

, & 0 ≤ ρ < 1−ab
1−ab+2b

, or 1−ab
1−ab+2b

≤ ρ ≤ 1
b+1

.

In the above expressions, we note that we need to check the concurrence of

constraint cs < ρ
1−ρ

(1 − 2
√
Π∗

S̄D̄
) and constraint a ≤ cs(1−ρ)

ρ
, i.e., cs ≥ aρ

1−ρ
. Af-

ter further comparison, we can obtain that, only when 0 ≤ ρ < 1+b−a−
√
b2+2b−ab

1−a
,
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aρ
1−ρ

< ρ
1−ρ

(1 − 2
√
Π∗

S̄D̄
), i.e., 2

√
Π∗

S̄D̄
< 1 − a. Furthermore, Π∗

S̄D̄ is a increasing

function of ρ, thus we can obtain 1+b−a−
√
b2+2b−ab

1−a
< 1−ab

1−ab+2b
.

Thus,
Π∗

SD̄ > Π∗
S̄D̄ when aρ

1−ρ
≤ cs <

ρ
1−ρ

(1− 2
√
Π∗

S̄D̄
), and 0 ≤ ρ < 1+b−a−

√
b2+2b−ab

1−a

Π∗
SD̄ ≤ Π∗

S̄D̄ when ρ
1−ρ

(1− 2
√
Π∗

S̄D̄
) ≤ cs <

ρ
1−ρ

, & 0 ≤ ρ < 1−ab
1−ab+2b

, or 1−ab
1−ab+2b

≤ ρ ≤ 1
b+1

.

When the production yield and the scrap cost is low, the manufacturer should

scrap the L-product; when the scrap cost is high, the manufacturer should sell the

L-product.

Step 2. We then compare SD strategy and S̄D̄ strategy.

S̄D̄ strategy is preferred when ρ is small. When ρ is small, 1−ρ
ρ

will be large, thus

a ≥ cs(1−ρ)
ρ

is more difficult to be satisfied. Comparing the optimal profits for SD

strategy and S̄D̄ strategy,

Π∗
SD − Π∗

S̄D̄

=
(1− cs(1− ρ)/ρ)2 + b

a
(a− cs(1− ρ)/ρ)2

4
− b[ρ+ a(1− ρ)]2

4a(1− ρ)2 + 4bρ2

=
1

4

[
(a+ b)(1− ρ)2

aρ2
c2s −

2(1 + b)(1− ρ)

ρ
cs +

a(1− (1 + b)ρ)2

a(1− ρ)2 + bρ2

]

DefineR1 andR2 (R1 ≤ R2) as two roots for equation, and ∆ = b2(1−a)(1+b)ρ+ab+2a−1
a(1−ρ)2+bρ2

,

(a+ b)(1− ρ)2

aρ2
c2s −

2(1 + b)(1− ρ)

ρ
cs +

a(1− (1 + b)ρ)2

a(1− ρ)2 + bρ2
= 0,

if ∆ ≥ 0, i.e., ρ ≥ 1
2(1+b)

− a
2(1−a)

, then we can obtain,

R1 =
aρ

(a+ b)(1− ρ)

(1 + b)−

√√√√b
2(1− a)(1 + b)ρ+ ab+ 2a− 1

a(1− ρ)2 + bρ2

 (8.7)

R2 =
aρ

(a+ b)(1− ρ)

(1 + b) +

√√√√b
2(1− a)(1 + b)ρ+ ab+ 2a− 1

a(1− ρ)2 + bρ2

 ; (8.8)
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otherwise, if ∆ < 0, then R1 and R2 do not exist.

Note that

(1 + b)2 − b
2(1− a)(1 + b)ρ+ ab+ 2a− 1

a(1− ρ)2 + bρ2
=

(a+ b)[(1 + b)ρ− 1]2

a(1− ρ)2 + bρ2
≥ 0,

which implies R1 ≥ 0.

Summarizing the above results of comparing the optimal profit for SD strategy

and S̄D̄ strategy, we can obtain that,

if [ 1
2(1+b)

− a
2(1−a)

] ≤ ρ ≤ 1,


Π∗

SD > Π∗
S̄D̄ when cs < R1 or cs > R2;

Π∗
SD ≤ Π∗

S̄D̄ when R1 ≤ cs ≤ R2;

if 0 ≤ ρ < [ 1
2(1+b)

− a
2(1−a)

], then Π∗
SD > Π∗

S̄D̄.

Combined with the preferred condition for SD strategy and S̄D̄ strategy, the

above correlations can be re-written as below:

Π∗
SD > Π∗

S̄D̄ when cs < R1, a > cs(1−ρ)
ρ

, and 1
2(1+b)

− a
2(1−a)

≤ ρ ≤ 1
1+b

,

or when a > cs(1−ρ)
ρ

, and 0 ≤ ρ < 1
2(1+b)

− a
2(1−a)

;

Π∗
SD ≤ Π∗

S̄D̄ when R1 ≤ cs <
aρ

(1−ρ)
, and 1

2(1+b)
− a

2(1−a)
≤ ρ ≤ 1

1+b
.
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