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Sharing Work Dynamically on U-Lines:

System Productivity and Individual Remuneration

Yue Wu

Abstract

Inspired by the concept of cellular bucket brigades, we propose simple rules for workers

to share work on U-shaped lines with discrete work stations. For a three-station U-line

with a worker-specific velocity setting, we identify the policies that maximize system

productivity and the policies that maximize each worker’s remuneration rate. For a

team with a faster worker and a slower worker, we find that the faster worker’s preferred

policies maximize system productivity for most work-content distributions. Whenthe

policies preferred by the system, the faster worker, and the slower worker are all different,

we find a way to resolve the tripartite conflict. On the other hand, if both workers prefer

the same policy then this policy also maximizes system productivity. For an M -station

U-line with a worker- and station-specific velocity setting, we show that the system always

converges to a fixed point or a period-2 orbit. We provide a sufficient condition for the

fixed point to be a global attractor. We also develop algorithms to determine the fixed

point and the corresponding throughput. We find that increasing the number of stations

generally improves throughput for certain work-content distributions. However, further

dividing the U-line into more stations has diminishing returns.
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Chapter 1

Introduction

Allocating workload to workers in an assembly line where there are more work sta-

tions than workers can be challenging as it requires effective coordination of workers

so that their idle time is minimized and the system’s throughput is maximized. One

way to coordinate workers along an assembly line is to organize them as a bucket

brigade (Bartholdi and Eisenstein 1996a). When workers form a bucket brigade on

an assembly line, each worker assembles his item (an instance of the product) until

it is taken over by a downstream colleague or he completes his item if he is the last

worker of the line. After that the worker walks back to take over an item from an

upstream colleague or to initiate a newitem at the start of the line if he is the first

worker.

Under certain assumptions, Bartholdi and Eisenstein (1996a) showthat if work-

ers are sequenced from slowest to fastest according to their work velocities in the

direction of production flow, then a bucket brigade will self-balance such that the
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hand-off locations between any two neighboring workers will converge to a fixed

point and every worker repeatedly works on a fixed portion of the line. Further-

more, the system’s throughput attains a level that is the maximum possible for the

system.

The most widely known application of bucket brigades is order-picking in dis-

tribution centers (Bartholdi and Eisenstein 1996b and Bartholdi et al. 2001). In

a large distribution center, fast-moving products are often stored on racks along a

single aisle so that workers can quickly pick the products to fulfill customer orders.

Bucket brigades are especially effective in this setting for the following reasons: (1)

The rule is simple for workers to learn and follow. (2) Due to their self-balancing

property, we need neither a work-content model nor computation for work balance,

which are required by any static work-allocation strategy. (3) Since workers dy-

namically and constantly balance their work, the system can restore balance from

temporary disruptions and is adaptive to changes in products’ demand seasonality.

Bucket brigades are also used in the production of garments, packaging of cellular

phones, and assembly of tractors, large-screen televisions, and automotive electrical

harnesses (Bartholdi and Eisenstein 1996a, b, Bartholdi and Eisenstein 2005, and

Villalobos et al. 1999a, b).

Lim (2011) introduces the ideas of cellular bucket brigades to reduce unproduc-

tive travel of workers. Under his new design, the work content is distributed on

both sides of an aisle so that each worker works on one side when he proceeds in

one direction and works on the other side when he proceeds in the reverse direction.
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Since workers work in both directions, the throughput can be improved significantly.

Up to now, the ideas of bucket brigades are extensively studied and are suc-

cessfully applied on assembly lines with a straight-line layout. In this chapter we

introduce newrules, inspired by the concept of cellular bucket brigades, for workers

to share work on U-shaped assembly lines. Specifically, we study a three-station

U-line with two workers. We assume at any point in time no more than one worker

can work on any station (for example, due to limited tools or equipment). A worker

is blocked when he is about to enter a station but his co-worker is still working on

the station. This causes unproductive idle time. It is non-trivial to coordinate the

workers so that they can share their work efficiently.

U-lines are commonly used in practice because they possess several advantages

over straight lines. These include providing better visibility and communications

and thus, leading to better quality control (Miltenburg and Wijingaard 1994). Fur-

thermore, many firms adopt a U-shaped layout due to space constraints.

In this paper, we adopt the ideas of cellular bucket brigades by Lim (2011) and

propose rules for workers to share work on the U-line. We believe our work is the

first to analytically address dynamic work-sharing on U-lines with discrete work

stations.

After review the related literature, we first introduce cellular bucket brigade

rules for two workers to share work on a three-station U-line with discrete work

stations in Chapter 3. We fully analyze the system where each worker maintain the

same velocity over all stations. We identify the policies that maximize the system’s
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throughput and the policies that maximize individual workers’ remuneration rates.

We then generalize the three-station U-line to M -station U-line where each worker

may have different workvelocities in different stations in Chapter 4. We fully

analyze the three-station case with this general work velocity setting and provide

efficient algorithms to compute the fixed point and throughput of the M -station

case. Finally, we conclude our work in Chapter 5.
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Chapter 2

RelatedLiterature

Bartholdi and Eisenstein (1996a) introduce bucket brigades as a way to coordinate

workers along an assembly line with more stations than workers. When workers

form a bucket brigade on an assembly line, each worker assembles his item until it

is taken over by a downstream colleague or he completes his item if he is the last

worker of the line. After that the worker walks back to take over an item from an

upstream colleague or to initiate a newitem at the start of the line if he is the first

worker.

Bartholdi and Eisenstein (1996a) study a model with deterministic work content.

Each worker has a deterministic, finite work velocity and an infinite walk-back

velocity. They showthat if workers are sequenced from slowest to fastest according

to their work velocities in the direction of production flow, then the system will self-

balance : The hand-off locations between any two neighboring workers will converge

to a fixed point and every worker repeatedly works on a fixed portion of the line.
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Furthermore, the long-run average throughput will achieve the maximum possible

for the system if the work content is continuously and uniformly distributed.

The most widely known application of bucket brigades is order-picking in distri-

bution centers (Bartholdi and Eisenstein 1996b and Bartholdi et al. 2001). Bucket

brigades are also used in the production of garments, packaging of cellular phones,

and assembly of tractors, large-screen televisions, and automotive electrical har-

nesses (Bartholdi and Eisenstein 1996a, b, Bartholdi and Eisenstein 2005, and Vil-

lalobos et al. 1999a, b).

Based on the same model, Bartholdi et al. (1999) study the dynamics of two- and

three-worker bucket brigades with workers not necessarily sequenced from slowest

to fastest. Bartholdi et al. (2001) consider stochastic work content on work stations.

They find that the dynamics and throughput of the stochastic system will be similar

to that of the system with deterministic work content when there is sufficient work

distributed among sufficiently many stations. They also describe the effectiveness of

bucket brigades in order-picking in a distribution center, which experienced a 34%

increase in productivity after the workers began picking orders by bucket brigades.

Bartholdi and Eisenstein (2005) extend the basic model of bucket brigades to

capture walk-back time and hand-off time. Bartholdi et al. (2009) consider the case

where workers are allowed to overtake or pass each other and they walk back with

finite velocities. The authors show that the system may exhibit chaotic behavior

that causes the inter-completion times of items to be effectively random, even though

the model is purely deterministic. The system can avoid such pathologies if workers

6



are indexed from most impeded by work to least impeded by work.

Armbruster and Gel (2006) assume workers’ work velocities do not dominate

each other along the entire line. They study the dynamics and throughput of a two-

worker system. Armbruster et al. (2007) consider a model where workers improve

their work velocities as they learn. Webster et al. (2011) examine the performance

of a bucket brigade order-picking system by changing the distribution of products

along anaisle. They identify conditions where product distribution has a large

impact on throughput.

Lim and Yang (2009) analyze the dynamics of bucket brigades on discrete work

stations and identify the best policies that maximize the system’s throughput. They

show that the policy that fully cross-trains the workers and sequences them from

slowest to fastest is not always the best for the system, even though it outperforms

other policies for most work-content distributions. Gurumoorthy et al. (2009) study

an M -station, two-worker bucket brigade. They assume each worker has different

work velocities on different stations. They determine the asymptotic dynamic be-

havior and the throughput of the system using an algorithmic approach.

Kirkizlar et al. (2011) study dynamic assignment of workers to stations in tandem

lines with more stations than workers. They consider buffers between stations. The

authors findflexibilitystructures and worker assignment policies that maximize

the system’s throughput. For an excellent review of workforce cross-training and

coordination, see Hopp and Van Oyen (2004).

Eisenstein(2005) studies a productionsystem where facilities follow a cyclic
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schedule to replenish their inventory by a shared resource. Using the ideas of self-

balance, he proposes a dynamic produce-up-to policy to recover a target schedule

after disruptions.

Bischak (1996) considers a U-shaped manufacturing module with fewer workers

than stations. She proposes rules, which are effectively for a straight-line layout,

for workers to move in the module. The throughput and flow time of this moving-

worker module are compared with a system with one dedicated worker per station

through simulation studies. Chand and Zeng (2001) consider static work allocation

and compare U-lines with straight-line layouts under the impact of stochastic task

times.

Lim (2011) presents a design alternative of bucket brigades that may provide

significant improvement in throughput. Under the new design, each worker works

on one side of an aisle when he proceeds in one direction and works on the other

side when he proceeds in the reverse direction. The author proposes the cellular

bucket brigade rules for workers to share work under the new design. He also finds a

sufficient condition for the system to self-balance. Numerical examples suggest that

the system under the new design can be 30% more productive than a traditional

bucket brigade.
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Chapter 3

System productivity and

individual remunerationona

three-stationU-line

3.1 Introduction

U-lines with three stations and two workers are common not only in manufacturing,

but also in the service industry. For example, a worker at the counter of a cafeteria

first takes an order from a customer. He does some preparation work for the order

before he passes it to a co-worker, who is usually stationed in the kitchen to prepare

food. When the food is ready, it is taken over by the first worker at the counter, who

puts the complete order on a tray and serves the customer. Another example can be

seen in a pharmacy, where a pharmacist at the counter first handles a prescription
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and identifies the drugs needed. He then asks a colleague to pick up the drugs from

a store room. After the drugs are picked up, they are taken over by the pharmacist,

who double-checks the drugs and prints out a receipt before he passes them to the

customer.

The goal of this chapter is to provide answers to the following questions:

1. Howshould we coordinate the workers on U-lines with discrete work stations

so that they can share work efficiently? We introduce simple rules for workers

to share work on a U-line withdiscrete work stations. By following these

rules, workers work in both directions and so they can dynamically balance

their workload without too much unproductive travel.

2. To what extent should we cross-train the workers? For the system to be more

productive, is it always necessary to train workers to work on all stations?

We first assume workers are fully cross-trained so that each of them can work

on all stations of a U-line. We analyze the asymptotic dynamic behavior of

the system and determine its long-run average throughput. We then compare

the fully cross-trained team with a partially cross-trained team in which each

worker is only trained to work on some of the stations. We find that under

some situations the partially cross-trained team is more productive than the

fully cross-trained team.

3. What are the policies that maximize system productivity? Givena work-

content distribution, we find these policies by examining the performance of
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different orderings of workers (according to their work velocities) combined

with different extents of cross-training.

4. How shouldwe pay the workers? What are the policies preferred bythe

workers? When workers share their work on a U-line or a bucket brigade,

they usually do not contribute equally to the system’s throughput. To reward

workers according to their contribution, we introduce a remuneration rate

for each worker. Workers are paid according to their share of work and the

system’s throughput. We identify the policies that maximize each worker’s

remuneration rate.

5. Are the policies that maximize system productivity always consistent with

the policies preferred by the workers? If not, how should we resolve the con-

flict?We find that individual workers’ preferences are not always consistent

with the system’s preference. Between the faster and the slower workers, the

system’s preference is consistent with the faster worker’s preference for more

work-content distributions. Furthermore, if workers have very different work

velocities, following the preference of the faster worker almost always maxi-

mizes the system’s throughput. We also suggest a way to resolve conflict when

the policies preferred by the system, the faster worker, and the slower worker

are all different.

In this chapter, we first introduce cellular bucket brigade rules for workers to

share work on U-lines with discrete work stations. We then analyze the dynamics
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and determine the throughput of a fully cross-trained team, and compare the fully

cross-trainedteam with a partially cross-trained team. We identify the policies

that maximize the system’s throughput and the policies that maximize individual

workers’ remuneration rates. We also introduce a simple heuristic to maximize the

system’s throughput. Finally, we study the conflict and consistency between the

system’s and the workers’ preferences before we conclude our work.

3.2 Cellular bucket brigades on U-lines

Consider a U-shaped assembly line with three work stations shown in Figure 3.1(a).

Stations 1 and 3 are separated by an aisle while station 2 spans across the aisle.

Each item is initiated at the start of station 1 and is progressively assembled on

the same sequence of stations until it is completed at the end of station 3. Let sj

denote the work content of station j, for j = 1, 2, 3. We normalize the total work

content of the line such that
�3
j=1 sj = 1.

The assembly line can be conceptualized as a line segment with length 1. Figure

3.1(b) shows such a conceptual line, which is represented by a bold solid line. Loca-

tions 0 and 1 represent the start and the end, respectively, of the line. The intervals

[0, s1], (s1, s1+s2], and (s1+s2, 1] on the line represent the work content of stations

1, 2, and 3 respectively.The horizontal line segments [0 , s1] and (s1 + s2, 1] are

parallel to each other, and the line segment (s1, s1 + s2] is perpendicular to them.

We consider a team of two workers. Worker i is cross-trained to work on zone
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Zi — a set of stations on the line, for i = 1, 2. Each worker assembles a single

item from station to station in his zone and only one worker is allowed to work on

a station at a time. We assume worker i works with velocity vi on all stations in

his zone Zi and the time to walk from one station to another is negligible. We first

consider a fully cross-trained team such that Z1 = Z2 = {1, 2, 3}.

Define xi as the horizontal position of worker i. This horizontal positionis

determined by projecting the actual location of the worker on the conceptual line to

the horizontal axis. Figure 3.1(b) shows the relationship between the actual location

and the horizontal position of each worker.To distinguish these two coordinate

systems, we call any point on the conceptual line a location and any point on the

horizontal axis a position.

We set the origin of the horizontal axis to be the projection of location 0 (the

start of station 1) to the axis. Note that a horizontal position can be negative if

s1 < s3. Since station 2 runs vertically across the aisle, we have xi ≤ s1, for i = 1, 2.

We require the workers to remain in a fixed sequence along the horizontal axis such

that x1 ≤ x2 at any point in time.

We say worker 1, who is working on station 1, meets worker 2, who is working

on station 3, when their horizontal positions coincide (that is, x1 = x2). When

worker 1 meets worker 2, a hand-off between the two workers occurs: Each worker

first relinquishes his item, walks across the aisle, and takes over each other’s item.

After the hand-off, worker 1 works on station 3 while worker 2 proceeds on station

1.
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3

Start

End

Aisle

(a)

0

s1+s2

s1

1

x10 x2 s1

v1

v2

(b)

Figure 3.1: A U-shaped assembly line. (a) Each item is initiated at the start of
station 1 and is progressively assembled on the same sequence of stations until it is
completed at the end of station 3. (b) The assembly line is conceptualized as a line
segment with length 1. The horizontal position xi is determined by projecting the
location of worker i on the conceptual line to the horizontal axis.

Aworker is blocked if he reaches the start of a station while his colleague is still

working on the station. In Figure 3.1(b), worker 1 can be blocked only at locations

0 and s1 and worker 2 can be blocked only at location s1+s2. Note that if worker 1

is blocked at location s1, then a hand-off occurs immediately after worker 2 finishes

his work on station 2. After the hand-off, worker 1 works on station 3 while worker

2 reenters station 2. As a result, worker 1 can never work on station 2.

Worker 2 is halted if he reaches the end of station 3 (location 1) before he meets

worker 1. Halting is possible only if s1 > s3. If worker 2 is halted, he remains idle

until a hand-off occurs when the horizontal positions of the two workers coincide.

Figure 3.2 shows how a cellular bucket brigade operates on the U-line. Let

xk denote the k-th hand-off position. At the k-th hand-off, the two workers first

relinquish their work andthen walk across the aisle. After they exchange their

work, worker 1 works on station 3 with velocity v1. When he finishes his work on

station 3, he walks instantaneously to the start of station 1, initiates a new item,

14



0

s1+s2

s1

1

xk0 xk+1 s1

v1 v2

v2

v2v1

Figure 3.2: A cellular bucket brigade on the U-line. This figure shows the
paths of the two workers between the k-th and (k+1)-st hand-offs. The solid arrows
correspond to working, while the dashed arrows correspond to instantaneous walk.

and works on station 1. Meanwhile, worker 2 works on station 1 with velocity v2.

After he reaches the end of station 1, he continues to work on stations 2 and 3 until

he meets worker 1 again at position xk+1.

Specifically, each worker in the system follows the simple rules below:

Work onstation 1: Continue to assemble your item until

1. you exchange work with your colleague if you are worker 1, then work
onstation 3 ; or

2. youfinishthe workonstation1 if youare worker 2, then work on
station2 .

Work onstation 2: Continue to assemble your item until you finish the work on
station 2, then work onstation3 .

Work onstation 3: Continue to assemble your item until

1. you finish the work on station 3 if you are worker 1, then initiate a new
item and work onstation1 ; or

2. you exchange work with your colleague if you are worker 2, then work
onstation 1 .

Note that these rules can be easily general to U-lines with more stations and workers.
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3.3 Dynamics andthroughput

According to the cellular bucket brigade rules, if s1 > s3 then x1 ∈ [0, s1] and

x2 ∈ [s1 − s3, s1]. Otherwise, x1 ∈ [s1 − s3, s1] and x2 ∈ [0, s1]. Note that any

hand-off position falls in the interval I = [max(s1−s3, 0), s1] on the horizontal axis.

Let f : I 
→ I be a function, defined implicitly by the cellular bucket brigade rules,

such that xk+1 = f(xk). The sequence of iterates x1, x2, x3, . . . is called the orbit of

an initial iterate x0 under f . We say x∗ is a fixed point if x∗ = f(x∗). A period-2

orbit is an orbit that alternates between p and q, where p = f(q) and q = f(p) (see

Alligood et al. (1996)). Note that f(f(p)) = p and f(f(q)) = q.

Let r = v1/v2 denote the velocity ratio. We first construct the function f and

then determine the asymptotic behavior of the cellular bucket brigade by analyz-

ing the function. The details can be found in Appendix A.1.1. A distribution of

work content on stations can be uniquely represented by a point (s1, s3) in Figure

3.3(a), which shows all possible work-content distributions.For a given velocity

ratio r, the work-content distributions in Figure 3.3(a) can be partitioned into five

regions. For example, Region 1 contains systems with large s1 and small s3. Each

region corresponds to a distinct asymptotic behavior. Theorem 1 summarizes the

asymptotic behavior and long-run average throughput of a fully cross-trained team

in each region.

Theorem 1. If Z1 = Z2 = {1, 2, 3}, the cellular bucket brigade has five different

asymptotic behaviors described as follows.
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Region1 (s3 < −r + (r + 1)s1): The system converges to a fixed point x∗ = s1−s3.

At the fixed point, worker 1 is constantly blocked at location 0 and worker 2

is constantly halted at location 1. The average throughput is T F = v1
s1+(r−1)s3 .

Region2
�
s3 ≥ −r + (r + 1)s1 and s1 > r

r+1
− r−1
r+1
s3
�
: The system converges to

a fixed point x∗ = r
r+1
− r
r+1
s3. At the fixed point, worker 1 is constantly

blocked at location 0. The average throughput is T F = (r+1)v2
(r+1)s1+(1−r)(1−s3) .

Region3
�
s3 >

r
r+1
− r−1
r+1
s1
�
: The system converges to a fixed point x∗ = r

r+1
s1.

At the fixed point, worker 2 is constantly blocked at location s1 + s2. The

average throughput is T F = (r+1)v1
(r+1)s3+(r−1)s1 .

Region4
�
s3 <

r
r+1
− s1
�
: The system converges toa fixedpoint x∗ = s1. At

the fixed point, worker 1 is constantly blocked at location s1. The average

throughput is T F = v2
1−s1−s3 .

Region5
�
s1 ≤ r

r+1
− r−1
r+1
s3, s3 ≤ r

r+1
− r−1
r+1
s1 and s3 ≥ r

r+1
− s1
�
: The system con-

verges to a period-2 orbit: x and r
r+1
+ s1 − s3 − x, where x depends on the

initial locations of the workers. Neither blocking nor halting occurs onthe

period-2 orbit. The average throughput is T F = v1+v2, the maximum possible

for the system.

Proof. See Appendix A.1.1

Note that sometimes increasing workers’ velocities may decrease system pro-

ductivity. For example, for v1 = 1.5, v2 = 1, s1 = 0.6, s3 = 0.1 falls in Region
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Figure 3.3: Asymptotic behaviors and throughput. (a) The cellular bucket
brigade has different asymptotic behaviors in different regions. (b) The system has
the highest long-run average throughput in Region 5. The throughput decreases as
the system moves away from Region 5. For both graphs, we set v1 = 0.8 and v2 = 1.

2 and the corresponding throughput is T F = 2.3810. If we increase v2 to 1.05,

s1 = 0.6, s3 = 0.1 still falls in Region 2 but the corresponding throughput decreases

to 2.3800. This is mainly because increasing v2 leads to longer blocking time for

worker 1.

Figure 3.3(b) shows the long-run average throughput of the cellular bucket

brigade. The system has the highest throughput in Region 5, where the workers

are fully utilized. The throughput decreases as the system moves away from Region

5. At each of the boundaries of Region 5, the period-2 orbit degenerates to a fixed

point. Note that only at the boundaries of Region 5 (that is, s1 =
r
r+1
− r−1
r+1
s3,

s3 =
r
r+1
− r−1
r+1
s1, and s3 =

r
r+1
− s1) the system converges to a fixed point with the

maximum possible throughput v1 + v2.
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3.4 Full versus partial cross-training

We compare the performance of the fully cross-trained team with a partially cross-

trained team with Z1 = {1, 2, 3} and Z2 = {2}. In the partially cross-trained team

worker 2 only works on station 2 and follows the rule below.

Work onstation 2: Continue to assemble your item until you finish the work on
station 2 and exchange work with your colleague, then work onstation2 .

On the other hand, worker 1 follows the rules below.

Work onstation 1: Continue to assemble your item until you exchange work with
your colleague, then work onstation3 .

Work onstation 3: Continue to assemble your item until you finish the work on
station 3, then initiate a new item and work onstation 1 .

Since the two workers always exchange work at horizontal position s1 inthe

partially cross-trained team, we have the following theorem.

Theorem 2. If Z1 = {1, 2, 3} and Z2 = {2}, the system always operates on a fixed

point x∗ = s1 and has two different asymptotic behaviors in different regions of

Figure 3.3(a):

Regions 1, 2, 3, and 5
�
s3 ≥ r

r+1
− s1
�
: Worker 1 is never idle and the average

throughput is T P = v1
s1+s3
.

Region4
�
s3 <

r
r+1
− s1
�
: Worker 2 is never idle and the average throughput is

T P = v2
1−s1−s3 .

Note that both the fully and partially cross-trained teams lead to the same asymp-

totic behavior and throughput in Region 4. This is because station 2 is the bot-
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s1=r/(r+1)+(1/(r−1)−r/(r+1))s3

Figure 3.4: Full versus partial cross-training. The fully cross-trainedteam
dominates in all circumstances except for r > 2 and s1 >

r
r+1
+
�
1
r−1 −

r
r+1

�
s3 (the

shaded area). In this graph, we set r = 3.

tleneck in this region andthe system always converges to the same fixedpoint,

independent of how the workers are cross-trained.

We first compare the throughput of the fully andthe partially cross-trained

teams. We then examine the preference of each worker between the two teams.

3.4.1 System productivity

Comparing Theorems 1 and 2, we have the following result.

Corollary 1. The fully cross-trainedteam is at least as productive as the par-

tially cross-trainedteam in all circumstances except for r > 2 and s1 >
r
r+1
+

�
1
r−1 −

r
r+1

�
s3 (the shaded area in Figure 3.4) where the partially cross-trained team

is more productive.

Proof. See Appendix A.1.2

Corollary 1 implies that fully cross-training the workers does not necessarily

20



lead to higher system productivity. In the shaded area of Figure 3.4, station 1 has

significantly more work content than station 3. If worker 2 is fully cross-trained,

he constantly takes over work on station 1 from worker 1, who is then blocked for

a significant amount of time at the start of station 1.This waste of production

capacity is especially significant if worker 1 is substantially faster than worker 2.

Corollary 1 shows that if r > 2 (worker 1 is more than two times faster than worker

2), the system is more productive in the shaded area if worker 2 is restricted to

work only on station 2. Thus, to maximize the average throughput we should fully

cross-train the workers except when r > 2 and s1 >
r
r+1
+
�
1
r−1 −

r
r+1

�
s3.

In practice, system productivity is not the only concern of a manager. Another

important question in a work-sharing team is whether the workers are satisfied with

their rewards given their contribution to the system’s output. Since each worker

may contribute to different extents under different teams (fully or partially crossed-

trained), they have their own preferences on cross-training.

3.4.2 Individual remuneration

Although full cross-training results in higher system productivity in many situations

according toCorollary 1, does full cross-training benefit both workers? Define

αi ∈ [0, 1], for i = 1, 2, as the average portion of work content of each item covered

by worker i. By definition, αi depends on the asymptotic behavior of the system

(fixed point or period-2 orbit) and α1 + α2 = 1. We normalize the total income of

the team such that the manager pays 1 dollar per item produced to the team. We
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assume each worker i is paid according to his contribution such that he obtains αi

dollar per item produced. Define the remuneration rate of worker i as his income

per unit time, which is equal to αi times the average throughput of the system. For

each region of Figure 3.3(a), the following theorem compares the remuneration rate

of each worker in the fully cross-trained team with that in the partially cross-trained

team.

Theorem 3. Different workers have different preferences on cross-training in each

region of Figure 3.3(a):

1. Worker 1 obtains a higher remuneration rate in the partially cross-trained

team in Regions 1 and2, and his remuneration rate is the same for both

teams in Regions 3, 4, and 5.

2. Worker 2 obtains a higher remuneration rate in the fully cross-trained team

in Regions 1, 2, 3, and 5 except at the boundary s3 =
r
r+1
− s1, and his

remuneration rate is the same for both teams in Region 4 and at the boundary

s3 =
r
r+1
− s1.

Proof. See Appendix A.1.3

The proof of Theorem 3 shows that eachworker prefers to be busyso that

they can earn more. Worker 2 is busier in the fully cross-trained team than in the

partially cross-trained team, so full cross-training always benefits worker 2. Worker

1 always prefers partial cross-training, especially in Regions 1 and 2, where s1 is
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significantly larger than s3. This is because worker 1 does not want to be interrupted

by worker 2 on station 1 where there is relatively more work content.

Corollary1 shows that the fully cross-trainedteam results inhigher system

productivity in many circumstances. However, Theorem 3 implies that the fully

cross-trained team is not preferred by worker 1. Thus, the system’s preference may

contradict individual workers’ preferences. We will compare the system’s and the

individuals’ preferences on cross-training under different conditions.

3.4.3 System versus individual preferences

Figures 3.5(a) and (b) compare the system’s and individual workers’ preferences

for r ≤ 2 and r > 2 respectively. For both graphs, the system and workers prefer

full cross-training inRegions 3 and 5; and they are indifferent to full or partial

cross-training in Region 4. If r ≤ 2, both the system and worker 2 prefer full cross-

training in the shaded area of Figure 3.5(a), contrary to the preference of worker

1. If r > 2, both the system and worker 1 prefer partial cross-training in the dark

shaded area of Figure 3.5(b), contrary to the preference of worker 2. On the other

hand, both the system and worker 2 prefer full cross-training in the light shaded

area of Figure 3.5(b), contrary to the preference of worker 1.

Up to now, we assume the ordering of workers along the horizontal axis is fixed

(for example, the faster worker is always worker 2) and analyze system productivity

and individual remuneration in the fully and partially cross-trained teams. Given

two workers, let vmin and vmax denote the velocities of the slower and faster workers
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s1=r/(r+1)+(1/(r−1)−r/(r+1))s3

System consistent with worker 1
System consistent with worker 2
System consistent with both workers

(b) r = 3

Figure 3.5: System versus individual preferences. (a) For r ≤ 2, the system
and worker 2 prefer full cross-training in the shaded area. (b) For r > 2, the system
and worker 1 prefer partial cross-training in the dark shaded area; and the system
and worker 2 prefer full cross-training in the light shaded area. For both graphs,
the system and both workers prefer full cross-training in Regions 3 and 5; and they
are indifferent to full or partial cross-training in Region 4.

respectively. Suppose now we have the ability to change the ordering of workers

along the horizontal axis. That is, we can let the faster worker be worker 1 or worker

2. What are the effects on system productivity and individual remuneration?We

answer this question in the following section.

3.5 Best policies for system and preferred policies

for individuals

Given the work velocities of workers, assume the manager can make the following

decisions: (1) Choose the ordering of workers along the horizontal axis. (2) Choose

either the fully or the partially cross-trained team. A policy is a combination of the
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ordering of workers and the extent of cross-training. Table 3.1 shows four possible

policies for the system. Worker 1 is slower than worker 2 if we order the workers

from slowest to fastest.

Table 3.1: Policies. A policy is a combination of the ordering of workers and the
extent of cross-training.

Fully Cross-Trained Partially Cross-Trained
Slowest to Fastest SF SP
Fastest to Slowest FF FP

3.5.1 Best policies for system

Given the work content on stations and the work velocities of workers, a policy that

maximizes the long-run average throughput of the system is called the best policy for

the system. Figure 3.6(a) shows the best policies for all work-content distributions

if vmin/vmax = 1/3. Note that boundaries in Figure 3.6 can be derived according

to Theorem 1. Since expressions of those boundaries are very complicated, and

since some boundaries may disappear for certain vmin/vmax, we only plot the figures

numerically.FP policy dominates the bottom-right domain of the graph (where

s1 is large and s3 is small). This domain disappears if vmin/vmax ≥ 1/2. Figure

3.6(b) gives anexample for vmin/vmax = 2/3. Figure 3.6 shows which policy to

adopt to maximize system productivity given the work content on stations and the

work velocities of workers. We observe that if vmin/vmax < 1/2 (such as Figure

3.6(a)), the SF, FF, or FP policy gives the highest throughput for any work-content
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distribution. If vmin/vmax ≥ 1/2 (such as Figure 3.6(b)), then the SF or FF policy

is the best.

Since the domains dominated by each policy in Figure 3.6 depend on the ve-

locities of workers, one needs to reconstruct the figure if the velocities change. In

practice, it is more convenient to stick to one policy for a large domain of work-

content distributions, independent of workers’ velocities. Note that in Figure 3.6

the SF policy is the best for most of the work-content distributions within the do-

main: s1 ≤ 0.5 and s3 ≤ 0.5, whereas the FF policy dominates in most of other

domains. This leads to the following simple heuristic for the manager:

If s1 ≤ 0.5 and s3 ≤ 0.5, then use the SFpolicy; otherwise, use the FF

policy.

To implement this heuristic in practice, we first fully cross-train both workers. If

s1 ≤ 0.5 and s3 ≤ 0.5, we sequence them from slowest to fastest. Otherwise, we

sequence them from fastest to slowest.

Figure 3.7(a) shows the percentage of the entire feasible work-content region in

which the heuristic correctly selects the best policies for various values of vmin/vmax.

The heuristic is consistent with the best policies for at least 82% of the entire

feasible work-content region. This consistency percentage increases to about 92%

and attains 100% as vmin/vmax approaches 0.1 and 1 respectively. The consistency

percentage has a “jump” at vmin/vmax = 0.5. This is because when vmin/vmax < 0.5

the heuristic does not select the correct policy for the bottom-right corner of Figure
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Figure 3.6: The best policies for the system. (a) If vmin/vmax < 1/2, the SF,
FF, or FP policy gives the highest throughput for any work-content distribution.
(b) If vmin/vmax ≥ 1/2, the SF or FF policy gives the highest throughput.

3.6(a) where the FP policy is the best for the system.

Figure 3.7(b) compares the performance of the SF and FF policies. The dashed

and solid lines represent the percentages of the entire feasible work-content region

where the SF and FF policies, respectively, are the best. The percentage of the FF

policy also has a gap at vmin/vmax = 0.5 due to the same reason as for Figure 3.7(a).

Note that given the velocities of workers, the FF policy is the best for significantly

more work-content distributions than the SF policy.

In the U-line with discrete work stations, ordering workers from slowest to fastest

along the horizontal axis may not be productive if s1 or s3 is relatively large (that is,

if work content is heavily concentrated on one “wing” of the U-line). These work-

content distributions correspond to the bottom-right andtop-left corners of the

feasible work-content region. This is because under the slowest-to-fastest ordering

the slower worker works on station 1 or 3 with large work content, causing the faster
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Figure 3.7: Performance of the heuristic, SF, and FF policies. (a) The
heuristic attains the maximum throughput in at least 82% of the entire feasible
work-content region. (b) The FF policy dominates in a larger domain than the SF
policy.

worker halted or blocked for a long time. Fortunately, this problem can be solved

by using the heuristic. Comparing Figures 3.7(a) and (b), it is obvious that the

heuristic performs much better than both SF and FF policies.

3.5.2 Preferredpolicies for individuals

We also analyze the preference of each worker among the four policies in Table 3.1.

Figure 3.8 shows the policies that give the faster worker the highest remuneration

rates for different work-content distributions. Note that the SF and FP policies

dominate. This makes sense as worker 2 is faster in the slowest-to-fastest ordering.

He prefers the fully cross-trained team because he earns more if he can work on

stations 1 and 3. If workers are sequenced from fastest to slowest, worker 1 is faster

and he prefers to restrict his colleague to work only on station 2.
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Figure 3.8: Faster worker’s preferred policies. The faster worker prefers the SF
or FP policy, which gives him the highest remuneration rate for any work-content
distribution.

Figure 3.9 shows the policies that give the slower worker the highest remunera-

tion rates for different work-content distributions. For any work-content distribution

the FF or SP policy dominates. If workers are sequenced from fastest to slowest,

worker 2 is slower and he prefers to be cross-trained to work on stations 1 and 3

so that he earns more. In the slowest-to-fastest ordering, worker 1 is slower and he

prefers to restrict his colleague to work only on station 2. Figures 3.8 and 3.9 echo

the results of Theorem 3: Worker 1 always prefers the partially cross-trained team,

while worker 2 always prefers the fully cross-trained team.

3.5.3 Conflict andconsistency

Which policy should we choose if the system, the faster worker, andthe slower

worker all have different preferences for a work-content distribution? For example,

when vmin = 2, vmax = 3, s1 = 0.8, and s2 = s3 = 0.1, Figures 3.6, 3.8, and 3.9 show
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Figure 3.9: Slower worker’s preferred policies. The slower worker prefers the
FF or SP policy, which gives him the highest remuneration rate for any work-content
distribution.

that the system, the faster worker, and the slower worker prefer the FF, FP, and

SPpolicies respectively. Note that both workers want to be worker 1 and prefer to

restrict their colleague to work only on station 2.

Under a policy π, let T π be the system’s throughput and let Rπs and Rπf denote

the remuneration rates of the slower and faster workers respectively. For the above

example, the system prefers the FF policy that results in T FF = 3.53, RFFf = 2.47,

and RFFs = 1.06. The faster worker prefers the FP policy that results in T FP = 3.33,

RFPf = 3, and R
FP
s = 0.33, but the slower worker prefers the SP policy that results in

T SP = 2.22, RSPf = 0.22, and RSPs = 2. We can see that under the system’s preferred

policy, the remuneration rate of a worker is greater than his remuneration rate under

the other worker’s preferred policy: RSPf < R
FF
f < R

FP
f and R

FP
s < R

FF
s < R

SP
s . This

observation is generalized in Theorem 4.

Theorem 4. For any work-content distribution, suppose π∗ is a policy that maxi-
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mizes the system’s throughput and the faster and slower workers prefer policies πf

and πs respectively. Then R
π∗
s ≥ R

πf
s and Rπ

∗
f ≥ Rπsf .

Proof. Since

T π = Rπs +R
π
f , ∀π;

T π∗ ≥ T πi , i ∈ {s, f};

Rπii ≥ Rπ
∗

i , i ∈ {s, f};

we have Rπ
∗
s ≥ Rπfs and Rπ

∗
f ≥ Rπsf .

Theorem 4 shows that if the policy preferred by the system is adopted, then

neither worker does as bad as he would under the policy preferred by his colleague.

While Theorem 4 suggests a way to handle tripartite conflicts, Theorem 5 pro-

vides a way to find a policy that is preferred by all parties for those work-content

distributions where both workers have preferred policies in common.

Theorem 5. For any work-content distribution, any policy that is preferred by both

faster and slower workers maximizes the system’s throughput.

Proof. We prove by contradiction. For any work-content distribution, suppose there

is a policy π0 that is preferred by both faster andslower workers but does not

maximize the system’s throughput. Let π∗ �= π0 be a policy that results in maximum

system’s throughput. Due to our assumption, Rπ0f ≥ Rπ
∗
f and R

π0
s ≥ Rπ

∗
s . We have

T π0 = Rπ0f +Rπ0s ≥ Rπ
∗

f + R
π∗

s = T π
∗
.
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Figure 3.10: Consistency of system’s and individuals’ preferences. This fig-
ure shows the percentages of work-content distributions where each worker’s pref-
erence is consistent with the best policies and the heuristic.

Since π0 does not maximize the system’s throughput, we have T π0 < T π
∗
, which

leads to a contradiction. Thus, any policy that is preferred by both workers maxi-

mizes the system’s throughput.

The theorem suggests that for any work-content distributions where both workers

have preferred policies in common, the manager can adopt those common policies,

which will be consistent with the system’s preference.

Figure 3.10 shows the consistencyof each worker’s preference withthe best

policies and the heuristic. The bold and the thin solid lines show the percentages

of the entire feasible work-content region where the faster worker’s preference is

consistent with the best policies and the heuristic respectively. As shown in Figure

3.6, there could be more than one policy that gives the highest throughput for any

work-content distribution. In that case we choose a policy, if any, that is consistent
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with the faster worker’s preference.

Similarly, the bold dashed and the thin dashed lines show the percentages where

the slower worker’s preference is consistent with the best policies and the heuris-

tic respectively. Finally, the bold and the thin dotted lines show the percentages

where both workers’ common preference is consistent with the best policies and the

heuristic respectively.

Figure 3.10 shows that the faster worker’s preference is consistent with the best

policies for at least 75% of the entire feasible region. In contrast, the consistency

between the slower worker’s preference and the best policies is much lower. This

implies that given two workers, the manager should pay more attention to the faster

worker’s preference because it maximizes system productivity for most work-content

distributions. This is especially so if the workers have very different velocities (if

vmin/vmax is small). Inaddition, as workers’ velocities deviate from each other,

the system’s preference becomes more consistent not only with individual workers’

preferences, but also with both workers’ common preference.

As suggested by Figures 3.7(a), the heuristic maximizes system productivity for

most work-content distributions. Figure 3.10 shows that the curves corresponding to

the heuristic are close to those corresponding to the best policies. These observations

suggest that the heuristic performs well in terms of maximizing system productivity

and that the consistency of the heuristic and workers’ preferences is similar to the

consistency of the best policies and workers’ preferences.

To complement the studies of the heuristic and the consistencyof system’s
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Figure 3.11: Average percentage throughput over all work-content distri-
butions. The average percentage throughput of the heuristic is nearly 100%, but
the average percentage throughput of the faster worker and slower worker is much
lower.

and individuals’ preferences, we introduce percentage throughput: The percentage

throughput of the heuristic, faster worker, and slower worker is the average ratio (in

percentage) of throughput under the heuristic, the faster worker’s preference, and

the slower worker’s preference to throughput under the best policies respectively.

Figure 3.11 shows how well the heuristic and workers’ preferred policies perform

compared to the best policies on average. Consistent with Figure 3.7(a), on average

the throughput of the heuristic is almost the same as that of the best policies. Sim-

ilar to Figure 3.10, the faster worker’s preferred policy performs better than slower

worker’s, but the difference decreases in vmin/vmax. In contrary to Figure 3.10, as

workers’ velocities deviate from each other, the system’s preferences become more

consistent with faster workers’ preferences, but less consistent with slower workers’
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preferences.

3.6 Conclusions

In this chapter we propose simple rules to coordinate workers on a three-station,

two-worker U-line. If workers are fully cross-trained, the system always converges

to a fixed point or a period-2 orbit. The fully cross-trained team is more productive

than the partially cross-trained team for all situations, except the case where worker

1 is sufficiently faster than worker 2 (v1/v2 > 2) and the work content of station 1

is relatively large. In this exceptional case, the slower worker (worker 2) constantly

blocks the faster worker (worker 1) in the fully cross-trained team, leading to low

productivity.

We assume each worker is rewarded according to his long-run average contribu-

tion to the system’s throughput. Under this remuneration scheme, workers prefer to

be busy all the time. As a result, worker 1 always prefers the partially cross-trained

team while worker 2 always prefers the fully cross-trained team.

We define a policy as a combination of the ordering of workers and the extent of

cross-training. We find that the SF or FF policy maximizes the system’s through-

put for most work-content distributions.However, there is no single policy that

dominates the entire feasible work-content region.

Fortunately, we find a heuristic that works well for practical purposes: Use the

SF policy if s1 ≤ 0.5 and s3 ≤ 0.5, and use the FF policy otherwise. This heuristic is
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easy to implement in practice as it does not depend on workers’ velocities. Despite

its simplicity, the heuristic is consistent with the best policies for at least 82%

of the feasible work-content region.The heuristic performs especially well when

the workvelocities of workers are sufficientlysimilar ( vmin/vmax > 0.5) or very

different (vmin/vmax < 0.14) as the percentage of consistency with the best policies in

these situations exceeds 90%. Furthermore, as the workers’ work velocities become

extremely close (vmin/vmax → 1) the heuristic maximizes the system’s throughput

for almost all work-content distributions.

For any work-content distribution, the faster worker prefers the SF or FP policy

while the slower worker prefers the FF or SP policy. The policies preferredby

the system, the faster worker, and the slower worker can be all different. In that

case, we finda way to resolve the tripartite conflict: Choose a policy preferred

by the system as the resultant remuneration rate of each worker is at least equal

to his remuneration rate under his colleague’s preferred policy. Thus, choosing a

system’s preferred policy maximizes system productivity without making any worker

extremely unhappy.

For any work-content distribution, a policy preferred by both workers maximizes

the system’s throughput. Figure 3.10 suggests that as workers’ workvelocities

deviate from each other, more such work-content distributions exist.

Between the faster and the slower workers, the system’s preference is consistent

with the faster worker’s preference for significantly more work-content distributions.

Specifically, if workers’ work velocities are sufficiently different (vmin/vmax ≤ 0.5),
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then the faster worker’s preferredpolicy maximizes the system’s throughput for

more than 90% of the feasible work-content region.This implies that if workers

have very different work velocities, the manager can adopt the policy preferred by

the faster worker as it will maximize system productivity for most work-content

distributions.

However, determining the system’s or the faster worker’s preference can be quite

complicated given a work-content distribution. Furthermore, their preferences may

change with the work velocities of workers. A simpler solution is to use the heuristic

as it approximates the best policies well for maximizing system productivity.
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Chapter 4

System productivity onan

M-station U-line with a general

work velocity setting

4.1 Introduction

Consider a U-shaped assembly line with M stations shown in Figure 4.1. There are

three stages in the U-line. Stages 1 and 3 are separated by an aisle and stage 2

spans across the aisle. Stage 1 consists of m1 stations S1(1), . . . , S1(m1) located on

one side of the aisle. Stage 2 has m2 stations S2(1), . . . , S2(m2) located across the

aisle. Stage 3 consists of m3 stations S3(1), . . . , S3(m3) located on the other side of

the aisle. We assume m1+m2+m3 =M . Each item (an instance of the product) is

initiated at the start of S1(1) and is progressively assembled in the same sequence
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of stations until it is completed at the end of S3(m3).

We consider a team of two workers W1 and W2. Wi is cross-trained to work

on zone Zi — a set of stations on the line, for i = 1, 2. We assume only W2 is

qualified to work in stage 2 due to special skill requirements. Both W1 and W2 can

work in stages 1 and 3. Thus, we have Z1 = {Sj(k) : k = 1, . . . ,mj; j = 1, 3} and

Z2 = {Sj(k) : k = 1, . . . ,mj ; j = 1, 2, 3}. Each worker assembles only a single item

at a time. At most one worker is allowed to work on a station at any time (for

example, due to limited tools, equipment, or space in the station). We assume Wi

works with velocity vij(k) on Sj(k) ∈ Zi. For simplicity, we neglect the time to walk

from one station to another.

The U-line described above is common in manufacturing. For example, in hard

drive manufacturing, eachcompleted hard drive goes through a testing process

before it is shipped. This testing process typically has a U-shaped layout and is

supported by two workers W1 and W2. The testing process consists of three main

stages. In stage 1, each hard drive goes through a basic test, which is a series of

simple observations that can be done by both workers. After the basic test, the

hard drive enters stage 2 for an intensive test, which can only be performed by W2

as it requires special skills. After that, the hard drive enters stage 3 where it is

determined whether it is qualified for shipping. The hard drive is packaged if it

passes the tests or it is rejected otherwise. In both cases, the hard drive leaves the

system after the final stage. Both workers can work in stage 3.

We have seen other examples of U-lines with two workers in a molecular biology
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S2(1)
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End

Aisle

S1(m1)

S2(m2)

S3(m3) S3(1)

Figure 4.1: A U-shaped assembly line. Each item is initiated at the start of
S1(1) and is progressively assembled in the same sequence of stations until it is
completed at the end of S3(m3).

lab and a microbiology lab. The former typically performs genotyping and viral load

estimation, whereas the latter performs various tests related to bacteria infection

and mycology. Eachitem in these examples corresponds to a batch of samples.

Each sample is stored in a test tube that has a cap with a color indicating a specific

analysis.

The analysis process is performed by a certified technologist (W2) and an assis-

tant (W1). The layout of the process is a special case of the U-line shown in Figure

4.1 with m1 = m2 = m3 = 1. Each batch of samples go through three stations.

The first station is for sample preparation, which consists of the following sequence

of tasks: (1) Centrifuge the samples. (2) Remove the caps of the test tubes so that

the samples can be accessed by the probes of an auto-bioanalyzer. (3) Insert the

test tubes into specialized racks of the auto-bioanalyzer.

The second station is for sample analysis, which is done by the auto-bioanalyzer.

Only the technologist can work on this station as it requires a specialized license to

operate the auto-bioanalyzer. This station contains tasks below that do not follow

a specific sequence: (1) Perform trouble shooting in response to alarm signals of
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the auto-bioanalyzer (this includes renewing reagent, disposing waste liquid, and

handling contingencies). (2) Tune the auto-bioanalyzer’s wavelength to match the

reagent’s color. (3) Print and verify the report. The third station is for sample post-

analysis, which consists of the following sequence of tasks: (1) Move the samples

from the specialized racks to regular racks and pick up the samples with positive

reaction. (2) Store the analyzed samples for rechecking.

Boththe technologist andthe assistant canwork onthe first and the third

stations. At any point in time, only one worker can work on a station. This is to

avoid sample contamination and is also, possibly, due to space limitation.

U-lines are adopted in the above examples because they possess several advan-

tages over straight lines. These include providing better visibility and communi-

cations, which lead to better quality control. The travel of workers is reduced as

they can execute nonconsecutive tasks that are physically close to each other es-

pecially if the aisle is narrow. Many firms adopt a U-shaped layout also because

of space constraints. For a discussion on the advantages of U-lines, see Miltenburg

and Wijingaard (1994).

In the U-line with two workers described above, we allow workers to dynamically

share work so that the system’s capacity is fully utilized subject to the constraint

that only W2 can work in stage 2. This can be challenging as it requires effective

coordination of workers on the U-line. Since the professional worker W2 is more

expensive, we want him to work mainly in stage 2 that requires special skills and let

the ordinary worker W1 handles the simpler tasks in stages 1 and 3. Furthermore,

41



the aisle is typically narrow compared to the total length of the U-line in each of the

examples above. Under this setting, we want the workers to collaborate with each

other without too much travel in practice. We adopt the ideas of cellular bucket

brigades introduced by Lim (2011) to achieve the above goals.

Under the design of a cellular bucket brigade (Lim 2011), the work content of an

assembly line is distributed on both sides of an aisle. Each worker works on one side

when he proceeds in one direction and works on the other side when he proceeds in

the reverse direction. The workers exchange work when they approach each other

from opposite directions. By applying similar coordination rules, whichwill be

discussed later, each item in the U-line is initiated at the start of S1(1) typically by

W1, who passes it to W2 at some point in stage 1. W2 then finishes the remaining

work of stage 1 and continues to assemble the item in stage 2, before he passes it

back to W1 in stage 3. W1 then completes the item at the end of S3(m3). Our goal

is to analyze the asymptotic dynamics and determine the throughput (number of

items produced per unit time) of the U-line under the coordination rules proposed.

The analysis of the U-line is complicated by the facts that the number of stations

in each stage can be arbitrary, different stations may have different amounts of work,

workers may have different velocities on different stations, and a worker may be idle

while his colleague is working on a station. We first study U-lines with three stations

and two workers in Section 4.3. We define simple rules for the workers to share their

work. Under these rules, we analyze the dynamics and determine the throughput of

the U-line for various system settings. We then discuss the results of U-lines with

42



M stations and two workers in Section 4.4.

4.2 A conceptual line

Let skj denote the work content of Sj(k) and define sj =
�mj
k=1 s

k
j , for j = 1, 2, 3. We

normalize the total work content of the line such that
�3
j=1 sj = 1. The assembly

line can be conceptualized as a line segment with length 1. Figure 4.2 shows such

a conceptual line, which is represented by a bold solid line. The start and the end

of the conceptual line are represented by points 0 and 1 respectively. The intervals

[0, s1], (s1, s1 + s2], and (s1 + s2, 1] correspond to the work content of stages 1, 2,

and 3 respectively. The horizontal line segments [0, s1] and (s1 + s2, 1] are parallel

to each other, and the line segment (s1, s1 + s2] is perpendicular to them.

Define hi as the horizontal position of Wi.This horizontal position is deter-

mined by projecting the actual location of the worker on the conceptual line to the

horizontal axis. Figure 4.2 shows the relationship between the actual location and

the horizontal position of each worker. To distinguish these two coordinate systems,

we call any point on the conceptual line a location and any point on the horizontal

axis a position.

We set the origin of the horizontal axis to be the projection of location 0 (the

start of stage 1) to the axis. Note that a horizontal position can be negative if

s1 < s3. Since stage 2 runs vertically across the aisle, we have hi ≤ s1, for i = 1, 2.

We require the workers to remain in a fixed sequence along the horizontal axis such
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v11(k)

v23(k )

Figure 4.2: A conceptual line. The U-line is conceptualized as a line segment
with length 1. In this graph, W1 and W2 work on S1(k) and S3(k

�) respectively.
The horizontal position hi is determined by projecting the location of worker i on
the conceptual line to the horizontal axis.

that h1 ≤ h2 at any point in time.

4.3 The three-station, two-worker U-lines

In this section, we discuss a special case where m1 = m2 = m3 = 1. Thus, the

notation vij(k) and Sj(k) can be simplified as vij and Sj, respectively, for i = 1, 2

and j = 1, 2, 3. U-lines with three stations are common in molecular biology labs

andmicrobiologylabs. We fully analyze the dynamics of this special case and

determine the asymptotic behavior and throughput of the system in closed-form

expressions. Understanding the behavior of the three-station system will help us in

the analysis of the M -station case.

4.3.1 Definitions andrules

We say W1, who is working on S1, meets W2, who is working on S3, when their

horizontal positions coincide (that is, h1 = h2). When W1 meets W2, a hand-off
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between the two workers occurs: Each worker relinquishes his item, walks across

the aisle, and takes over each other’s item.After the hand-off, W1 works on S3

while W2 proceeds on S1.

Figure 4.3 shows how the two workers move on the U-line. Let xn denote the

n-th hand-off position. At the n-th hand-off, the two workers first relinquish their

work and then walk across the aisle. After they exchange their work, W1 works on

S3 with velocity v13. When he finishes his work on S3, he walks instantaneously to

the start of S1, initiates a new item, and works on S1 as soon as the station is free.

Meanwhile, W2 works on S1 with velocity v21. After he reaches the end of S1, he

continues to work on S2. W2 then works on S3 as soon as the station is free until

he meets W1 again at position xn+1.

Specifically, the workers follow the simple rules below:

Rule for W1:

• If you are on S1, continue to assemble your item until you meet W2.
Then exchange work with W2 and work on S3.

• If you are on S3, continue to assemble your item until you complete it.
Then initiate a new item and work on S1.

Rule for W2:

• Continue to assemble your item along the assembly line until you meet
W1. Then exchange work with W1 and work on S1.

We call the above the cellular bucket brigade rules.

A worker is blocked if he reaches the start of a station in his zone while his

colleague is still working on the station. In a three-station U-line, W1 can be

blocked only at location 0 and W2 can be blocked only at location s1 + s2.
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s1+s2

s1

1

xn0 xn+1 s1

v11

v22

v21

v23v13

Figure 4.3: Movement of workers on three stations. This figure shows the
paths of the two workers between the n-th and (n+1)-st hand-offs on a three-station
U-line. The solid arrows correspond to working, while the dashed arrows correspond
to instantaneous walk. The start and the end of each worker’s path are represented
by a circle and a square respectively.

If W1 reaches the end of S1 before he meets his colleague, then W1 is halted at

location s1. IfW1 is halted, he remains idle until a hand-off occurs immediately after

W2 finishes his work on S2. After the hand-off, W1 works on S3 while W2 reenters

S2. On the other hand, if W2 reaches the end of S3 before he meets his colleague,

then W2 is halted at location 1. Note that W2 can be halted only if s1 > s3. If W2

is halted, he remains idle until a hand-off occurs when the horizontal positions of

the two workers coincide.

4.3.2 Dynamics andthroughput

Given the stations’ work content and the workers’ work velocities, we determine

the asymptotic dynamic behavior and the throughput of the system for any initial

state. According to the cellular bucket brigade rules, if s1 > s3 then h1 ∈ [0, s1]

and h2 ∈ [s1 − s3, s1].Otherwise, h1 ∈ [s1 − s3, s1] and h2 ∈ [0, s1].Thus, any

hand-off position falls in the interval I = [max{s1 − s3, 0}, s1] on the horizontal
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axis. Let f : I 
→ I be a function, such that xn+1 = f(xn). The sequence of iterates

x1, x2, x3, . . . is called the orbit of an initial iterate x0 under f . We say x
∗ is a fixed

point if x∗ = f(x∗). A period-2 orbit is an orbit that alternates between p and q,

where p = f(q) and q = f(p). Note that f(f(p)) = p and f(f(q)) = q.

For convenience, let µij = v22/vij , for i = 1, 2, and j = 1, 3. Define

ϕ =
µ13 + µ21
µ11 + µ23

;

η0 =
1 + (µ13 + µ21 + µ23 − 1)s1 − (µ13 + 1)s3

µ11 + µ13 + µ21 + µ23
;

η1 =
1 + (µ23 − 1)s1 − s3

µ11 + µ23
;

η2 =
µ23s1
µ11 + µ23

;

γ(x) =
1 + (µ13 + µ21 + µ23 − 1)s1 − (µ13 + 1)s3 − (µ13 + µ21)x

µ11 + µ23
.

We first construct the function f and then determine the asymptotic behavior of the

cellular bucket brigade by analyzing the function. We show that the system either

converges to a fixed point or a period-2 orbit. We find closed-form expressions of

the fixed point, the period-2 orbit, and the corresponding throughput. The details

can be found in Appendix A.2. There are two cases: (1) ϕ ≤ 1 and (2) ϕ > 1,

which are discussed as follows.

Case 1: ϕ ≤ 1

Figure 4.4(a) summarizes the asymptotic behavior of the two-worker cellular bucket

brigade on U-lines with three workstations for ϕ ≤ 1. Each point (s1, s3) in

Figure 4.4(a) represents a work-content distribution on the stations. Figure 4.4(a)

47



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

2

3

4

5

s1

s
3

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4

0.6
0.8
1

0.7

0.9

1.1

1.3

1.5

1.7

1.9

2.1

2.3

s1

s3

T
h
r
o
u
g
h
p
u
t

(b)

Figure 4.4: Asymptotic behaviors andthroughput ( ϕ ≤ 1). (a) The cellular
bucket brigade has different asymptotic behaviors indifferent regions. (b) The
throughput in each region has a different expression. For both graphs, we set
v22 = 1, µ11 = 1.2, µ21 = 0.7, µ13 = 0.8, and µ23 = 1.6.

shows that, for any given velocity ratios µij , i = 1, 2, j = 1, 3, the work-content

distributions can be grouped into five regions. Each region corresponds to a distinct

asymptotic behavior, which is summarized as follows.

Region1 (Halting andblocking): This region corresponds to systems with “long”

S1 and “short” S3. The system converges to a fixed point x
∗ = s1 − s3. At

the fixed point, W2 is constantly halted at location 1 and W1 is constantly

blocked at location 0.

Region2 (Blocking): The system converges to a fixed point x∗ = η1.At the

fixed point, W1 is constantly blocked at location 0.

Region3 (Blocking): This region corresponds to systems with “short” S1 and
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“long” S3. The system converges to a fixed point x
∗ = η2. At the fixed point,

W2 is constantly blocked at location s1 + s2.

Region4 (Halting): Both S1 and S3 are “short” in this region. The system

converges to a fixed point x∗ = s1. At the fixed point, W1 is constantly halted

at location s1.

Region5 (Nonidling): If ϕ < 1, the system converges to a fixed point x∗ = η0. If

ϕ = 1, the system converges to a period-2 orbit: x and γ(x), where x depends

on the initial locations of the workers. Neither blocking nor halting occurs in

this region.

It is noteworthy that if ϕ < 1, the system always converges to a fixed point in

all regions. When the system operates on a fixed point, W1 repeatedly works in

a loop on the left of Figure 4.3, while W2 covers a loop on the right that includes

stage 2. Convergence to a fixed point is desirable because each worker repeats the

same portion of work on each item produced. This allows workers to learn more

efficiently as each of them concentrates on a set of, possibly nonconsecutive, tasks.

Furthermore, each worker covers a set of tasks that are physically close to each other

especially if the aisle is narrow. This reduces the travel of workers and thus may

substantially boost productivity in practice. All other attractive characteristics of

traditional bucket brigades on a straight-line layout are preserved under the U-line

layout. For example, the system constantly seeks balance and the output is regular.
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Figure 4.4(b) shows the long-run average throughput in each region. The through-

put in each region has a different expression. Even though there is neither blocking

nor halting, the throughput in Region 5 may be lower than that of other regions.

This is because each worker has different work velocities on different stations. Thus,

the assignment of stations to workers on the fixed point or the period-2 orbits may

not result in the maximum throughput level.

Case 2: ϕ > 1

If ϕ > 1, the asymptotic behaviors and the expressions of throughput remain the

same in all regions except for Region 5, which is now partitioned into seven subre-

gions as shown in Figure 4.5(a). We summarize the system’s asymptotic behavior

in each subregion as follows.

Region5a: The system converges to a period-2 orbit: η1 and γ(η1). At the period-

2 orbit, W1 is blocked at location 0 for every other hand-off.

Region5b: The system converges to a period-2 orbit: η2 and γ(η2). At the period-

2 orbit, W2 is blocked at location s1 + s2 for every other hand-off.

Region5c: The system converges to a period-2 orbit: s1 and γ(s1). At the period-

2 orbit, W1 is halted at location s1 for every other hand-off.

Region5d: The system converges to a period-2 orbit: η1 and s1 − s3. At the

period-2 orbit, W1 is blocked at location 0 for every other hand-off, and W2

is halted at location 1 for every other hand-off.
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Figure 4.5: Asymptotic behaviors and throughput (ϕ > 1). (a) Region 5 is
partitioned into seven subregions. (b) The throughput in each subregion of Region
5 has a different expression. For both graphs, we set v22 = 1, µ11 = 1.2, µ21 = 0.7,
µ13 = 3.5, and µ23 = 1.6.

Region5e: The system converges to a period-2 orbit: η1 and η2. At the period-2

orbit, W1 is blocked at location 0 for every other hand-off, and W2 is blocked

at location s1 + s2 for every other hand-off.

Region5f: The system converges to a period-2 orbit: s1 and η2. At the period-2

orbit, W1 is halted at location s1 for every other hand-off, and W2 is blocked

at location s1 + s2 for every other hand-off.

Region5g: The system converges to a period-2 orbit: s1 and s1 − s3. At the

period-2 orbit, W1 is first blocked at location 0 and then halted at location

s1 for every other hand-off, and W2 is halted at location 1 for every other

hand-off.
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Figure 4.5(b) shows that each subregion of Region 5 may have different through-

put, which may be lower than that of other regions.

4.4 The M-station, two-worker U-lines

In this section we analyze the dynamics and determine the throughput of U-lines

with M stations and two workers. Unlike in the three-station case, we cannot find

a closed-form expression of the dynamic function f . However, we show that the

system either converges to a fixedpoint or a period-2 orbit. We determine the

fixed point and the corresponding throughput using an algorithmic approach. All

technical details can be found in Appendix A.3.

4.4.1 Definitions andrules

Recall that a worker is in stage j ∈ {1, 2, 3} if he is on station Sj(k) for any

k ∈ {1, . . . ,mj}. We say W1, who is working on stage 1, meets W2, who is working

on stage 3, when their horizontal positions coincide (that is, h1 = h2). There are

two different types of hand-offs in the M -station U-line. A hand-off of type I occurs

when W1 meets W2. Each worker first relinquishes his item, walks across the aisle,

and then takes over each other’s item. After the hand-off, W1 works on stage 3

while W2 proceeds on stage 1. Figure 4.6(a) shows the paths of the two workers

beginning with a type I hand-off.

A type II hand-off occurs when W1 completes an item at the end of stage 3 and
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the horizontal position of W2 is negative. In this case W1 walks back, takes over

work from W2 at the horizontal position h2 < 0, and continues the work on stage

3. Meanwhile, W2 walks across the aisle and initiates a new item in stage 1. Note

that type II hand-offs are possible only if s1 < s3. Figure 4.6(b) shows the paths of

the two workers beginning with a type II hand-off. Note that only type I hand-offs

exist in the three-station system.

The cellular bucket brigade rules for the M -station U-line are given as follows.

Rule for W1:

• If you are in stage 1, continue to assemble your item until you meet W2.
Then exchange work with W2 and work in stage 3.

• If you are in stage 3, continue to assemble your item until you complete
it. Upon completion,

1. if the horizontal position of W2 is nonnegative then initiate a new
item and work in stage 1;

2. otherwise, take over work from W2 and continue the work in stage
3.

Rule for W2: Continue to assemble your item along the assembly line until

• you exchange work with W1, then work in stage 1; or
• your item is taken over by W1, then initiate a new item and work in stage
1.

A worker is blocked if he reaches the start of a station in his zone while his

colleague is still working on the station. In the M -station U-line, W1 can be blocked

at the start of any station in stage 1 and W2 can be blocked at the start of any

station in stage 3.

If W1 reaches the end of stage 1 before he meets his colleague, then W1 is halted

at location s1. If W1 is halted, he remains idle until a hand-off occurs immediately
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Figure 4.6: Movement of workers on M stations. Both graphs showthe paths
of the two workers between the n-th and (n+1)-st hand-offs on an M -station U-
line. The solid arrows correspond to working, while the dashed arrows correspond
to instantaneous walk. The start and the end of each worker’s path are represented
by a circle and a square respectively. (a) The n-th hand-off occurs when W1 meets
W2. (b) The n-th hand-off occurs when W1 completes an item at location 1. He
then takes over work from W2, whose horizontal position is negative.

after W2 finishes his work on stage 2. After the hand-off, W1 works on stage 3 while

W2 reenters stage 2. On the other hand, if W2 reaches the end of stage 3 before he

meets his colleague, then W2 is halted at location 1. Note that W2 can be halted

only if s1 > s3. If W2 is halted, he remains idle until a hand-off occurs when the

horizontal positions of the two workers coincide.

4.4.2 Dynamics andthroughput

According to the cellular bucket brigade rules for the M -station U-line, any hand-off

position falls in the interval I = [s1 − s3, s1] on the horizontal axis. Note that the

positions of type II hand-offs are negative. Let f : I 
→ I be a function such that

xn+1 = f(xn), where xn denotes the n-th hand-off position.

Due to numerous combinations of station numbers in the three stages of the

U-line, we cannot enumerate each possible case and determine the function f in
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closed form (such as the one for the three-station case in Appendix A.2.1). However,

we prove that f is continuous, non-increasing, and piecewise linear (see Appendix

A.3.1). These properties of f enable us to determine the asymptotic behavior of

the cellular bucket brigade on the M -station U-line.

Specifically, we show that the system has a unique fixed point x∗ and has no

periodic orbits of period greater than 2 (see Lemma 13 in Appendix A.3.2). We

also find a sufficient condition for the fixed point x∗ to be a global attractor:

Convergence Condition: For any pair of hand-off positions x and f(x),

one of the following cases should hold:

1. x > 0, f(x) > 0, where x falls in S1(k1) and S3(k2) while f(x) falls in
S1(k3) and S3(k4), and

1

v11(k3)
− 1

v13(k2)
>

1

v21(k1)
− 1

v23(k4)
.

2. x > 0, f(x) < 0, where x falls in S1(k1) and S3(k2) while f(x) falls in
S3(k4), and

− 1

v13(k2)
>

1

v21(k1)
− 1

v23(k4)
.

3. x < 0, f(x) > 0, where x falls in S3(k2) while f(x) falls in S1(k3) and
S3(k4), and

1

v11(k3)
− 1

v13(k2)
> − 1

v23(k4)
.

4. x < 0, f(x) < 0, where x falls in S3(k2) while f(x) falls in S3(k4), and

− 1

v13(k2)
> − 1

v23(k4)
.

We show that the system always converges to the fixed point x∗ if the Convergence
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Condition holds (see Lemma 14 in Appendix A.3.2 for details). Note that if s1 ≥ s3

then both x and f(x) are non-negative, and so only the first inequality 1/v11(k3)−

1/v13(k2) > 1/v21(k1)− 1/v23(k4) should be satisfied to ensure convergence.

Checking the Convergence Condition only requires enumeration of all possible

values of ki, i = 1, . . . , 4. It is straightforward to check this condition as there are

at most (m1+m3)
2 combinations of ki, i = 1, . . . , 4. Furthermore, the Convergence

Condition can be checked easily if vij(k) = vij , where vij is a constant, for k =

1, . . . ,mj .According to the rules in Section 4.3.1, hand-offpositions are always

non-negative in the three-station U-line. As a result, the Convergence Condition

reduces to the condition ϕ < 1 for the three-station case.

In addition to the Convergence Condition, we also find a necessary and sufficient

conditionfor the fixed point to be a global attractor for the M -stationsystem.

However, it is computationally more expensive to check this condition and we do

not discuss it here. (see Lemma 15 in Appendix A.3 for details)

We develop algorithms to calculate the fixed point x∗ and the throughput on

the fixed point for the M -station U-line. The details of these algorithms can be

found in Appendix A.3.3. We compare the throughput of systems with different

work-content distributions and different numbers of stations.Since only W2 can

work in stage 2, the behavior of the system does not depend on m2. Thus, in the

following analysis we set m2 = 1.

Increasing the numbers of stations in stages 1 and 3 makes the system more

flexible and often results in higher throughput than the 3-station U-line. For the rest
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(a) m1 = m2 = m3 = 1
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(b) m1 = 2 and m2 = m3 = 1
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(c) m1 = m2 = 1 and m3 = 2

Figure 4.7: Throughput comparisons. For all graphs, we set v22(1) = 1.00,
v11(k) = 0.83, v21(k) = 1.43, and s

k
1 = s1/m1, k = 1, . . . ,m1, and v13(k) = 1.25,

v23(k) = 0.63, and s
k
3 = s3/m3, k = 1, . . . ,m3.

of this section, we keep the same velocity setting as that for Figure 4.4. This velocity

setting satisfies the Convergence Condition. Thus, the system always converges to

a fixedpoint. We first analyze the effects of increasing m1 or m3 individually.

We thenexamine the performance of the U-line by increasing both m1 and m3

simultaneously.

Figure 4.7(a) shows the system’s throughput with m1 = m2 = m3 = 1 under

different work-content distributions. Figure 4.7(b) shows the throughput of the

same system when m1 increases to 2. The throughput increases in Regions 1 and

2 (see Figure 4.4(a)) but remains unchanged in other regions. This is because in

Regions 3, 4, and 5, even for the case where m1 = 1, W1 is not blocked at the

start of stage 1 when the system operates on the corresponding fixed point. Thus,

increasing m1 does not improve the system’s throughput in these regions.

Similarly, Figure 4.7(c) shows the throughput when m3 = 2. Compared with

Figure 4.7(a), the throughput is improved in Region 3 but remains unchanged in
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(a) K = 1
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(b) K = 2
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(c) K = 20

Figure 4.8: Throughput comparisons (m1 = m3 = K and m2 = 1). For
differentK, the throughput remains unchanged in Regions 4 and 5, but may increase
in other regions as K increases. For all graphs, we set v22(1) = 1.00, v11(k) = 0.83,
v21(k) = 1.43, v13(k) = 1.25, v23(k) = 0.63, and s

k
j = sj/K , for j = 1, 3, k =

1, . . . ,K .

other regions. This is because in Regions 1, 2, 4, and 5, even for the case where

m3 = 1, W2 is not blocked at the start of stage 3 when the system operates on the

corresponding fixed point. Thus, the system’s throughput remains unchanged in

these regions as m3 increases.

Figure 4.8 shows the system’s throughput when both m1 and m3 simultaneously

increase. Again, Figure 4.8(a) represents the base case where m1 = m2 = m3 = 1.

Figure 4.8(b) shows the throughput when m1 and m3 increase to 2. The through-

put improvement is due to the combined effects shown in Figures 4.7(b) and (c).

Figure 4.8(c) shows the throughput when m1 and m3 increase to 20. By comparing

Figures 4.8(a) and (b), we find that there is significant improvement in throughput

in Regions 1, 2, and 3 as m1 and m3 increase to 2. However, we see diminishing

returns in Figure 4.8(c) as the numbers of stations in stages 1 and 3 continue to

increase.
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4.5 Conclusions

U-lines are common not only in manufacturing, but also in the healthcare industry.

Inthis chapter we focus onU-lines with a professional worker and anordinary

worker. Only the professional worker (W2) is qualified to work on a critical segment

of the line (stage 2), while both workers can work on the rest of the line (stages 1

and 3). We consider multiple stations in each stage. Each worker handles a single

item at a time, and at most one worker is allowed to work on a station at any time.

We assume worker- and station-specific work velocities.

Since the professional worker W2 is more expensive, we want him to work mainly

in stage 2 that requires special skills and let the ordinary worker W1 handles the

simpler tasks in stages 1 and 3. Furthermore, we want the workers to collaborate

with each other without too much travel in practice. We propose simple rules to

coordinate the two workers on the U-line such that W2 mainly works in stage 2

and collaborates dynamically with his colleague in stages 1 and 3. Our goal is to

study the asymptotic behaviors and determine the throughput of the U-line under

the coordination rules proposed. The analysis of the dynamics is nontrivial due

to possible blocking and halting of workers and numerous combinations of station

numbers, work-content distributions, and work velocities.

We first study a three-station U-line by analyzing the asymptotic behaviors for

different work-content distributions under a general velocity setting (see Figure 4.4).

We then study the changes in asymptotic behavior by varying the workers’ velocities
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(see Figure 4.5). After we fully analyze the dynamics of the three-station U-line,

we extend our study to an M -station system.

For the three-stationU-line, we determine the dynamic function f inclosed

form. For any given work-content distribution, the system always converges to a

fixed point or a period-2 orbit. We can determine closed-form expressions of the

fixed point, the period-2 orbit, and the corresponding throughput. Furthermore,

we identify all cases of blocking and halting when the system operates on the fixed

point or the period-2 orbit.

Convergence to a fixed point is desirable because each worker repeatedly works

in the same loop on the U-line. This facilitates learning of workers. Furthermore,

the travel of workers is reducedas each worker executes a set of tasks that are

physically close to each other especially if the aisle is narrow. This may substantially

boost productivity in practice. All other attractive characteristics of traditional

bucket brigades on a straight-line layout are preserved under the U-line layout. For

example, the system can restore balance after disruptions and the output is regular.

For the M -station U-line, we characterize the function f and study the asymp-

totic behaviors of the system. We find that, similar to the three-station case, the

system converges to a fixed point or a period-2 orbit for any given number of sta-

tions in each stage and work-content distribution on the stations.We provide a

sufficient condition for the fixed point to be a global attractor. This condition can

be tested efficiently.

We develop algorithms to determine the fixed point and the corresponding
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throughput for the M -station U-line. We find that increasing the number of sta-

tions in stages 1 and 3 generally improves the throughput for certain work-content

distributions (Regions 1, 2, and 3 in Figure 4.4(a)). We also observe that there are

diminishing returns if we further divide the line into more stations.
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Chapter 5

Conclusions

In this paper we propose simple rules to coordinate two workers on a U-line. We

first analyze a three-station case with worker-specific velocities. The system always

converges to a fixed point or a period-2 orbit.

Suppose that each worker is rewarded according to his long-run average contri-

bution to the throughput. Workers always prefer to be busy, and so worker 1 prefers

the partially cross-trained team but worker 2 prefers the fully cross-trained team.

We define a policy as a combination of the ordering of workers and the extent of

cross-training. Policy SF or FF always maximizes the system’s throughput for most

work-content distributions.

We find that the faster worker prefers the SF or FP policy while the slower

worker prefers the FF or SP policy. The policies preferred by the system, the faster

worker, and the slower worker sometimes are all different.In that situation, we

can resolve the tripartite conflict by choosing a policy preferred by the system as

62



this policy maximizes system productivity without making any worker extremely

unhappy.

The system’s preference is consistent with the faster worker’s preference for

significantly more work-content distributions. Moreover, if workers’ work velocities

are sufficiently different, then the faster worker’s preferred policy maximizes the

system’s throughput for more than 90% of the feasible work-content region.

We extend our study to a three-station U-line with both worker- and station-

specific velocities. We can determine the dynamic function f in closed form. For

any given work-content distribution, the system always converges to a fixed point or

a period-2 orbit. We can also determine closed-form expressions of the fixed point,

the period-2 orbit, and the corresponding throughput.

We further generalize our research to an M -station U-line, we characterize the

function f and analyze the asymptotic behaviors of the system. The system still

converges to a fixed point or a period-2 orbit. We provide a sufficient condition for

the fixed point to be a global attractor.

In the end, we develop efficient algorithms to compute the fixed point and the

corresponding throughput for the M -station U-line. Our numerical results show

that increasing the number of stations instages 1 and3 generally improves the

throughput for certain work-content distributions. However, if each stage is further

divided into more stations, the improvement in throughput will diminish.
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Appendix A

Technical details

A.1 Technical details for Chapter 3

A.1.1 Proof of Theorem 1

Before proving Theorem 1, we first construct the function f . Figure A.1 shows five work-

content regions. Each region corresponds to a distinct form of the function f , which is

determined in Lemma 1.

Lemma 1. If Z1 = Z2 = {1, 2, 3}, the function f is given as follows.

Regiona (s3 < −r + (r + 1)s1):

f(xk) = s1 − s3.

Regionb
�
s3 ≥ 1− r+1

r
s1, s3 ≥ −r + (r + 1)s1, and s3 < 1

r+1
s1
�
:

f(xk) =






r
r+1
− r
r+1
s3, if xk ∈ [s1 − s3, s1 − 1

r+1
s3);

r
r+1
+ s1 − s3 − xk, if xk ∈ [s1 − 1

r+1
s3,

r
r+1
];

s1 − s3, otherwise.
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Figure A.1: Work-content regions. Each region corresponds to a distinct form
of the function f . We set r = 0.8 in this example.

Regionc
�
s3 ≥ 1− r+1

r
s1 and s3 ≥ 1

r+1
s1
�
:

f(xk) =






r
r+1
− r
r+1
s3, if xk ∈ [max(0, s1 − s3), s1 − 1

r+1
s3);

r
r+1
+ s1 − s3 − xk, if xk ∈ [s1 − 1

r+1
s3,

r
r+1
+ 1
r+1
s1 − s3];

r
r+1
s1, otherwise.

Regiond
�
s3 < 1− r+1

r
s1 and s3 <

1
r+1
s1
�
:

f(xk) =






s1, if xk ∈ [s1 − s3, rr+1 − s3);
r
r+1
+ s1 − s3 − xk, if xk ∈ [ rr+1 − s3,

r
r+1
];

s1 − s3, otherwise.

Regione
�
s3 < 1− r+1

r
s1 and s3 ≥ 1

r+1
s1
�
:

f(xk) =






s1, if xk ∈ [max(0, s1 − s3), rr+1 − s3);
r
r+1
+ s1 − s3 − xk, if xk ∈ [ rr+1 − s3,

r
r+1
+ 1
r+1
s1 − s3];

r
r+1
s1, otherwise.

Proof. We construct the function f for the following two cases separately: (I) s1 > s3

and (II) s1 ≤ s3. For Case (I), the hand-off position xk falls in the interval [s1 − s3, s1]

on the horizontal axis. Figure A.2 shows the conceptual line for Case (I). Note that the

actual locations of workers on the line immediately after the k-th hand-off are shown in

the figure. In this case, worker 1 may be blocked at locations 0 and s1 on the line, and
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worker 2 may be blockedat location s1 + s2 and haltedat location1. We determine

the next hand-off position xk+1 by considering all possible combinations of blocking and

halting events.

0

s1+s2

s1

1

0 s1

v1

v2

s1-s3 xk

Figure A.2: Case I (s1 > s3). The hand-off position x
k falls in the interval

[s1 − s3, s1] The actual locations of workers on the line immediately after the k-th
hand-off are shown.

(I) s1 > s3 (x
k ∈ [s1 − s3, s1]):

(A) If s1−x
k

v2
≤ xk−s1+s3v1

⇔ xk ≥ s1 − 1
r+1s3, then worker 1 is not blocked at location 0.

(1) If 1−s3−x
k

v2
< xk−s1+s3

v1
⇔ xk > r

r+1 +
1
r+1s1 − s3, then worker 2 is blocked at

location s1 + s2.

(a) If s3v2 <
s1−s3
v1
⇔ s3 < 1

r+1s1, then worker 2 is halted at location 1 and

xk+1 = s1 − s3.

(b) If s3 ≥ 1
r+1s1, then worker 2 is not halted at location 1 and x

k+1 = r
r+1s1.

(2) If xk ≤ r
r+1 +

1
r+1s1 − s3, then worker 2 is not blocked at location s1 + s2.

(a) If 1−x
k

v2
< xk

v1
⇔ xk > r

r+1 , then worker 2 is halted at location 1 and

xk+1 = s1 − s3.

(b) If xk ≤ r
r+1 , then worker 2 is not halted at location 1.

(i) If 1−s3−x
k

v2
> xk+s3

v1
⇔ xk < r

r+1 − s3, then worker 1 is blocked at
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location s1 and x
k+1 = s1.

(ii) If xk ≥ r
r+1 − s3, then worker 1 is not blocked at location s1 and

xk+1 = r
r+1 + s1 − s3 − x

k.

(B) If xk < s1 − 1
r+1s3, then worker 1 is blocked at location 0.

(1) If 1−s1v2 <
s1−s3
v1
⇔ s3 < −r + (r + 1)s1, then worker 2 is halted at location 1

and xk+1 = s1 − s3.

(2) If s3 ≥ −r + (r + 1)s1, then worker 2 is not halted at location 1.

(a) If s1v1 <
1−s1−s3
v2

⇔ s3 < 1− r+1r s1, then worker 1 is blocked at location s1

and xk+1 = s1.

(b) If s3 ≥ 1− r+1r s1, then worker 1 is not blocked at location s1 and x
k+1 =

r
r+1 −

r
r+1s3.

For Case (II), the hand-off position xk falls in the interval [0, s1] on the horizontal axis.

Figure A.3 shows the conceptual line for Case (II). The actual locations of workers on

the line immediately after the k-th hand-off are shown in the figure. In this case, worker

1 may be blockedat locations 0 and s1 onthe line, and worker 2 may be blocked at

location s1+s2. We determine the next hand-off position x
k+1 by considering all possible

combinations of blocking events.

(II) s1 ≤ s3 (xk ∈ [0, s1]):

(A) If s1−x
k

v2
≤ xk−s1+s3v1

⇔ xk ≥ s1 − 1
r+1s3, then worker 1 is not blocked at location 0.

(1) If 1−s3−x
k

v2
< xk−s1+s3

v1
⇔ xk > r

r+1 +
1
r+1s1 − s3, then worker 2 is blocked at

location s1 + s2 and x
k+1 = r

r+1s1.
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s1+s2

s1

1

0 s1s1-s3 xk

v1

v2

Figure A.3: Case II (s1 ≤ s3). The hand-off position xk falls in the interval [0, s1]
on the horizontal axis. The actual locations of workers on the line immediately after
the k-th hand-off are shown.

(2) If xk ≤ r
r+1 +

1
r+1s1 − s3, then worker 2 is not blocked at location s1 + s2.

(a) If 1−s3−x
k

v2
> x

k+s3
v1
⇔ xk < r

r+1 − s3, then worker 1 is blocked at location

s1 and x
k+1 = s1.

(b) If xk ≥ r
r+1 − s3, then worker 1 is not blocked at location s1 and x

k+1 =

r
r+1 + s1 − s3 − x

k.

(B) If xk < s1 − 1
r+1s3, then worker 1 is blocked at location 0.

(1) If s1v1 <
1−s1−s3
v2

⇔ s3 < 1− r+1r s1, then worker 1 is blocked at location s1 and

xk+1 = s1.

(2) If s3 ≥ 1 − r+1
r s1, then worker 1 is not blocked at location s1 and x

k+1 =

r
r+1 −

r
r+1s3.

Now, we check the function f in each region of Figure A.1 using the above results.

Region a: Since s3 < −r + (r + 1)s1, we have s1 − 1
r+1s3 >

r
r+1 and s3 <

1
r+1s1

(because s1 + s3 ≤ 1), and thus s1 > s3. The inequality s1 > s3 implies that this region

corresponds to Case (I). If xk < s1− 1
r+1s3, then we have Case (I)(B)(1): x

k+1 = s1− s3.

Otherwise, we either have Case (I)(A)(1)(a) due to the inequality s3 <
1
r+1s1 or Case
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(I)(A)(2)(a) due to the inequalities xk ≥ s1 − 1
r+1s3 >

r
r+1 , and thus x

k+1 = s1 − s3.

Therefore, for any xk, we have xk+1 = s1 − s3.

Region b: In this region, we have s3 ≥ 1− r+1r s1, s3 ≥ −r+(r+1)s1, and s3 <
1
r+1s1.

The last inequality implies s1 > s3. All the three inequalities imply
r
r+1−s3 ≤ s1−

1
r+1s3 ≤

r
r+1 <

r
r+1 +

1
r+1s1 − s3. Since s1 > s3, this region corresponds to Case (I). If x

k <

s1− 1
r+1s3, then we have Case (I)(B)(2)(b): x

k+1 = r
r+1−

r
r+1s3. If s1−

1
r+1s3 ≤ x

k ≤ r
r+1 ,

then we have Case (I)(A)(2)(b)(ii) due to the inequalities xk ≥ s1 − 1
r+1s3 ≥

r
r+1 − s3,

and thus xk+1 = r
r+1 + s1 − s3 − x

k. If xk > r
r+1 , then we either have Case (I)(A)(1)(a)

due to the inequality s3 <
1
r+1s1 or Case (I)(A)(2)(a) due to the inequality x

k > r
r+1 , and

thus xk+1 = s1 − s3.

Region c: Since s3 ≥ 1− r+1r s1 and s3 ≥
1
r+1s1, we have

r
r+1−s3 ≤ s1−

1
r+1s3 ≤

r
r+1+

1
r+1s1− s3 ≤

r
r+1 . The inequalities s3 ≥

1
r+1s1 and s1+ s3 ≤ 1 imply s3 ≥ −r+(r+1)s1.

Both Cases (I) and (II) are possible in this region.

For Case (I), if xk < s1− 1
r+1s3, then we have Case (I)(B)(2)(b): x

k+1 = r
r+1 −

r
r+1s3.

If s1 − 1
r+1s3 ≤ x

k ≤ r
r+1 +

1
r+1s1 − s3, then we have Case (I)(A)(2)(b)(ii) due to the

inequalities r
r+1−s3 ≤ s1−

1
r+1s3 and

r
r+1+

1
r+1s1−s3 ≤

r
r+1 , and thus x

k+1 = r
r+1+s1−

s3 − xk. If xk > r
r+1 +

1
r+1s1 − s3, then we have Case (I)(A)(1)(b) due to the inequality

s3 ≥ 1
r+1s1, and thus x

k+1 = r
r+1s1.

For Case (II), if xk < s1− 1
r+1s3, then we have Case (II)(B)(2): x

k+1 = r
r+1−

r
r+1s3. If

s1− 1
r+1s3 ≤ x

k ≤ r
r+1+

1
r+1s1−s3, then we have Case (II)(A)(2)(b) due to the inequalities

xk ≥ s1− 1
r+1s3 ≥

r
r+1 − s3, and thus x

k+1 = r
r+1 +s1−s3−x

k. If xk > r
r+1 +

1
r+1s1− s3,

then we have Case (II)(A)(1): xk+1 = r
r+1s1.

Region d: In this region, we have s3 < 1− r+1r s1 and s3 <
1
r+1s1. The first inequality
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implies s3 ≥ −r + (r + 1)s1 and the second inequality implies s1 > s3. Both inequalities

imply s1 − 1
r+1s3 <

r
r+1 − s3 ≤

r
r+1 <

r
r+1 +

1
r+1s1 − s3. Since s1 > s3, this region

corresponds to Case (I). If xk < r
r+1 − s3, then we either have Case (I)(B)(2)(a) due

to the inequality s3 ≥ −r + (r + 1)s1 or Case (I)(A)(2)(b)(i) due to the inequalities

xk < r
r+1 − s3 ≤

r
r+1 <

r
r+1 +

1
r+1s1 − s3, and thus x

k+1 = s1. If
r
r+1 − s3 ≤ x

k ≤ r
r+1 ,

then we have Case (I)(A)(2)(b)(ii) due to the inequalities xk ≤ r
r+1 <

r
r+1 +

1
r+1s1 − s3,

and thus xk+1 = r
r+1 + s1 − s3 − x

k. If xk > r
r+1 , then we either have Case (I)(A)(1)(a)

due to the inequality s3 <
1
r+1s1 or Case (I)(A)(2)(a), and thus x

k+1 = s1 − s3.

Region e: Since s3 < 1 − r+1r s1 and s3 ≥
1
r+1s1, we have s3 ≥ −r + (r + 1)s1 and

s1 − 1
r+1s3 <

r
r+1 − s3 ≤

r
r+1 +

1
r+1s1 − s3 ≤

r
r+1 . Both Cases (I) and (II) are possible in

this region.

For Case (I), if xk < r
r+1 − s3, then we either haveCase (I)(B)(2)(a) or Case

(I)(A)(2)(b)(i) due to the inequalities xk < r
r+1 − s3 ≤

r
r+1 +

1
r+1s1 − s3 ≤

r
r+1 , and

thus xk+1 = s1. If
r
r+1 − s3 ≤ x

k ≤ r
r+1 +

1
r+1s1 − s3, then we have Case (I)(A)(2)(b)(ii):

xk+1 = r
r+1 + s1− s3 − x

k. If xk > r
r+1 +

1
r+1s1 − s3, then we have Case (I)(A)(1)(b) due

to the inequality s3 ≥ 1
r+1s1, and thus x

k+1 = r
r+1s1.

For Case (II), if xk < r
r+1 − s3, then we either have Case (II)(B)(1) due tothe

inequality s3 < 1 − r+1r s1 or Case (II)(A)(2)(a) due to the inequalities x
k < r

r+1 − s3 ≤

r
r+1 +

1
r+1s1− s3, and thus x

k+1 = s1. If
r
r+1 − s3 ≤ x

k ≤ r
r+1 +

1
r+1s1− s3, then we have

Case (II)(A)(2)(b): xk+1 = r
r+1 + s1 − s3 − x

k. If xk > r
r+1 +

1
r+1s1 − s3, then we have

Case (II)(A)(1): xk+1 = r
r+1s1.

We also need the following lemma to prove Theorem 1.

Lemma 2. Suppose xk+1 = g(xk), where g : [A,B] 
→ [A,B ] (0 ≤ A < B) has the
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following form

g(x) =






Y, if x ∈ [A,X1);

Y +X1 − x, if x ∈ [X1,X2];

Y +X1 −X2, otherwise.

If Y ≤ X1, then the system converges to a fixed point Y . If X1 < Y < 2X2 − X1, then

the system converges to a period-2 orbit. Otherwise, the system converges to a fixed point

Y +X1 −X2.

Proof. If Y ≤ X1, then Y is a fixed point. For any initial point x ∈ [A,B], we have

g(x) ≤ Y ≤ X1. So g(g(x)) = Y , and the system stays at the fixed point Y . Similarly, if

Y ≥ 2X2 −X1, then Y +X1 − X2 is a fixed point. For any initial point x ∈ [A,B], we

have g(g(x)) = Y +X1 −X2, and the system stays at the fixed point Y +X1 −X2.

If X1 < Y < 2X2 −X1, then for any initial point x ∈ [A,B], there are three possible

cases:

1. If x < X1, then g(x) = Y .

• If X1 < Y ≤ X2, then g(Y ) = Y +X1 − Y = X1. Thus, g(g(Y )) = Y , which

means the system converges to a period-2 orbit.

• If X2 < Y < 2X2 −X1, then g(Y ) = Y +X1 −X2. We have g(Y ) ∈ [X1,X2].

Thus, g(g(Y )) = Y +X1 − g(Y ) = X2, which implies g(g(g(Y ))) = Y +X1 −

X2 = g(Y ). The system converges to a period-2 orbit.

2. If x > X2, then g(x) = Y +X1−X2. Let Y � = Y +X1−X2. We have 2X1−X2 <

Y � < X2.
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• If X1 ≤ Y � < X2, then g(Y �) = Y + X1 − Y � = X2. Thus, g(g(Y �)) =

Y +X1 −X2 = Y �, which means the system converges to a period-2 orbit.

• If 2X1 − X2 < Y � < X1, then g(Y �) = Y . We have g(Y �) ∈ [X1,X2]. Thus,

g(g(Y �)) = Y +X1− g(Y �) = X1, which implies g(g(g(Y �))) = Y +X1−X1 =

Y = g(Y �). The system converges to a period-2 orbit.

3. If X1 ≤ x ≤ X2, then g(x) = Y +X1 − x.

• If X1 ≤ g(x) ≤ X2, then g(g(x)) = x. The system converges to a period-2

orbit.

• If g(x) < X1, then g(g(x)) = Y and this reduces to Case 1.

• If g(x) > X2, then g(g(x)) = Y +X1 −X2 and this reduces to Case 2.

Note that the function g in Lemma 2 represents a general form of the function f in

Lemma 1. We use the properties of function g described in Lemma 2 to prove Theorem

1 as follows.

Proof. We partition the entire feasible work-content area into five regions shown in Figure

3.3(a). We determine the asymptotic behavior and throughput of the system in each region

separately.

Region 1: This region is identical to Region a in Figure A.1. Lemma 1 shows that

the system always converges to the fixed point x∗ = s1 − s3. When the system operates

on the fixed point, according to the proof of Lemma 1 (see Region a), worker 1 is always
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blocked at location 0 and worker 2 is always halted at location 1. The long-run average

throughput is T F =
�
s1−x∗
v2
+ x

∗

v1

�−1
= v1
s1+(r−1)s3 .

Region 2: This region falls in Regions b and c in Figure A.1. Since s1 >
r
r+1 −

r−1
r+1s3 ⇔

r
r+1 −

r
r+1s3 < s1 −

1
r+1s3, according to the function f in Regions b and c as

well as Lemma 2, the system converges to the fixed point x∗ = r
r+1 −

r
r+1s3. When the

system operates on the fixed point, according to the proof of Lemma 1 (see Regions b

andc), worker 1 is always blockedat location 0. The long-run average throughput is

T F =
�
s1−x∗
v2
+ x

∗

v1

�−1
= (r+1)v2
(r+1)s1+(1−r)(1−s3) .

Region 3: This regionfalls in Regions c ande in Figure A.1. Since s3 >
r
r+1 −

r−1
r+1s1 ⇔

r
r+1s1 >

r
r+1 +

1
r+1s1 − s3, according to the function f in Regions c and e

as well as Lemma 2, the system converges to the fixed point x∗ = r
r+1s1. When the

system operates on the fixed point, according to the proof of Lemma 1 (see Regions c and

e), worker 2 is always blocked at location s1 + s2. The long-run average throughput is

T F =
�
s3−s1+x∗
v1

+ x
∗

v1

�−1
= (r+1)v1
(r+1)s3+(r−1)s1 .

Region 4: Since s3 <
r
r+1 − s1 ⇔

s1+s3
v1
< 1−s1−s3

v2
, worker 1 is always blocked at

location s1. The system converges to the fixedpoint x
∗ = s1. The long-runaverage

throughput is T F =
�
1−s1−s3
v2

�−1
= v2
1−s1−s3 .

Region 5: This region falls in Regions b, c, d, and e in Figure A.1. According to

the function f in Regions b, c, d, and e as well as Lemma 2, it can be shown that the

system converges to a period-2 orbit that comprises of points x and r
r+1 + s1 − s3 − x,

where x depends on the initial locations of the workers. When the system operates on the

period-2 orbit, according to the proof of Lemma 1 (see Regions b, c, d, and e), neither

blocking nor halting occurs. The system fully uses its production capacity and thus the
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long-run average throughput is T F = v1 + v2.

A.1.2 Proof of Corollary1

We provide a detailed comparison on the throughput of the fully cross-trained team with

that of the partially cross-trained team in the following lemma, from which Corollary 1

immediately follows.

Lemma 3. The long-run average throughput of the fully cross-trained team (T F) is com-

pared with that of the partially cross-trained team (T P) in each region of Figure 3.3(a) as

follows.

Region1: If r < 2, then T F > T P. If r = 2, then T F = T P. Otherwise, T F < T P.

Region2: If r < 2, then T F > T P. If r = 2, then T F > T P except at the boundary
s3 = −r + (r + 1)s1 where T F = T P. Otherwise, we have the following three
cases:

1. If s1 <
r
r+1
+
�
1
r−1 −

r
r+1

�
s3, then T F > T P.

2. If s1 =
r
r+1
+
�
1
r−1 −

r
r+1

�
s3, then T F = T P.

3. If s1 >
r
r+1
+
�
1
r−1 −

r
r+1

�
s3, then T F < T P.

Region3: T F > T P.

Region4: T F = T P.

Region5: T F > T P except at the boundary s3 = r
r+1
− s1 where T F = T P.

Proof. According to Theorems 1 and 2, T F = T P in Region 4 of Figure 3.3(a). In other

regions of Figure 3.3(a), we have T P = v1
s1+s3

. We will compare T P with T F (determined

in Theorem 1) in each of these regions.

Region 1: In this region T F = v1
s1+(r−1)s3 is greater than, equal to, or less than T

P

if r is less than, equal to, or greater than 2 respectively.

Region 2: In this region T F = (r+1)v2
(r+1)s1+(1−r)(1−s3) . There are three cases:
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1. If r < 1, then T P < T F if s1 > r
r+1 +

�
1
r−1 −

r
r+1

�
s3. In Region 2, s1 >

r
r+1 −

r−1
r+1s3 >

r
r+1 +

�
1
r−1 −

r
r+1

�
s3. Thus, we have T P < T F.

2. If r = 1, then T P = v1
s1+s3

< v1
s1
= (r+1)v2
(r+1)s1+(1−r)(1−s3) = T

F.

3. If r > 1, T P is less than, equal to, or greater than T F if s1 is less than, equal

to, or greater than r
r+1 +

�
1
r−1 −

r
r+1

�
s3 respectively. In Region 2, we have s3 ≥

−r + (r + 1)s1 ⇒ s1 ≤ r
r+1 +

1
r+1s3. If 1 < r ≤ 2, then s1 ≤

r
r+1 +

1
r+1s3 ≤

r
r+1 +

�
1
r−1 −

r
r+1

�
s3, which implies T P ≤ T F. Note that T P = T F if and only if

r = 2 and s3 = −r + (r + 1)s1.

Therefore in this region, if r ≤ 2, then T P ≤ T F, and the equality holds if and only if

r = 2 and s3 = −r + (r + 1)s1. Otherwise, T P is less than, equal to, or greater than T F

if s1 is less than, equal to, or greater than
r
r+1 +

�
1
r−1 −

r
r+1

�
s3 respectively.

Region 3: In this region T P = v1
s1+s3

= (r+1)v1
(r+1)s3+(r+1)s1

< (r+1)v1
(r+1)s3+(r−1)s1 = T

F.

Region 5: In this region s1+ s3 ≥ r
r+1 , so we have T

P = v1
s1+s3

≤ v1+ v2 = T F. The

equality only holds at the boundary s1 + s3 =
r
r+1 .

A.1.3 Proof of Theorem 3

Proof. In Region 4 of Figure 3.3(a) the system has identical asymptotic behavior in both

fully and partially cross-trained teams (see Theorems 1 and 2). As a result, worker i has

the same remuneration rate in both teams in Region 4, for i = 1, 2. Therefore, we only

need to analyze the preference of each worker in Regions 1, 2, 3, and 5.

For both fully and partially cross-trained teams, the system converges to an asymptotic

behavior (fixed point or period-2 orbit). For each item produced, each worker spends some
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time working on the item and, possibly, some time idling (due to blocking or halting).

Define WFi and D
F
i as the long-run average work time and idle time, respectively, per item

produced of worker i in the fully cross-trained team, for i = 1, 2. Similarly, define WPi

and DPi as the long-run average work time and idle time, respectively, per item produced

of worker i in the partially cross-trained team, for i = 1, 2.

Recall that αi is the long-run average portion of work content of each item covered

by worker i. For the fullycross-trained team αi = viW
F
i and T F = 1/(WFi + DFi ).

Let RFi denote the remuneration rate of worker i in the fully cross-trained team, for

i = 1, 2. By definition, RFi = αiT F = viWFi /(WFi +DFi ). Let RPi denote the remuneration

rate of worker i in the partiallycross-trained team, for i = 1, 2. Similarly, we have

RPi = viW
P
i /(W

P
i +D

P
i ).

We compare the remuneration rates of each worker for different teams in Regions 1,

2, 3, and 5. We analyze the remuneration rates of workers 1 and 2 separately as follows.

Worker 1: According to Theorem 2, in Regions 1, 2, 3, and 5 worker 1 is never idle

after a transient periodin the partially cross-trained team. This implies DP1 = 0 and

thus, RP1 = v1, the maximum remuneration rate possible for worker 1.

According to Theorem 1, in Regions 1 and 2 worker 1 is constantly blocked at some

locations in the fully cross-trained team. Thus, DF1 > 0. This implies R
F
1 < v1 = R

P
1 . In

Regions 3 and 5 worker 1 is never idle after a transient period and so, RF1 = v1 = R
P
1 .

Worker 2: According to Theorem 2, in Regions 1, 2, 3, and 5 worker 2 repeatedly

works only on station 2 in the partially cross-trained team and so, WP2 = s2/v2. For the

fully cross-trained team, worker 2 covers at least s2 for each item and so, W
F
2 ≥ s2/v2 =

WP2 and the equality holds if and only if s3 =
r
r+1 − s1.
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Now, we want to show that DF2 ≤ DP2 . This requires some new notation. For the

fully cross-trained team, worker 2 can be blocked at location s1 + s2 and can be halted

at location 1 for each item produced. The total idling time per item produced is DF2 . Let

yFj denote the average work content on station j that worker 1 covers per item produced

when worker 2 is idle (for the total idling time DF2 ), for j = 1 and 3. For the partially

cross-trained team, worker 2 can only be idle at location s1 + s2 for each item produced.

The idling time per item produced is DP2 . Let y
P
j denote the average work content on

station j that worker 1 covers per item produced during the idling time DP2 , for j = 1

and 3.

We first show that yF3 ≤ yP3 . We only need to consider the case where yF3 > 0. Note

that for the fully cross-trained team, yF3 > 0 if and only if worker 2 is blocked at location

s1+ s2, which is only possible in Region 3 according to Theorem 1. In Region 3, after the

system converges to the fixed point, worker 1 remains in station 3 when worker 2 reaches

location s1+ s2. Let β
F denote the horizontal position of worker 1 when worker 2 reaches

location s1 + s2 for the fully cross-trained team. Similarly, for the partially cross-trained

team, worker 1 remains in station 3 when worker 2 reaches location s1 + s2 in Region 3.

Let βP denote the horizontal position of worker 1 when worker 2 reaches location s1 + s2

for the partially cross-trained team. Since the hand-off position is less than or equal to

s1 for the fully cross-trained team, we have β
F ≤ βP. This implies yF3 ≤ yP3 .

We then show that yF1 ≤ yP1 . We only need to consider the case where yF1 > 0. Note

that for the fully cross-trained team, yF1 > 0 if and only if worker 2 is halted at location 1,

which is only possible in Region 1 according to Theorem 1. In Region 1, after the system

converges to the fixed point, worker 1 works on station 1 when worker 2 reaches location

80



1. Let γF denote the horizontal position of worker 1 when worker 2 reaches location 1

for the fully cross-trained team. On the other hand, for the partially cross-trained team

worker 1 can be in station 3 or 1 when worker 2 reaches location s1+ s2. If worker 1 is in

station 3, then yP1 = s1 ≥ yF1 . Otherwise, let γP denote the horizontal position of worker

1 when worker 2 reaches location s1 + s2 for the partially cross-trained team. Since in

Region 1 worker 1 is constantly blocked at location 0 for the fully cross-trained team, we

have γF ≥ γP. This implies yF1 ≤ yP1 .

As a result, we have yF1 + y
F
3 ≤ yP1 + yP3 . This implies DF2 = (yF1 + yF3 )/v1 ≤ (yP1 +

yP3 )/v1 = D
P
2 . Since W

F
2 ≥ WP2 and DF2 ≤ DP2 , we have RF2 = v2WF2 /(WF2 + DF2 ) ≥

v2W
P
2 /(W

P
2 +D

P
2 ) = R

P
2 and the equality holds if and only if s3 =

r
r+1 − s1.

A.2 Technical details for the three-station case in

Chapter 4

A.2.1 Constructing the function f

To study the dynamics of the three-station, two-worker system, we first construct the

function f . Figure A.4 shows five work-content regions. Each region corresponds to a
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s3 = 1 − s1
s3 =

µ11
µ11+µ23

s1

s1 =
1+(µ11+µ23−1)s3

µ11+1

s3 = 1 − (µ11 +1) s1

Figure A.4: Five distinct forms of the function f . Each region corresponds
to a distinct form of the function f . We set µ11 = 1.2, µ13 = 0.8, µ21 = 0.7, and
µ23 = 1.6 in this example.

distinct form of the function f , which is determined in Lemma 4. Let

θ1 = s1 −
µ13

µ13 + µ21
s3;

θ2 =
1+( µ13 + µ21 − µ11 − 1)s1 − (µ13 + 1)s3

µ13 + µ21
;

θ3 =
1+( µ13 + µ21 − µ11 − 1)s1 + (µ11 + µ23 − µ13 − 1)s3

µ13 + µ21
;

θ4 =
1+( µ13 + µ21 − 1)s1 − (µ13 + 1)s3

µ13 + µ21
.

Lemma 4. The function f is given as follows.

Regiona
�
s1 >

1+(µ11+µ23−1)s3
µ11+1

�
:

f(xn) = s1 − s3.

Regionb
�
s3 ≥ 1− (µ11 + 1)s1, s1 ≤ 1+(µ11+µ23−1)s3

µ11+1
, and s3 <

µ11
µ11+µ23

s1

�
:

f(xn) =






η1, if xn ∈ [s1 − s3, θ1);
γ(xn), if xn ∈ [θ1, θ3];
s1 − s3, otherwise.
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Regionc
�
s3 ≥ 1− (µ11 + 1)s1 and s3 ≥ µ11

µ11+µ23
s1

�
:

f(xn) =






η1, if xn ∈ [max{0, s1 − s3}, θ1);
γ(xn), if xn ∈ [θ1, θ4];
η2, otherwise.

Regiond
�
s3 < 1− (µ11 + 1)s1 and s3 < µ11

µ11+µ23
s1

�
:

f(xn) =






s1, if xn ∈ [s1 − s3, θ2);
γ(xn), if xn ∈ [θ2, θ3];
s1 − s3, otherwise.

Regione
�
s3 < 1− (µ11 + 1)s1 and s3 ≥ µ11

µ11+µ23
s1

�
:

f(xn) =






s1, if xn ∈ [max{0, s1 − s3}, θ2);
γ(xn), if xn ∈ [θ2, θ4];
η2, otherwise.

Proof. We construct the function f for the following two cases separately: (I) s1 > s3 and

(II) s1 ≤ s3.

0

s1+s2

s1

1

0 s1

v13

v21

s1-s3 xn

Figure A.5: Case (I) (s1 > s3). The hand-offposition xn falls in the interval
[s1 − s3, s1] The actual locations of workers on the line immediately after the n-th
hand-off are shown.

For Case (I), the hand-off position xn falls in the interval [s1−s3, s1] on the horizontal

axis. Figure A.5 shows the conceptual line for Case (I). Note that the actual locations of

workers on the line immediately after the n-th hand-off are shown in the figure. In this
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case, W1 may be blocked at location 0 or halted at location s1 on the line, and W2 may

be blocked at location s1 + s2 or halted at location 1. We determine the next hand-off

position xn+1 by considering all possible combinations of blocking and halting events.

(I) s1 > s3 (xn ∈ [s1 − s3, s1]):

(A) W1 is not blocked at location 0 if
s1−xn
v21

≤ xn−s1+s3v13
⇔ xn ≥ θ1.

(1) W1 is not halted at location s1 if
s1−xn
v21
+ 1−s1−s3v22

≤ xn−s1+s3v13
+ s1
v11
⇔ xn ≥ θ2.

(a) W2 is not blocked at location s1 + s2 if
s1−xn
v21

+ 1−s1−s3v22
≥ xn−s1+s3

v13
⇔

xn ≤ θ4.

(i) W2 is not halted at location 1 if

s1−xn
v21

+ 1−s1−s3v22
+ s3
v23
≥ xn−s1+s3

v13
+ s1−s3v11

⇔ xn ≤ θ3.

— In this case, xn+1 = γ(xn).

(ii) W2 is halted at location 1 if xn > θ3.

— In this case, xn+1 = s1 − s3.

(b) W2 is blocked at location s1 + s2 if xn > θ4.

(i) W2 is not halted at location 1 if
s3
v23
≥ s1−s3

v11
⇔ s3 ≥ µ11

µ11+µ23
s1.

— In this case, xn+1 = η2.

(ii) W2 is halted at location 1 if s3 <
µ11

µ11+µ23
s1.

— In this case, xn+1 = s1 − s3.

(2) W1 is halted at location s1 if xn < θ2.

— In this case, xn+1 = s1.

(B) W1 is blocked at location 0 if xn < θ1.
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(1) W1 is not halted at location s1 if
1−s1−s3
v22

≤ s1
v11
⇔ s3 ≥ 1− (µ11 + 1)s1.

(a) W2 is not halted at location 1 if
1−s1−s3
v22

+ s3v23 ≥
s1−s3
v11
⇔ s1 ≤ 1+(µ11+µ23−1)s3µ11+1

.

— In this case, xn+1 = η1.

(b) W2 is halted at location 1 if s1 >
1+(µ11+µ23−1)s3

µ11+1
.

— In this case, xn+1 = s1 − s3.

(2) W1 is halted at location s1 if s3 < 1− (µ11 + 1)s1.

— In this case, xn+1 = s1.

0

s1+s2

s1

1

0 s1s1-s3

v13

v21

xn

Figure A.6: Case (II) (s1 ≤ s3). The hand-off position xn falls in the interval [0, s1]
on the horizontal axis. The actual locations of workers on the line immediately after
the n-th hand-off are shown.

For Case (II), the hand-off position xn falls in the interval [0, s1] on the horizontal axis.

Figure A.6 shows the conceptual line for Case (II). The actual locations of workers on the

line immediately after the n-th hand-off are shown in the figure. In this case, W1 may

be blocked at location 0 or halted at location s1 on the line, and W2 may be blocked at

location s1+s2. We determine the next hand-off position xn+1 by considering all possible

combinations of blocking and halting events.

(II) s1 ≤ s3 (xn ∈ [0, s1]):
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(A) W1 is not blocked at location 0 if xn ≥ θ1.

(1) W1 is not halted at location s1 if xn ≥ θ2.

(a) W2 is not blocked at location s1 + s2 if xn ≤ θ4.

— In this case, xn+1 = γ(xn).

(b) W2 is blocked at location s1 + s2 if xn > θ4.

— In this case, xn+1 = η2.

(2) W1 is halted at location s1 if xn < θ2.

— In this case, xn+1 = s1.

(B) W1 is blocked at location 0 if xn < θ1.

(1) W1 is not halted at location s1 if s3 ≥ 1− (µ11 + 1)s1.

— In this case, xn+1 = η1.

(2) W1 is halted at location s1 if s3 < 1− (µ11 + 1)s1.

— In this case, xn+1 = s1.

Now, we check the function f in each region of Figure A.4 using the above results.

Note that θ3 > θ2, θ4 > θ1, and θ4 > θ2.

Region a: In this region, we have s1 >
1+(µ11+µ23−1)s3

µ11+1
, which implies θ1 > θ3 > θ2,

s3 > 1−(µ11+1)s1, and s3 < µ11
µ11+µ23

s1. (The last inequality is implied by s1+s3 < 1: The

lines s1 =
1+(µ11+µ23−1)s3

µ11+1
and s3 =

µ11
µ11+µ23

s1 always intersect at point (
µ11+µ23
2µ11+µ23

, µ11
2µ11+µ23

)

on the line s1 + s3 = 1. See Figure A.4.)

Since s3 <
µ11

µ11+µ23
s1, we have s1 > s3. Thus, this region corresponds to Case (I). If

xn < θ1 then, because of inequalities s3 > 1−(µ11+1)s1 and s1 > 1+(µ11+µ23−1)s3
µ11+1

, we have
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Case (I)(B)(1)(b): xn+1 = s1−s3. Otherwise, we have xn ≥ θ1 > θ3 > θ2 and so the region

corresponds to Case (I)(A)(1). In addition, we have s3 <
µ11

µ11+µ23
s1 ⇔ θ4 > θ3. Thus, we

have either Case (I)(A)(1)(a)(ii) due to the inequality xn > θ3 or Case (I)(A)(1)(b)(ii)

due to the inequality s3 <
µ11

µ11+µ23
s1. Both cases imply xn+1 = s1 − s3. Therefore, for

any xn, we have xn+1 = s1 − s3 in this region.

Region b: In this region, we have s3 ≥ 1 − (µ11 + 1)s1, s1 ≤ 1+(µ11+µ23−1)s3
µ11+1

, and

s3 <
µ11

µ11+µ23
s1. The last inequality implies s1 > s3, and thus this region corresponds

to Case (I). If xn < θ1 then, because of the inequalities s3 ≥ 1 − (µ11 + 1)s1 and s1 ≤

1+(µ11+µ23−1)s3
µ11+1

, we have Case (I)(B)(1)(a): xn+1 = η1. Otherwise, we have xn ≥ θ1. Since

s3 ≥ 1 − (µ11 + 1)s1 ⇔ θ1 ≥ θ2, this region corresponds to Case (I)(A)(1). In addition,

s3 <
µ11

µ11+µ23
s1 ⇔ θ4 > θ3. Thus, if xn ≤ θ3 < θ4, we have Case (I)(A)(1)(a)(i): xn+1 =

γ(xn). Otherwise, we have xn > θ3, and thus we have either Case (I)(A)(1)(a)(ii) or Case

(I)(A)(1)(b)(ii) due to the inequality s3 <
µ11

µ11+µ23
s1. Both cases imply xn+1 = s1 − s3.

Region c: In this region, we have s3 ≥ 1−(µ11+1)s1 and s3 ≥ µ11
µ11+µ23

s1, which imply

θ1 ≥ θ2 and θ3 ≥ θ4 respectively. In addition, as shown in Region a, if s1 > 1+(µ11+µ23−1)s3
µ11+1

,

then s3 <
µ11

µ11+µ23
s1. Thus, in this region we have s3 ≥ µ11

µ11+µ23
s1 ⇒ s1 ≤ 1+(µ11+µ23−1)s3

µ11+1
.

Both Cases (I) and (II) are possible in this region.

For Case (I), if xn < θ1 then, because of the inequalities s3 ≥ 1 − (µ11 + 1)s1 and

s1 ≤ 1+(µ11+µ23−1)s3
µ11+1

, we have Case (I)(B)(1)(a): xn+1 = η1. Otherwise, we have xn ≥

θ1 ≥ θ2, and thus this region corresponds to Case (I)(A)(1). If xn ≤ θ4 then, because of

the inequality θ3 ≥ θ4, we have Case (I)(A)(1)(a)(i): xn+1 = γ(xn). Otherwise, we have

xn > θ4. Since s3 ≥ µ11
µ11+µ23

s1, we have Case (I)(A)(1)(b)(i): xn+1 = η2.

For Case (II), if xn < θ1 then, because of the inequality s3 ≥ 1 − (µ11 + 1)s1, we
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have Case (II)(B)(1): xn+1 = η1. Otherwise, we have xn ≥ θ1 ≥ θ2, and thus this region

corresponds to Case (II)(A)(1). If xn ≤ θ4, thenwe have Case (II)(A)(1)(a): xn+1 =

γ(xn). Otherwise, we have xn > θ4, and thus we have Case (II)(A)(1)(b): xn+1 = η2.

Region d: In this region, we have s3 < 1− (µ11 +1)s1 and s3 < µ11
µ11+µ23

s1. The first

inequality implies θ2 > θ1, and the second inequality implies s1 > s3 and θ4 > θ3. Thus,

this region corresponds to Case (I). If xn < θ2, then we have either Case (I)(B)(2) due

to the inequality s3 < 1 − (µ11 + 1)s1 or Case (I)(A)(2). Both cases imply xn+1 = s1.

If θ2 ≤ xn ≤ θ3, then we have Case (I)(A)(1)(a)(i): xn+1 = γ(xn). Otherwise, we have

xn > θ3, and thus we have either Case (I)(A)(1)(a)(ii) or Case (I)(A)(1)(b)(ii) due to the

inequality s3 <
µ11

µ11+µ23
s1. Both cases imply xn+1 = s1 − s3.

Region e: In this region, we have s3 < 1 − (µ11 + 1)s1 and s3 ≥ µ11
µ11+µ23

s1, which

imply θ2 > θ1 and θ3 ≥ θ4 respectively. Both Cases (I) and (II) are possible in this region.

For Case (I), if xn < θ2, then we have either Case (I)(B)(2) due to the inequality

s3 < 1− (µ11+1)s1 or Case (I)(A)(2). Both cases imply xn+1 = s1. If θ2 ≤ xn ≤ θ4 then,

because of the inequality θ3 ≥ θ4, we have Case (I)(A)(1)(a)(i): xn+1 = γ(xn). Otherwise,

we have xn > θ4. Since s3 ≥ µ11
µ11+µ23

s1, we have Case (I)(A)(1)(b)(i): xn+1 = η2.

For Case (II), if xn < θ2, then we have either Case (II)(B)(2) due toinequality

s3 < 1 − (µ11 + 1)s1 or Case (II)(A)(2). Both cases imply xn+1 = s1. If θ2 ≤ xn ≤ θ4,

then we have Case (II)(A)(1)(a): xn+1 = γ(xn). Otherwise, we have xn > θ4, and thus

we have Case (II)(A)(1)(b): xn+1 = η2.
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A.2.2 Dynamics of a piecewise-linear function

We need the following lemma to determine the asymptotic behaviors of the three-station

U-line.

Lemma 5. For any ρ > 0, suppose xn+1 = g(xn) and g : [A,B] 
→ [A,B ] (0 ≤ A < B)

has the following form

g(x) =






Y, if x ∈ [A,X1);

Y + ρX1 − ρx, if x ∈ [X1,X2];

Y + ρX1 − ρX2, otherwise;

where Y , X1, and X2 are constants. The asymptotic behaviors of the system can be

summarized as follows.

(I) Y ≤ X1: The system converges to a fixed point Y .

(II) X1 < Y < (1 + ρ)X2 − ρX1: There are three cases:

(1) ρ < 1: The system converges to a fixed point Y+ρX11+ρ ;

(2) ρ = 1: The system converges to a period-2 orbit: x and Y + ρX1 − ρx, where

x depends on the initial point of the orbit;

(3) ρ > 1: The system converges to a period-2 orbit:

a. X1 < Y ≤ X2: Period-2 orbit: Y and (1 − ρ)Y + ρX1;

b. X2 < Y < X2 + (ρ− 1)(X2 −X1): Period-2 orbit: Y and Y +ρX1−ρX2;

c. X2 + (ρ− 1)(X2 −X1) ≤ Y < (1 + ρ)X2 − ρX1: Period-2 orbit: Y+ρX1−

ρX2 and ρ
2X2 − (ρ− 1)Y − ρ(ρ− 1)X1.
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(III) Y ≥ (1 + ρ)X2 − ρX1: The system converges to a fixed point Y + ρX1 − ρX2.

Proof. We first prove case (I). If Y ≤ X1, then for any initial point x ∈ [A,B] we have

g(x) ≤ Y ≤ X1. Thus, g(g(x)) = Y and the system stays at the fixed point Y . Similarly,

we can prove case (III) as follows. If Y ≥ (1 + ρ)X2 − ρX1, then for any initial point

x ∈ [A,B ] we have g(x) ≥ Y + ρX1 − ρX2 ≥ X2. Thus, g(g(x)) = Y + ρX1 − ρX2 and

the system stays at the fixed point Y + ρX1 − ρX2.

Now, we prove case (II). If X1 < Y < (ρ+1)X2− ρX1, there are three possible cases:

(1) ρ < 1, (2) ρ = 1, and (3) ρ > 1. We analyze each case as follows.

For case (1), we have ρ < 1. For any initial point x0 ∈ [A,B], we have |f(xn)− η0| ≤

ρn|x0 − η0|. Since ρ < 1, the system converges to the fixed point η0.

For case (2), we have ρ = 1. For any initial point x0 ∈ [A,B], there are three possible

cases:

a. If x0 < X1, then g(x0) = Y .

• If X1 < Y ≤ X2, then g(Y ) = Y +X1 − Y = X1. Thus, g(g(Y )) = Y , which

means the system converges to a period-2 orbit: Y and X1.

• If X2 < Y < 2X2 −X1, then g(Y ) = Y +X1 −X2. We have g(Y ) ∈ [X1,X2].

Thus, g(g(Y )) = Y +X1 − g(Y ) = X2, which implies g(g(g(Y ))) = Y +X1 −

X2 = g(Y ). The system converges to a period-2 orbit: Y +X1 −X2 and X2.

b. If x0 > X2, then g(x0) = Y + X1 − X2. Let Y � = Y + X1 − X2. We have

2X1 −X2 < Y � < X2.

• If 2X1 − X2 < Y � < X1, then g(Y �) = Y . We have g(Y �) ∈ [X1,X2]. Thus,

g(g(Y �)) = Y +X1− g(Y �) = X1, which implies g(g(g(Y �))) = Y +X1−X1 =
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Y = g(Y �). The system converges to a period-2 orbit: Y and X1.

• If X1 ≤ Y � < X2, then g(Y �) = Y + X1 − Y � = X2. Thus, g(g(Y �)) =

Y +X1 −X2 = Y �. The system converges to a period-2 orbit: Y � and X2.

c. If X1 ≤ x0 ≤ X2, then g(x0) = Y +X1 − x0.

• If X1 ≤ g(x0) ≤ X2, then g(g(x0)) = x0. The system converges to a period-2

orbit: x0 and Y +X1 − x0.

• If g(x0) < X1, then g(g(x0)) = Y and this reduces to case a.

• If g(x0) > X2, then g(g(x0)) = Y +X1 −X2 and this reduces to case b.

For case (3), we have ρ > 1. We first prove by contradictionthat for any initial

point x0 ∈ [A,B], such that x0 �= η0, the orbit under g contains at least one endpoint

Y or Y + ρX1 − ρX2. If not, then xn ∈ (X1,X2) for all n = 0, 1, 2, . . .. However, since

|xn − η0| = ρn|x0 − η0|, there exists a n� such that xn� �∈ (X1,X2). This contradicts our

assumption. Thus, any orbit under g contains at least one endpoint Y or Y +ρX1−ρX2.

As a result, we can focus our analysis on orbits starting from Y or Y +ρX1− ρX2. There

are three cases:

a. If X1 < Y ≤ X2, then Y < X2 + (ρ− 1)(X2 −X1)⇔ Y + ρX1 − ρX2 < X1, which

implies g(Y + ρX1− ρX2) = Y . Thus, we only need to analyze orbits starting from

Y . g(Y ) = (1−ρ)Y +ρX1 < X1, which implies g(g(Y )) = Y . Therefore, the system

converges to a period-2 orbit: Y and (1 − ρ)Y + ρX1.

b. If X2 < Y < X2+(ρ− 1)(X2−X1), then g(Y ) = Y + ρX1− ρX2 and g(Y + ρX1−

ρX2) = Y . Thus, the system converges to a period-2 orbit: Y and Y + ρX1− ρX2.
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c. If X2 + (ρ − 1)(X2 − X1) ≤ Y < (ρ + 1)X2 − ρX1, then Y > X2, which implies

g(Y ) = Y + ρX1 − ρX2. Thus, we only need to analyze orbits starting from Y +

ρX1 − ρX2. The inequalities X2 + (ρ− 1)(X2 −X1) ≤ Y < (ρ+ 1)X2 − ρX1 imply

X1 ≤ Y + ρX1 − ρX2 < X2, and so g(Y + ρX1 − ρX2) = Y + ρX1 − ρ(Y + ρX1 −

ρX2) = ρ
2X2 − (ρ − 1)Y − ρ(ρ − 1)X1 > X2. The last inequality is implied by

Y < (ρ+1)X2−ρX1. Thus, g(g(Y +ρX1−ρX2)) = Y +ρX1−ρX2. Therefore, the

system converges to a period-2 orbit: Y +ρX1−ρX2 and ρ2X2−(ρ−1)Y −ρ(ρ−1)X1.

Note that the function g in Lemma 5 represents a general form of the function f in

Lemma 4. In Appendix A.2, we use the properties of the function g described in Lemma

5 to determine the asymptotic behaviors of the three-station, two-worker system.

A.2.3 Asymptotic behaviors andthroughput

Lemma 6. If ϕ ≤ 1, the two-worker cellular bucket brigade on a three-station u-line has

a distinct asymptotic behavior in each of the following five regions.

Region 1: This region is defined by s1 >
1+(µ11+µ23−1)s3

µ11+1
. The system converges to a fixed

point x∗ = s1−s3. At the fixed point, W1 is constantly blocked at location 0 and W2

is constantly halted at location 1. The average throughput is T =
�
s1−s3
v11
+ s3
v21

�−1
.

Region 2: This region is defined by s1 <
1+(µ11+µ23−1)s3

µ11+1
and s1 >

1
µ11+1

+µ11µ13+µ13µ23−µ13−µ21(µ11+1)(µ13+µ21)
·

s3. The system converges to a fixed point x
∗ = η1. At the fixed point, W1 is con-

stantly blocked at location 0. The average throughput is T =
�
η1
v11
+ s1−η1v21

�−1
.
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Region 3: This region is defined by s3 >
1

µ13+1
+ µ11µ13+µ11µ21−µ11−µ23(µ13+1)(µ11+µ23)

· s1. The system

converges to a fixed point x∗ = η2. At the fixed point, W2 is constantly blocked at

location s1 + s2. The average throughput is T =
�
η2
v11
+ s3−s1+η2v13

�−1
.

Region 4: This region is defined by s3 <
1−(µ11+1)s1
µ13+1

. The system converges to a fixed

point x∗ = s1. At the fixed point, W1 is constantly halted at location s1. The average

throughput is T =
�
1−s1−s3
v22

�−1
.

Region 5: This region is defined by s1 <
1

µ11+1
+ µ11µ13+µ13µ23−µ13−µ21(µ11+1)(µ13+µ21)

· s3, s3 < 1
µ13+1

+

µ11µ13+µ11µ21−µ11−µ23
(µ13+1)(µ11+µ23)

· s1, and s3 > 1−(µ11+1)s1
µ13+1

. If ϕ < 1, the system converges to

a fixed point η0. If ϕ = 1, the system converges to a period-2 orbit: x and γ(x),

where x depends on the initial locations of the workers. Neither blocking nor halting

occurs in this region. The average throughput is T =
�
η0
v11
+ s3−s1+η0v13

�−1
.

Proof. We partition the entire feasible work-content area into five regions shown in Figure

4.4(a). We determine the asymptotic behavior and throughput of the system in each region

separately.

Region 1: This region is identical to Region a in Figure A.4. Lemma 4 shows that

the system always converges to the fixed point x∗ = s1 − s3. When the system operates

on the fixed point, according to the proof of Lemma 4 (see Region a), W1 is constantly

blocked at location 0 and W2 is constantly halted at location 1. The average throughput

is T =
�
s3
v21
+ s1−s3v11

�−1
.

Region 2: This region falls in Regions b and c in Figure A.4. Since

s1 >
1

µ11+1
+ µ11µ13+µ13µ23−µ13−µ21(µ11+1)(µ13+µ21)

·s3 ⇔ η1 < θ1, according to the function f in Regions b

and c as well as Lemma 5, the system converges to the fixed point x∗ = η1. When the sys-

93



tem operates on the fixed point, according to the proof of Lemma 4 (see Regions b and c),

W1 is constantly blocked at location 0. The average throughput is T =
�
s1−η1
v21
+ η1
v11

�−1
.

Region 3: This region falls in Regions c and e in Figure A.4. Since

s3 >
1

µ13+1
+ µ11µ13+µ11µ21−µ11−µ23(µ13+1)(µ11+µ23)

· s1 ⇔ η2 > θ4, according to the function f in Regions

c and e as well as Lemma 5, the system converges to the fixed point x∗ = η2. When

the system operates on the fixed point, according to the proof of Lemma 4 (see Regions

c and e), W2 is constantly blocked at location s1 + s2. The average throughput is T =
�
s3−s1+η2
v13

+ η2
v11

�−1
.

Region 4: Since s3 <
1−(µ11+1)s1
µ13+1

⇔ s3
v13
+ s1
v11
< 1−s1−s3

v22
, W1 is constantly halted at

location s1. The system converges to the fixed point x
∗ = s1. The average throughput is

T =
�
1−s1−s3
v22

�−1
.

Region 5: This region falls in Regions b, c, d, and e in Figure A.4. According to the

function f in Regions b, c, d, and e as well as Lemma 5, we have (1) if ϕ < 1, the system

converges to a fixed point η0, and (2) if ϕ = 1, the system converges to a period-2 orbit:

x and γ(x), where x depends on the initial locations of the workers. Neither blocking nor

halting occurs in this region. The average throughput is T =
�
η0
v11
+ s3−s1+η0v13

�−1
.

According to the proof of Lemma 6, the asymptotic behaviors in Regions 1 to 4 are

independent of ϕ. Thus, if ϕ > 1, the asymptotic behaviors and the expressions of the

throughput remain the same in all regions except for Region 5.

Lemma 7. If ϕ > 1, Region 5 can be partitioned into the following sevensubregions.

Each subregion corresponds to a distinct period-2 orbit.

Region 5a: This subregion is defined by s3 > 1− (µ11 + 1)s1,

s1 >
1

µ11+1
·
�
1 +
�
(µ11+µ23)(µ13−µ11−µ23)
µ13+µ21−µ11−µ23 − 1

�
s3

�
, and
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s1 >
µ13+µ21−µ11−µ23+(µ11µ13+µ13µ23+µ11+µ23−µ13−µ21)s3

µ11µ13+µ11µ21+µ13+µ21−µ11−µ23 . The system converges to a

period-2 orbit: η1 and γ(η1). At the period-2 orbit, W1 is blocked at location 0 for

every other hand-off. The average throughput is

T =
��
s1 − η1+γ(η1)2

��
1
v21
+ 1
v23

�
+ 1−s1−s3v22

�−1
.

Region 5b: This subregion is defined by s3 >
µ11

µ11+µ23
s1, s3 >

µ11(µ13+µ21)
µ13(µ11+µ23)

s1, and s3 >

1
µ13+1

+ µ11(µ13+µ21)−(µ11+1)(µ11+µ23)(µ13+1)(µ11+µ23)
s1. The system converges to a period-2 orbit: η2

and γ(η2). At the period-2 orbit, W2 is blocked at location s1 + s2 for every other

hand-off. The average throughput is T =
�
η2+γ(η2)
2v11

+ 2s3−2s1+η2+γ(η2)2v13

�−1
.

Region 5c: This subregion is defined by s3 < 1− (µ11 + 1)s1, s3 < 1−s1
µ13+1

, and

s1 <
1+(µ11+µ23−µ13−1)s3

µ11+1
. The system converges to a period-2 orbit: s1 and γ(s1).

At the period-2 orbit, W1 is halted at location s1 for every other hand-off. The

average throughput is T =
�
s1−γ(s1)
2 ·

�
1
v21
+ 1
v23

�
+ 1−s1−s3v22

�−1
.

Region 5d: This subregion is defined by s3 <
µ11

µ11+µ23
s1, s3 > 1 − (µ11 + 1)s1, and

s1 <
1

µ11+1
·
�
1 +
�
(µ11+µ23)(µ13−µ11−µ23)
µ13+µ21−µ11−µ23 − 1

�
s3

�
. The system converges to a period-

2 orbit: η1 and s1 − s3. At the period-2 orbit, W1 is blocked at location 0 for every

other hand-off, and W2 is halted at location 1 for every other hand-off. The average

throughput is T =
�
s1−s3+η1
2v11

+ s3−s1+η12v13
+ s3
2v21

�−1
.

Region 5e: This subregion is defined by s3 >
µ11

µ11+µ23
s1, s3 > 1− (µ11 + 1)s1,

s1 <
µ13+µ21−µ11−µ23+(µ11µ13+µ13µ23+µ11+µ23−µ13−µ21)s3

µ11µ13+µ11µ21+µ13+µ21−µ11−µ23 , and s3 <
µ11(µ13+µ21)
µ13(µ11+µ23)

s1.

The system converges to a period-2 orbit: η1 and η2. At the period-2 orbit, W1 is

blocked at location 0 for every other hand-off, and W2 is blocked at location s1+s2 for

every other hand-off. The average throughput is T =
�
η1+η2
2v11

+ s3−s1+η12v13
+ s1−η22v21

�−1
.
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Region 5f: This subregion is definedby s3 >
µ11

µ11+µ23
s1, s3 < 1 − (µ11 + 1)s1, s3 <

1
µ13+1

+ µ11(µ13+µ21)−(µ11+1)(µ11+µ23)(µ13+1)(µ11+µ23)
s1, and s3 >

1−s1
µ13+1

. The system converges to a

period-2 orbit: s1 and η2. At the period-2 orbit, W1 is halted at location s1 for every

other hand-off, and W2 is blocked at location s1 + s2 for every other hand-off. The

average throughput is T =
�
η2
2v11
+ s3
2v13
+ s1−η22v21

+ 1−s1−s32v22

�−1
.

Region 5g: This subregion is defined by s3 <
µ11

µ11+µ23
s1, s3 < 1 − (µ11 + 1)s1, and

s1 >
1+(µ11+µ23−µ13−1)s3

µ11+1
. The system converges to a period-2 orbit: s1 and s1− s3.

At the period-2 orbit, W1 is first blocked at location 0 and then halted at location

s1 for every other hand-off, and W2 is halted at location 1 for every other hand-off.

The average throughput is T =
�
s1−s3
2v11

+ s3
2v13
+ s3
2v21
+ 1−s1−s32v22

�−1
.

Proof. Region 5 falls in Regions b, c, d, and e in Figure A.4. We partition Region 5

into seven subregions shown in Figure 4.5(a). We determine the asymptotic behavior and

throughput of the system in each subregion separately.

Region 5a: This subregion falls in Regions b and c in Figure A.4. According to the

function f in Regions b and c as well as Lemma 5, the system converges to a period-2 or-

bit: η1 and γ(η1). When the system operates on the period-2 orbit, according to the proof

of Lemma 4 (see Regions b and c),W1 is blocked at location 0 for every other hand-off. The

average throughput is T = 2
�
s1−η1
v21
+ 1−s1−s3v22

+ s1−γ(η1)v23
+ s1−γ(η1)v21

+ 1−s1−s3v22
+ s1−η1v23

�−1
=

��
s1 − η1+γ(η1)2

��
1
v21
+ 1
v23

�
+ 1−s1−s3v22

�−1
.

Region 5b: This subregion falls in Regions c and e in Figure A.4. According to the

function f in Regions c and e as well as Lemma 5, the system converges to a period-2

orbit: η2 and γ(η2). When the system operates on the period-2 orbit, according to the

proof of Lemma 4 (see Regions c and e), W2 is blocked at location s1+ s2 for every other
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hand-off. The average throughput is T = 2
�
s3−s1+η2
v13

+ γ(η2)v11
+ s3−s1+γ(η2)v13

+ η2
v11

�−1
=

�
η2+γ(η2)
2v11

+ 2s3−2s1+η2+γ(η2)2v13

�−1
.

Region 5c: This subregion falls in Regions d and e in Figure A.4. According to the

function f in Regions d and e as well as Lemma 5, the system converges to a period-2 orbit:

s1 and γ(s1). When the system operates on the period-2 orbit, according to the proof

of Lemma 4 (see Regions dand e), W1 is halted at location s1 for every other hand-

off. The average throughput is T = 2
�
1−s1−s3
v22

+ s1−γ(s1)v23
+ s1−γ(s1)v21

+ 1−s1−s3v22

�−1
=

�
s1−γ(s1)
2 ·

�
1
v21
+ 1
v23

�
+ 1−s1−s3v22

�−1
.

Region 5d: This subregion falls in Region b in Figure A.4. According to the

function f in Region b as well as Lemma 5, the system converges to a period-2 or-

bit: η1 and s1 − s3. When the system operates on the period-2 orbit, according to the

proof of Lemma 4 (see Region b), W1 is blocked at location 0 for every other hand-

off, and W2 is halted at location 1 for every other hand-off. The average throughput is

T = 2
�
s3
v21
+ η1
v11
+ s3−s1+η1v13

+ s1−s3v11

�−1
=
�
s1−s3+η1
2v11

+ s3−s1+η12v13
+ s3
2v21

�−1
.

Region 5e: This subregion falls in Region c in Figure A.4. According to the func-

tion f in Regionc as well as Lemma 5, the system converges to a period-2 orbit: η1

and η2. When the system operates on the period-2 orbit, accordingtothe proof of

Lemma 4(see Region c), W1 is blocked at location 0 for every other hand-off, and

W2 is blocked at location s1 + s2 for every other hand-off. The average throughput is

T = 2
�
s3−s1+η1
v13

+ η2
v11
+ s1−η2v21

+ η1
v11

�−1
=
�
η1+η2
2v11

+ s3−s1+η12v13
+ s1−η22v21

�−1
.

Region 5f: This subregion falls in Region e in Figure A.4. According to the func-

tion f in Regione as well as Lemma 5, the system converges to a period-2 orbit: s1

and η2. When the system operates on the period-2 orbit, accordingtothe proof of
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Lemma 4 (see Region e), W1 is halted at location s1 for every other hand-off, and W2

is blocked at location s1 + s2 for every other hand-off. The average throughput is T =

2
�
s3
v13
+ η2
v11
+ s1−η2v21

+ 1−s1−s3v22

�−1
=
�
η2
2v11
+ s3
2v13
+ s1−η22v21

+ 1−s1−s32v22

�−1
.

Region 5g: This subregion falls in Region d in Figure A.4. According to the function

f in Region d as well as Lemma 5, the system converges to a period-2 orbit: s1 and s1−s3.

When the system operates on the period-2 orbit, according to the proof of Lemma 4 (see

Region d), W1 is first blocked at location 0 and then halted at location s1 for every other

hand-off, and W2 is halted at location 1 for every other hand-off. The average throughput

is T = 2
�
s3
v13
+ s1−s3v11

+ s3
v21
+ 1−s1−s3v22

�−1
=
�
s1−s3
2v11

+ s3
2v13
+ s3
2v21
+ 1−s1−s32v22

�−1
.

A.3 Technical details for the M-station case in

Chapter 4

In the M -station U-line, a hand-off position falls in the range [x, x], where x = s1 − s3

and x = s1. Recall that after a hand-off, W1 first works on stage 3 before he works on

stage 1 and W2 first works on stage 1, and then works on stages 2 and 3 (see Figure 4.6).

Note that W1 can only be blocked at the start of a station in stage 1 and can only be

halted at location s1, and W2 can only be blocked at the start of a station in stage 3 and

can only be halted at location 1. Let Lj(k) denote the location of the start of Sj(k) on

the conceptual line, for k = 1, . . . ,mj and j = 1, 2, 3.

Consider Wi starts from a hand-off position x. For convenience, we say Wi is blocked

at Lj(k) from x if he is blocked at Lj(k) before the next hand-off. Similarly, we say Wi

is halted at location L from x if he is halted at location L before the next hand-off.
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We have the following properties:

Property 1. For any x and x� in [x, x], if Wi is blocked at Lj(k) from both x and x�,

then f (x) = f(x�).

Property 2. For any x and x� in [x, x], if Wi is halted at location L from both x and x�,

then f (x) = f(x�).

Property3. For any x and x� in [x, x] such that x > x�, if W1 is blocked at L1(k) from

x then W1 is blocked at L1(k) from x
�, and if W1 is halted at location s1 from x then W1

is halted at location s1 from x
�.

Property4. For any x and x� in [x, x] such that x < x�, if W2 is blocked at L3(k) from

x then W2 is blocked at L3(k) from x
�, and if W2 is halted at location 1 from x then W2

is halted at location 1 from x�.

A.3.1 Characterizing the function f

From the above properties, we have the following results.

Lemma 8. There exists a constant c1 such that W1 is blocked or halted from any x ∈

[x, c1), but he is neither blocked nor halted from any x ∈ [c1, x).

Proof. The lemma claims that W1 is blocked or halted from any x < c1. We can find c1

in each of the following three cases: (1) If W1 is neither blocked nor halted from x, then

according to Property 3, W1 is neither blocked nor halted from any x ∈ [x, x]. Thus, we

have c1 = x. (2) If W1 is blocked or halted from x, then according to Property 3, W1 is

blocked or halted from any x ∈ [x, x]. Thus, we have c1 = x. (3) Otherwise, according
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to Property 3, there exists a hand-off position c1 such that W1 is blocked or halted from

any x ∈ [x, c1), but he is neither blocked nor halted from any x ∈ [c1, x]. The three cases

above imply that W1 is blocked or halted from any x ∈ [x, c1), but he is neither blocked

nor halted from any x ∈ [c1, x).

Using Property 4, we can prove the following lemma similarly.

Lemma 9. There exists a constant c2 such that W2 is blocked or halted from any x ∈

(c2, x], but he is neither blocked nor halted from any x ∈ (x, c2].

Proof. We then prove part (II), which claims thatW2 is blocked or halted from any x > c2.

We can find c2 in each of the following three cases: (1) If W2 is blocked or halted from x,

then let c2 = x. According to Property 4, W2 is blocked or halted from any x ∈ [x, x]. (2)

If W2 is neither blocked nor halted from x, then let c2 = x. According to Property 4, W2

is neither blocked nor halted from any x ∈ [x, x]. (3) Otherwise, according to Property 4,

there exists a hand-off position c�2 such that W2 is blocked or halted from any x ∈ (c�2, x],

but he is neither blocked nor halted from any x ∈ [x, c�2]. Let c2 = c�2. Thus, W2 is blocked

or halted from any x ∈ [c2, x], but he is neither blocked nor halted from any x ∈ (x, c2].

As a result in all three cases W2 is blocked or halted from any x ∈ (c2, x], but he is neither

blocked nor halted from any x ∈ (x, c2].

Together with Properties 1 and 2, Lemmas 8 and 9 imply the following result.

Corollary 2. There exist constants Y1 and Y2 such that for any x ∈ [x, c1), f(x) = Y1,

and for any x ∈ (c2, x], f(x) = Y2.

Lemma 10. If c1 < c2 then f is strictly decreasing in [c1, c2].
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Proof. According to Lemmas 8 and 9, both workers are neither blocked nor halted from

any x ∈ [c1, c2]. For any hand-off positions χ1 and χ2 such that c1 ≤ χ1 < χ2 ≤ c2, we

will show that f(χ1) > f (χ2). There are two cases: (1) f(χ2) ≥ 0; (2) f(χ2) < 0.

For case (1), it is sufficient to prove that after a hand-off at χ1, whenW1 works in stage

1 and arrives at position f(χ2) he has not met W2. For any hand-off position x ∈ [x, x],

let t1(x) denote the total time for W1 to start from x, finish his item at the end of stage

3, work on a new item in stage 1, and reach position f(χ2). Let t2(x) denote the total

time for W2 to start from max{0, x}, work on his item in stages 1, 2, and 3, and reach

position f(χ2). Since χ1 < χ2, we have t1(χ1) < t1(χ2) and t2(χ1) ≥ t2(χ2). In addition,

we know that t1(χ2) = t2(χ2). Thus, we have t1(χ1) < t1(χ2) = t2(χ2) ≤ t2(χ1), which

imply f(χ1) > f (χ2).

For case (2), it is sufficient to prove that after a hand-offat position χ1, when W1

arrives at location 1, W2 has not reached position f(χ2). For any hand-off position

x ∈ [x, x], let t1(x) be the total time for W1 to start from x and finish his item at the

end of stage 3 (reach location 1). Let t2(x) denote the total time for W2 to start from

max{0, x}, work on his item in stages 1, 2, and 3, and reach position f(χ2). Since χ1 < χ2,

we have t1(χ1) < t1(χ2) and t2(χ1) ≥ t2(χ2). In addition, we know that t1(χ2) = t2(χ2).

Thus, we have t1(χ1) < t1(χ2) = t2(χ2) ≤ t2(χ1), which imply f(χ1) > f (χ2).

Lemma 11. f is continuous.

Proof. According to the proofs of Lemmas 8 and 9, W1 is almost blocked or halted from

c1 and W2 is almost blocked or halted from c2. Together with Corollary 2, we have

f(c1) = Y1 and f(c2) = Y2. Thus, it is sufficient to prove that f is continuous in [c1, c2].

For convenience, define vi,max = maxj,k vij (k) and vi,min = minj,k vij(k) for i = 1, 2.

101



Consider any hand-off positions χ1 and χ2, where c1 ≤ χ1 < χ2 ≤ c2 such that χ2−χ1 < δ

for a small δ. There are two cases: (1) f(χ2) ≥ 0; (2) f(χ2) < 0. For each case, we adopt

the same definitions of t1(x) and t2(x) as those in the proof of Lemma 10.

For case (1), the proof of Lemma 10 shows that after a hand-off at position χ1, when

W1 works in stage 1 and arrives at position f(χ2), he has not met W2. Meanwhile, W2

reaches the position h2 ≤ f(χ2) + v2,max · (t2(χ1)− t1(χ1)). Thus, we have f(χ1) < h2.

For case (2), the proof of Lemma 10 shows that after a hand-off at position χ1, when

W1 arrives at location 1, W2 has not reached position f(χ2). Instead, W2 reaches the

position h2 ≤ f(χ2) + v2,max · (t2(χ1)− t1(χ1)). Thus, we have f(χ1) ≤ h2.

Combining cases (1) and (2), we have f(χ1) ≤ h2 ≤ f(χ2)+ v2,max · (t2(χ1)− t1(χ1)).

Since t2(χ1)− t1(χ1) = (t2(χ1)− t2(χ2)) +(t1(χ2)− t1(χ1)) ≤ χ2−χ1
v2,min

+ χ2−χ1v1,min
= (χ2−χ1) ·

�
1

v1,min
+ 1
v2,min

�
<
�

1
v1,min

+ 1
v2,min

�
·δ, we have f(χ1)−f(χ2) < v2,max ·

�
1

v1,min
+ 1
v2,min

�
·δ.

Thus, for any ε > 0, there exists δ > 0 such that for any hand-off positions χ1 and χ2, if

χ2 − χ1 < δ then f(χ1)− f(χ2) < ε. Therefore, f(x) is continuous in [c1, c2].

For convenience, we say a hand-off position x is an interior hand-off position if the

locations corresponding to x on the U-line fall in the interior of some stations.

Lemma 12. f is piecewise linear.

Proof. According to Corollary 2, it is sufficient to prove that f is piecewise linear in [c1, c2].

Consider any hand-off position χ ∈ (c1, c2), such that both χ and f(χ) are interior hand-off

positions. We will show that f is linear in the neighborhood of such χ.

For convenience, define u1 as the velocity of W1 at position χ when he works in stage

3. If f(χ) ≥ 0, then define v1 as the velocity of W1 at position f(χ) when he works in
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stage 1. If χ ≥ 0, then define v2 as the velocity of W2 at position χ when he works in

stage 1. We also define u2 as the velocity of W2 at position f(χ) when he works in stage

3.

For any x = χ ± ∆x, where ∆x is a small positive number, we have four cases: (1)

χ > 0 and f(χ) > 0; (2) χ > 0 and f(χ) < 0; (3) χ < 0 and f(χ) > 0; (4) χ < 0 and

f(χ) < 0. For case (1), we have f(x) = f(χ) ∓ v1u2
v1+u2

·
�
1
u1
+ 1
v2

�
· ∆x. For case (2), we

have f(x) = f (χ)∓u2 ·
�
1
u1
+ 1
v2

�
·∆x. For case (3), we have f(x) = f(χ)∓ v1u2

v1+u2
· 1u1 ·∆x.

For case (4), we have f(x) = f(χ)∓ u2u1 ·∆x. Thus, f is linear in the neighborhood of χ,

and so f is piecewise linear in [c1, c2].

The following corollary summarizes the above results.

Corollary 3. f is continuous, non-increasing, and has the following form

f(x) =






Y1, if x ∈ [x, c1);

F (x), if x ∈ [c1, c2];

Y2, otherwise;

where F is strictly decreasing and piecewise linear.

A.3.2 Asymptotic behaviors

Corollary 3 implies the following lemma.

Lemma 13. There exists a unique fixed point and there are no periodic orbits of period

greater than 2 in the system.

Proof. According to Brouwer’s fixed point theorem, there exists a fixed point because f

is continuous. Since f is also non-increasing, the fixed point is unique.
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We then prove by contradiction that there are no periodic orbits of period greater than

2. Suppose there exists a periodic orbit of period π > 2: x1, x2, . . . , xπ. For convenience,

define X = {x1, x2, . . . , xπ}. First note that for any xi ∈ X, we have xi �= x∗. Without loss

of generality, assume that x1 < x
∗. Since f is non-increasing, for any xi ∈ X, if xi < x∗,

then f(xi) > x
∗, and if xi > x

∗, then f(xi) < x
∗. As a result, we have f2n−1(x1) > x

∗

and f2n(x1) < x
∗, for n = 1, 2, . . .. Thus, π is even because fπ(x1) = x1 < x∗.

Since f2(·) is non-decreasing, if x1 < x3 then we have x1 < x3 = f2(x1) < x5 =

f2(x3) < · · · < x1 = f2(xπ−1), which is a contradiction; otherwise, we have x1 > x3 =

f2(x1) > x5 = f
2(x3) > · · · > x1 = f2(xπ−1), which is also a contradiction. Therefore,

there does not exist a periodic orbit of period π > 2.

The following lemma provides a sufficient condition for the fixed point x∗ to be a global

attractor. This condition can be tested easily. Let Pj(k) denote the horizontal position

of Lj(k), for k = 1, . . . ,mj and j = 1, 2, 3. For convenience, define P1(m1 + 1) = s1 and

P3(m3 + 1) = x.

Lemma 14. The system converges to a fixed point x∗ if for any pair of interior hand-off

positions x and f(x), one of the following conditions is satisfied:

1. x > 0, f (x) > 0, where x ∈ (P1(k1),P1(k1 + 1))
�
(P3(k2 + 1),P3(k2)) and f(x) ∈

(P1(k3), P1(k3 + 1))
�
(P3(k4 + 1), P3(k4)), and

1

v11(k3)
− 1

v13(k2)
>

1

v21(k1)
− 1

v23(k4)
.

2. x > 0, f (x) < 0, where x ∈ (P1(k1),P1(k1 + 1))
�
(P3(k2 + 1),P3(k2)) and f(x) ∈

(P3(k4 + 1), P3(k4)), and

− 1

v13(k2)
>

1

v21(k1)
− 1

v23(k4)
.
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3. x < 0, f(x) > 0, where x ∈ (P3(k2 + 1),P3(k2)) and f(x) ∈ (P1(k3), P1(k3 +

1))
�
(P3(k4 + 1), P3(k4)), and

1

v11(k3)
− 1

v13(k2)
> − 1

v23(k4)
.

4. x < 0, f(x) < 0, where x ∈ (P3(k2 + 1), P3(k2)) and f(x) ∈ (P3(k4 + 1), P3(k4)),

and

− 1

v13(k2)
> − 1

v23(k4)
.

Proof. According to the proof of Lemma 12, the four conditions in Lemma 14 ensure that

the absolute value of the derivative of f , where f is differentiable, is smaller than 1. Let

ρ ∈ [0, 1) denote the largest absolute value of the slope of f . For any x ∈ [x, x], we have

|f (x)− f(x∗)| ≤ ρ|x− x∗|. Since f (x∗) = x∗, we have |fn(x)− x∗| ≤ ρn|x− x∗|, and thus

limn→∞ f
n(x) = x∗. Therefore, the system converges to the fixed point.

If s1 ≥ s3, then both interior hand-off positions x and f(x) are positive. Lemma 14

reduces to the following result.

Corollary 4. If s1 ≥ s3, then the system converges to a fixed point x∗ if for any pair of

interior hand-off positions x and f (x), where x ∈ (P1(k1), P1(k1+1))
�
(P3(k2+1), P3(k2))

and f(x) ∈ (P1(k3), P1(k3 + 1))
�
(P3(k4 + 1),P3(k4)), the following condition holds:

1

v11(k3)
− 1

v13(k2)
>

1

v21(k1)
− 1

v23(k4)
.

The following lemma gives a necessary and sufficient condition for the fixed point to

be a global attractor. It is expensive to check this condition as we do not know the exact

form of the function f .
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Lemma 15. The system converges to a fixed point x∗ if and only if limn→∞ f
n(ci) = x

∗

for i = 1, 2.

Proof. If the system converges to x∗, then limn→∞ f
n(ci) = x

∗, i = 1, 2. Thus, we

only need to show the reverse: If limn→∞ fn(ci) = x∗ for i = 1, 2, then for any x ∈

[x, x], limn→∞ fn(x) = x∗.

For any x ∈ [x, c1) we have f(x) = f(c1), and thus limn→∞ fn(x) = limn→∞ fn(c1) =

x∗. Similarly, for any x ∈ (c2, x] we have limn→∞ fn(x) = limn→∞ fn(c2) = x∗. For

n� = 1, 2, 3, . . ., let I2n�−1 denote the interval [f
2n�−1(c2), f 2n

�−1(c1)] and let I2n� denote the

interval [f2n
�
(c1), f

2n�(c2)]. Since f is non-increasing and continuous, for any x ∈ [c1, c2]

we have fn(x) ∈ In. Thus, for any x ∈ [c1, c2], limn→∞ fn(x) ∈ limn→∞ In = [x∗, x∗], and

so limn→∞ f
n(x) = x∗.

In the following sections, we provide the algorithms to compute the points c1 and c2,

the fixed point x∗, and the throughput on x∗.

A.3.3 Computing the fixedpoint andthroughput

Algorithmic computationof c1 and c2

Let tij(k) be the time for Wi to finish the work on Sj(k): tij (k) = s
k
j /vij(k).

Computation of c1:

According to Lemma 8, if W1 is neither blocked nor halted from x then c1 = x. If W1

is blocked or halted from x then c1 = x. Otherwise, we compute c1 as follows.

Recall from Lemma 8 that W1 is blocked or halted from all x ∈ [x, c1) but is neither

blocked nor halted from all x ∈ [c1, x]. We can find an index q1 such that W1 is blocked or
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halted from the end of S3(q1) (that is, point P3(q1+1)), but is neither blocked nor halted

from the start of S3(q1) (that is, point P3(q1)). Thus, we have P3(q1 + 1) < c1 ≤ P3(q1).

There are three possible cases: (1) If s1 < s3 and W1 is neither blocked nor halted

from 0 then we have c1 ≤ 0. (2) If s1 < s3 and W1 is blocked or halted from 0 then we

have c1 > 0. (3) If s1 ≥ s3 then we have c1 > x ≥ 0. For cases (2) and (3), since c1 > 0,

we can find an index p1 such that the horizontal position c1 corresponds to a location in

station S1(p1) (that is, P1(p1) < c1 ≤ P1(p1 + 1)); but there is no such an index for case

(1).

For case (1), we have two scenarios.

• If W1 is halted at location s1 from P3(q1 + 1), then W1 is almost halted at s1 from

c1: After a hand-off at c1, W1 arrives at location s1 at the same time as W2 reaches

location s1 + s2. We have

c1 − P3(q1 + 1)
v13(q1)

+

m3�

k=q1+1

t13(k) +

m1�

k=1

t11(k) =

m1�

k=1

t21(k) +

m2�

k=1

t22(k)

⇒ c1 = P3(q1 + 1) + v13(q1) ·




m1�

k=1

t21(k) +

m2�

k=1

t22(k)−
m3�

k=q1+1

t13(k)−
m1�

k=1

t11(k)



 .

• If W1 is not halted at location s1 from P3(q1+1), then let S1(r1) be the last station

such that W1 is blocked at L1(r1) from P3(q1 + 1). W1 is almost blocked at L1(r1)

from c1: After a hand-off at c1, W1 arrives at location L1(r1) at the same time as

W2 reaches location L1(r1 + 1). We have

c1 − P3(q1 + 1)
v13(q1)

+

m3�

k=q1+1

t13(k) +

r1−1�

k=1

t11(k) =

r1�

k=1

t21(k)

⇒ c1 = P3(q1 + 1) + v13(q1) ·




r1�

k=1

t21(k)−
m3�

k=q1+1

t13(k)−
r1−1�

k=1

t11(k)



 .
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For cases (2) and (3), we also have two scenarios.

• If W1 is halted at location s1 from P3(q1 + 1), then W1 is almost halted at s1 from

c1: After a hand-off at c1, W1 arrives at location s1 at the same time as W2 reaches

location s1 + s2. We have

c1 − P3(q1 + 1)
v13(q1)

+

m3�

k=q1+1

t13(k) +

m1�

k=1

t11(k)

=
P1(p1 + 1) − c1
v21(p1)

+

m1�

k=p1+1

t21(k) +

m2�

k=1

t22(k)

⇒ c1 =

�
1

v13(q1)
+

1

v21(p1)

�−1
·
�
P3(q1 + 1)

v13(q1)
+
P1(p1 + 1)

v21(p1)
+

m1�

k=p1+1

t21(k)

+

m2�

k=1

t22(k)−
m3�

k=q1+1

t13(k)−
m1�

k=1

t11(k)

�
.

• If W1 is not halted at location s1 from P3(q1+1), then let S1(r1) be the last station

such that W1 is blocked at L1(r1) from P3(q1 + 1). W1 is almost blocked at L1(r1)

from c1: After a hand-off at c1, W1 arrives at location L1(r1) at the same time as

W2 reaches location L1(r1 + 1). We have

c1 − P3(q1 + 1)
v13(q1)

+

m3�

k=q1+1

t13(k) +

r1−1�

k=1

t11(k) =
P1(p1 + 1) − c1
v21(p1)

+

r1�

k=p1+1

t21(k)

⇒ c1 =

�
1

v13(q1)
+

1

v21(p1)

�−1
·
�
P3(q1 + 1)

v13(q1)
+
P1(p1 + 1)

v21(p1)
+

r1�

k=p1+1

t21(k)

−
m3�

k=q1+1

t13(k)−
r1−1�

k=1

t11(k)

�
.

Computation of c2:

We compute c2 in a similar way. According to Lemma 9, if W2 is blocked or halted

from x then c2 = x. If W2 is neither blocked nor halted from x then c2 = x. Otherwise,

we compute c2 as follows.
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Recall from Lemma 9 that W2 is blocked or halted from all x ∈ (c2, x] but is neither

blocked nor halted from all x ∈ [x, c2]. Thus, we can find an index q2 such that W2 is

blocked or halted from the start of S3(q2) (that is, point P3(q2)), but is neither blocked

nor halted from the end of S3(q2) (that is, point P3(q2 +1)). Thus, we have P3(q2 +1) ≤

c2 < P3(q2).

There are three possible cases: (1) If s1 < s3 and W2 is blocked from P1(1) then we

have c2 < 0. (2) If s1 < s3 and W2 is not blocked from P1(1) then we have c2 ≥ 0. (3)

If s1 ≥ s3 then we have c2 > x ≥ 0. For cases (2) and (3), since c2 ≥ 0, we can find an

index p2 such that the horizontal position c2 corresponds to a location in station S1(p2)

(that is, P1(p2) ≤ c2 < P1(p2 + 1)); but there is no such an index for case (1).

For case (1), W2 is never halted. Let S3(r2) be the last station such that W2 is blocked

at L3(r2) from P3(q2). W2 is almost blocked at L3(r2) from c2: After a hand-off at c2, W2

arrives at location L3(r2) at the same time as W2 reaches location L3(r2 + 1). We have

c2 − P3(q2 + 1)
v13(q2)

+

r2�

k=q2+1

t13(k) =

m1�

k=1

t21(k) +

m2�

k=1

t22(k) +

r2−1�

k=1

t23(k)

⇒ c2 = P3(q2 + 1) + v13(q2) ·




m1�

k=1

t21(k) +

m2�

k=1

t22(k) +

r2−1�

k=1

t23(k)−
r2�

k=q2+1

t13(k)



 .

For cases (2) and (3), we have two scenarios.

• If W2 is halted at location 1 from P3(q2), then W2 is almost halted at location c2:

After a hand-off at c2, W2 arrives at location 1 at the same time as W1 reaches
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location s1 − s3. Suppose x = s1 − s3 ∈ [P1(r0), P1(r0 + 1)). We have

c2 − P3(q2 + 1)
v13(q2)

+

m3�

k=q2+1

t13(k) +

r0−1�

k=1

t11(k) +
x− P1(r0)
v11(r0)

=
P1(p2 +1) − c2
v21(p2)

+

m1�

k=p2+1

t21(k) +

m2�

k=1

t22(k) +

m3�

k=1

t23(k)

⇒ c2 =

�
1

v13(q2)
+

1

v21(p2)

�−1
·
�
P3(q2 + 1)

v13(q2)
+
P1(p2 + 1)

v21(p2)

+

m1�

k=p2+1

t21(k) +

m2�

k=1

t22(k) +

m3�

k=1

t23(k)

−
m3�

k=q2+1

t13(k)−
r0−1�

k=1

t11(k)−
x− P1(r0)
v11(r0)

�
.

• If W2 is not halted at location 1 from P3(q2), then let S3(r2) be the last station

such that W2 is blocked at L3(r2) from P3(q2). W2 is almost blocked at L3(r2) from

c2: After a hand-off at c2, W2 arrives at location L3(r2) at the same time as W1

reaches location L3(r2 + 1). We have

c2 − P3(q2 + 1)
v13(q2)

+

r2�

k=q2+1

t13(k)

=
P1(p2 + 1) − c2
v21(p2)

+

m1�

k=p2+1

t21(k) +

m2�

k=1

t22(k) +

r2−1�

k=1

t23(k)

⇒ c2 =

�
1

v13(q2)
+

1

v21(p2)

�−1
·
�
P3(q2 + 1)

v13(q2)
+
P1(p2 + 1)

v21(p2)

+

m1�

k=p2+1

t21(k) +

m2�

k=1

t22(k) +

r2−1�

k=1

t23(k)−
r2�

k=q2+1

t13(k)

�
.

Algorithmic computationof x∗ andthe average throughput

We compute x∗ for each of the following four cases:

Case (A): c1 = x

W1 is constantly halted at location s1 from any x < c1, and thus x
∗ = x = s1.
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SinceW2 is neither blocked nor halted from x
∗ = x, the throughput T =

��m2
k=1 t22(k)

�−1
.

Case (B): c2 < c1 < x

Corollary 3 implies that f is a constant. For any x ∈ (c2, c1), according to Lemmas

8 and 9, both workers are blocked or halted from x. Note that if W2 is blocked from x

then W1 is neither blocked nor halted from x. Since W1 is blocked or halted from x, we

know that W2 is not blocked from x. Thus, W2 is halted at location 1 from x, and so

f(x) = x = s1 − s3 for any x ∈ (c2, c1). As a result, the fixed point is x∗ = x.

Let p∗ be the index such that x ∈ (P1(p∗), P1(p∗ + 1)]. W1 is not halted at location

s1 from x but may be blocked at L1(p
∗) from x. If W1 is blocked at L1(p∗), that is, if

�p∗−1
k=1 t11(k) <

P1(p∗+1)−x
v21(p∗)

, then the throughput T =
�
P1(p∗+1)−x
v21(p∗)

+ x−P1(p
∗)

v11(p∗)

�−1
. Other-

wise, W1 is neither blocked nor halted, and thus the throughput T =
��p∗−1

k=1 t11(k) +

x−P1(p∗)
v11(p∗)

�−1
.

Case (C): c2 = c1 < x

Corollary 3 implies that f is a constant. W1 is blocked or halted from any x < c1,

and W2 is blocked or halted from any x > c2 = c1. Similar to the analysis for case (B),

since both workers are almost blocked or halted from c1, W2 is almost halted at location

1 from c1. Thus, f(c1) = x. Since f is a constant, the fixed point is x
∗ = x.

We can compute the throughput in the same way as in case (B): If
�p∗−1
k=1 t11(k) <

P1(p∗+1)−x
v21(p∗)

, then the throughput T =
�
P1(p∗+1)−x
v21(p∗)

+ x−P1(p
∗)

v11(p∗)

�−1
; otherwise,

T =
��p∗−1

k=1 t11(k) +
x−P1(p∗)
v11(p∗)

�−1
.

Case (D): c1 < c2 ≤ x

There are three subcases (1) x∗ < c1, (2) c1 ≤ x∗ ≤ c2, and (3) x∗ > c2, which are
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equivalent to (1) Y1 < c1, (2) Y1 ≥ c1 and Y2 ≤ c2, and (3) Y2 > c2 respectively. In the

rest of the algorithm, we first compute x∗ for cases (1) and (3), and then for case (2).

The fixed points are Y1 and Y2 for cases (1) and (3) respectively. To compute Yi,

i = 1, 2, we can find the next hand-off position after a hand-off at ci because f(ci) = Yi.

Lemmas 8 and 9 imply that Wi is neither blocked nor halted from ci. Recall from the

computation of c1 and c2 (Section A.3.3) that ci falls in the interval [P3(qi + 1),P3(qi)].

Furthermore, if ci > 0 then ci also falls in the interval [P1(pi), P1(pi+1)]. Suppose Yi is in

the interval [P3(q
∗
i +1), P3(q

∗
i )]. The two workers spend an equal amount of time between

a hand-off at ci and the next hand-off at Yi, for i = 1, 2. There are four cases:

(a) ci ≤ 0 and Yi ≤ 0: We have

ci − P3(qi + 1)
v13(qi)

+

m3�

k=qi+1

t13(k) =

m1�

k=1

t21(k) +

m2�

k=1

t22(k) +

q∗i−1�

k=1

t23(k)

+
P3(q

∗
i )− Yi
v23(q∗i )

⇒ Yi = P3(q
∗
i ) + v23(q

∗
i ) ·
�
m1�

k=1

t21(k) +

m2�

k=1

t22(k) +

q∗i −1�

k=1

t23(k)

−ci − P3(qi + 1)
v13(qi)

−
m3�

k=qi+1

t13(k)

�
.

(b) ci > 0 and Yi ≤ 0: We have

ci − P3(qi + 1)
v13(qi)

+

m3�

k=qi+1

t13(k)

=
P1(pi + 1) − ci
v21(pi)

+

m1�

k=pi+1

t21(k) +

m2�

k=1

t22(k) +

q∗i−1�

k=1

t23(k) +
P3(q

∗
i )− Yi
v23(q∗i )

⇒ Yi = P3(q
∗
i ) + v23(q

∗
i ) ·
�
P1(pi + 1) − ci
v21(pi)

+

m1�

k=pi+1

t21(k) +

m2�

k=1

t22(k)

+

q∗i−1�

k=1

t23(k)−
ci − P3(qi + 1)
v13(qi)

−
m3�

k=qi+1

t13(k)

�
.
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(c) ci ≤ 0 and Yi > 0: Suppose Yi falls in [P1(p∗i ),P1(p∗i + 1)]. We have

ci − P3(qi + 1)
v13(qi)

+

m3�

k=qi+1

t13(k) +

p∗i−1�

k=1

t11(k) +
Yi − P1(p∗i )
v11(p∗i )

=

m1�

k=1

t21(k) +

m2�

k=1

t22(k) +

q∗i−1�

k=1

t23(k) +
P3(q

∗
i )− Yi
v23(q∗i )

⇒ Yi =

�
1

v11(p∗i )
+

1

v23(q∗i )

�−1
·
�
P1(p

∗
i )

v11(p∗i )
+
P3(q

∗
i )

v23(q∗i )

+

m1�

k=1

t21(k) +

m2�

k=1

t22(k) +

q∗i−1�

k=1

t23(k)

−ci − P3(qi +1)
v13(qi)

−
m3�

k=qi+1

t13(k)−
p∗i−1�

k=1

t11(k)

�
.

(d) ci > 0 and Yi > 0: Suppose Yi falls in [P1(p
∗
i ), P1(p

∗
i + 1)]. We have

ci − P3(qi + 1)
v13(qi)

+

m3�

k=qi+1

t13(k) +

p∗i−1�

k=1

t11(k) +
Yi − P1(p∗i )
v11(p∗i )

=
P1(pi + 1) − ci
v21(pi)

+

m1�

k=pi+1

t21(k) +

m2�

k=1

t22(k) +

q∗i−1�

k=1

t23(k) +
P3(q

∗
i )− Yi
v23(q∗i )

⇒ Yi =

�
1

v11(p∗i )
+

1

v23(q∗i )

�−1
·
�
P1(p

∗
i )

v11(p∗i )
+
P3(q

∗
i )

v23(q∗i )

+
P1(pi + 1) − ci
v21(pi)

+

m1�

k=pi+1

t21(k) +

m2�

k=1

t22(k) +

q∗i −1�

k=1

t23(k)

−ci − P3(qi + 1)
v13(qi)

−
m3�

k=qi+1

t13(k)−
p∗i−1�

k=1

t11(k)

�
.

For case (2), we have x∗ ∈ [c1, c2], and so each worker is neither blocked nor halted

from x∗ due to Lemmas 8 and 9. Suppose x∗ is in the interval [P3(q∗3 + 1), P3(q
∗
3)]. The

two workers spend an equal amount of time between two successive hand-offs at x∗. If
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x∗ ≤ 0, then we have

x∗ − P3(q∗3 + 1)
v13(q∗3)

+

m3�

k=q∗3+1

t13(k) =

m1�

k=1

t21(k) +

m2�

k=1

t22(k) +

q∗3−1�

k=1

t23(k) +
P3(q

∗
3)− x∗
v23(q∗3)

⇒ x∗ =

�
1

v13(q∗3)
+

1

v23(q∗3)

�−1
·
�
P3(q

∗
3 + 1)

v13(q∗3)
+
P3(q

∗
3)

v23(q∗3)

+

m1�

k=1

t21(k) +

m2�

k=1

t22(k) +

q∗3−1�

k=1

t23(k)−
m3�

k=q∗3+1

t13(k)

�
.

Otherwise, we have x∗ > 0. Suppose x∗ ∈ [P1(p∗3), P1(p∗3 + 1)]. We have

x∗ − P3(q∗3 + 1)
v13(q∗3)

+

m3�

k=q∗3+1

t13(k) +

p∗3−1�

k=1

t11(k) +
x∗ − P1(p∗3)
v11(p∗3)

=
P1(p

∗
3 + 1) − x∗
v21(p∗3)

+

m1�

k=p∗3+1

t21(k) +

m2�

k=1

t22(k) +

q∗3−1�

k=1

t23(k) +
P3(q

∗
3)− x∗
v23(q∗3)

⇒ x∗ =

�
1

v11(p∗3)
+

1

v13(q∗3)
+

1

v21(p∗3)
+

1

v23(q∗3)

�−1
·
�
P1(p

∗
3)

v11(p∗3)
+
P3(q

∗
3 + 1)

v13(q∗3)

+
P1(p

∗
3 + 1)

v21(p∗3)
+
P3(q

∗
3)

v23(q∗3)
+

m1�

k=p∗3+1

t21(k) +

m2�

k=1

t22(k) +

q∗3−1�

k=1

t23(k)

−
m3�

k=q∗3+1

t13(k)−
p∗3−1�

k=1

t11(k)

�
.

Now we start to compute the throughput. Since in case (D) we have c1 < c2 ≤ x, for

any x∗ ∈ [x, x], x∗ falls in [c1, x] or [x, c2]. According to the proofs of Lemmas 8 and 9, at

least one of the workers is neither blocked nor halted from x∗:

(i) W1 is neither blocked nor halted from x
∗. If x∗ ≤ 0 then the throughput T =

�
x∗−P3(q∗3+1)
v13(q∗3 )

+
�m3
k=q∗3+1

t13(k)
�−1
. Otherwise, the throughput T =

�
x∗−P3(q∗3+1)
v13(q∗3)

+

�m3
k=q∗3+1

t13(k) +
�p∗3−1
k=1 t11(k) +

x∗−P1(p∗3)
v11(p∗3)

�−1
.

(ii) W2 is neither blocked nor halted from x
∗. If x∗ ≤ 0 then the throughput T =

��m1
k=1 t21(k) +

�m2
k=1 t22(k) +

�q∗3−1
k=1 t23(k) +

P3(q∗3)−x∗
v23(q∗3)

�−1
. Otherwise, we have
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x∗ > 0. The throughput T =
�
P1(p∗3+1)−x∗
v21(p∗3)

+
�m1
k=p∗3+1

t21(k) +
�m2
k=1 t22(k) +

�q∗3−1
k=1 t23(k) +

P3(q∗3)−x∗
v23(q∗3 )

�−1
.
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