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Abstract

This paper extends the simulation-based estimation method proposed by Phillips and Yu
(2009) to the cross-sectional case. We examine their finite-sample performance by conduct-
ing Monte-Carlo simulations of this simulation-based method to both the time-series model
and the cross-sectional model. The simulation results show that the proposed simulation-
based estimator can always reduce the percentage bias over the respective MLE and OLS
estimator. Meanwhile, they do not significantly increase the variance or RMSE over their
correspondent MLE and OLS estimator.

Key Words: Simulation-based estimation method; Black-Scholes Model; Cross-
sectional case
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1 Introduction

There has been an explosion of theoretical work in financial economics over the last half

century. How to price financial assets has been an important topic in financial economics.

Prices of the financial derivatives depend on the prices of the underlying assets, whose prices

are often assumed to follow a parametric model. Theoretically, the pricing formula of the

derivative is a function of these parameters.

Since the parameters of the underlying asset are usually unknown, they are generally

replaced by respective estimates in the derivative pricing formulas. As a result, the statis-

tical properties of the theoretical derivative price estimates hinge on those of the parameter

estimates. Hence, the choice of method for parameter estimation is important and the topic

has received a great deal of attention in the literature (see, for example, Aı̈t-Sahalia, 1999).

In the time-series case, when the model is correctly specified, the preferred estima-

tion method for the parameters is Maximum Likelihood (ML). It is well known that, under

mild regularity conditions, the Maximum Likelihood Estimator (MLE) has many desirable

asymptotic properties: consistency, normality and efficiency. Moreover, due to the invari-

ance principle, a function of MLE itself is a MLE and hence inherits all the nice asymptotic

properties (Zehna, 1966). Despite its generally nice asymptotic properties, ML is not neces-

sarily the best estimation method for financial asset prices in finite sample. First of all, the

closed-form likelihood function is usually difficult to calculate. Second, even if we have the

analytic likelihood function, since many financial time-series variables are highly persistent,

the MLE may have poor finite-sample statistical properties. For example, it may have sub-

stantial bias. Third, because the derivative price is a nonlinear transformation of the system

parameters, insertion of even unbiased estimators of these parameters into the pricing for-

mulas will not assure unbiased estimation of a derivative price (Ingersoll, 1976). Phillips

and Yu (2009) reported evidence of bias in the MLE of volatility models, especially in the

worst scenarios where there is persistence and nonlinearity, such as a deep-out-of-the-money

option price.

In the literature, a great deal of effort has been done to improve the finite-sample per-

formance of the MLE. For example, Butler and Schachter (1986) proposed an estimator of

Black-Scholes option price based on Taylor series expansion, which is shown by Knight

and Satchell (1997) only unbiased for the at-the-money options. Phillips and Yu (2005)

proposed a jackknife procedure to reduce the large finite-sample bias in the mean reversion

– 1 –



parameter. Usually, we obtain the analytic bias function of MLE at the first step. In the

second step, we remove it from the biased estimator with the hope that the variance of the

bias-corrected estimator does not increase or slightly increase, so that the mean squared er-

ror (MSE) reduces. These two methods share a common property: they trade off the gain

that maybe achieved in bias reduction with a loss that increases the variance.

The idea of simulation-based estimation method origins from the observation that if the

traditional estimator of a derivative price is biased with the real data, then it will also be

biased with simulated data. Simulations therefore enable the bias function to be calibrated

for the specific model and sample size being used. From this calibrated function, a bias

reduction procedure is constructed and leads to a simulation-based estimate. As a good

substitution of the bias-corrected estimator, it has been widely and successfully used in esti-

mating parameters of various financial time-series model. For example, they are used in the

context of continuous-time model to address the problem of discretization bias, e.g., Duffie

and Singleton (1993). This method is also useful for improving the finite sample perfor-

mance of the traditional methods, e.g., MacKinnon and Smith (1998), and of the dynamic

panel model, e.g., Gouriéroux, Phillips and Yu (2010).

The present paper follows the method proposed by Phillips and Yu (2009). In that paper,

they introduce a new simulation-based methodology of estimating derivative prices that can

achieve the bias reduction as well as variance reduction. However, Phillips and Yu (2009)

only consider the time-series case, where the gold standard method of estimation is ML. In

this paper, we extend the method to the cross-sectional case.

In the next section, we review the existing method and introduce the direct simulation-

based method of both time-series case and cross-sectional case. Then in section 3, using

simulated data, we show how to implement the proposed method in relation of MLE esti-

mation of call option price in the context of Black-Scholes model and in relation of OLS

estimation of call option price in the context of cross-sectional setting. Finally, section 4

concludes and discusses the direction of further research.
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2 Estimation Methods for Derivative Prices

2.1 Maximum Likelihood Estimation (MLE)

Let S(t) denote the price of the underlying asset. Assume S(t) follows the stochastic

differential equation:

dS(t) = µ
(
S(t), t; θ

)
dt + σ

(
S(t), t; θ

)
dB(t) (2.1)

where B(t) is the standard Brownian motion, µ
(
S(t), t; θ

)
is a given drift function,

σ
(
S(t), t; θ

)
is some specified diffusion function, and θ is an unknown parameter or a vector

of unknown parameters.

Our observation is a sequence of time-series data of stock price S = (Sh, S2h, ..., Snh)

available over a time period [0, T (= nh)], where h is the sampling interval. Usually, we

simplify them as S = (S1, S2, ..., Sn). And our goal is to price a financial asset whose

payoff is contingent on the value of S(t). Denote the price of the derivative price as P (θ).

A common strategy to estimate P (θ) is as follows: in the first step, based on the observed

data S = (S1, S2, ..., Sn), estimate the parameter vector θ from equation (1), and denote the

estimates as θ̂. In the second step, plug θ̂ into the pricing formula, we get P̂ = P (θ̂).

Since the equation (1) has the Markov property, we can get the log-likelihood function

as:

l(θ) =
n∑

t=2

ln f(St|St−1; θ) (2.2)

where f(St|St−1; θ) is the conditional density function of St given St−1. Maximizing the

log-likelihood function (equation (2.2)) with respective to θ, we get θ̂ML
n , which is consis-

tent, asymptotically normal, and asymptotically efficient under mild regularity conditions

for stationary dynamic models. Plug θ̂ML
n into P (θ), we get P (θ̂ML

n ). Because of the princi-

ple of invariance, i.e., a function of MLE itself is a MLE, denote P̂ML
n = P (θ̂ML

n ). Hence,

P̂ML
n automatically inherits all the desirable asymptotic properties of ML estimator: consis-

tent, asymptotically efficient, and asymptotically normal.

The limit distribution of θ̂ML
n is given by

√
n(θ̂ML

n − θ)
d−→ N

(
0, I−1(θ)

)
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where I(θ) is the information matrix, and the MLE is considered optimal since it achieves

the Cramér-Rao lower bound and has the highest estimation precision in the limit when

n →∞. By the delta method, we get the asymptotic distribution of P̂ML
n ,

√
n
(
P̂ML

n − P (θ)
) d−→ N

(
0, VP

)

where

VP =
∂P

∂θ′
I−1(θ)

∂P

∂θ

Although the exact MLE of the option price has these nice asymptotic properties, it is

not always the best. For example, usually the closed-form expression for the conditional

density function f(St|St−1; θ) is not available. Secondly, even if sometimes we obtain the

closed-form likelihood function, the MLE of parameters θ̂ML
n may suffer substantial finite-

sample bias due to the high persistency of most of financial time-series data St. Moreover,

even if the MLE of parameters θ̂ML
n has little bias, insertion of the parameter into the pric-

ing formula will not assure the unbiased estimation of the derivative price due to the high

nonlinearity of the pricing formula.

Assume P (θ) to be twice differentiable and θ is a scalar. Using Taylor expansion to

P̂ML
n = P (θ̂ML

n ) around the true value θ, we get

P̂ML
n = P (θ̂ML

n ) ≈ P (θ) +
∂P (θ)

∂θ
(θ̂ML

n − θ) +
1

2

∂2P (θ)

∂θ2
(θ̂ML

n − θ)2

Taking expectation on both sides, we get

E(P̂ML
n ) ≈ P (θ) +

∂P (θ)

∂θ
E(θ̂ML

n − θ) +
1

2

∂2P (θ)

∂θ2
E(θ̂ML

n − θ)2 (2.3)

= P (θ) +
∂P (θ)

∂θ
E(θ̂ML

n − θ) +
1

2

∂2P (θ)

∂θ2
MSE(θ̂ML

n ) (2.4)

From Equation (2.4), we find 3 situations where P̂ML
n has substantial bias: first of all, when

θ̂ML
n is biased, i.e., E(θ̂ML

n − θ) 6= 0; second, when MSE(θ̂ML
n ) is large, which is unfortu-

nately the typical case of small sample; third, when P (θ) is highly nonlinear and ∂2P (θ)
∂θ2 is

large.
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2.2 Direct Simulation-Based Method

2.2.1 Time-series Case

Smith (1993) proposed a simulation-based method named indirect inference to estimate

the models where the analytical likelihood function is difficult to get.

The detailed steps of applying indirect inference to our model is as follows:

(1) Get θ̂ML
n which is the MLE of parameter obtained from the real data.

(2) For any given θ, from equation (1), we can get the simulated data of stock price, say,

S̃k(θ) = {S̃k
1 , S̃k

2 , ..., S̃k
n}, where k = 1, 2, ..., K is the simulation path. In order to calibrate

the finite-sample bias, we choose the number of observations in S̃k(θ) to be the same as the

number of the real data.

(3) According to the simulated data of the k-th simulated path, S̃k(θ) = {S̃k
1 , S̃k

2 , ..., S̃k
n},

we get the MLE of θ, named φ̃ML,k
n (θ).

(4) Choose θ, so that the average behavior of φ̃ML,k
n (θ) is matched with θ̂ML

n obtained

from the observed data, i.e.,

θ̂II
n,K = arg min

θ∈Θ

∥∥∥θ̂ML
n − 1

K

K∑

k=1

φ̃ML,k
n (θ)

∥∥∥

Intuitively, any bias occurs in θ̂ML
n will also be present in φ̃ML,k

n (θ). So, when K goes to

infinity, 1/K
∑K

k=1 φ̃ML,k
n (θ) tends to converge to θ̂ML

n if θ is the true value of the parameter.

As a result, θ̂II
n,K may have better finite-sample properties than θ̂ML

n . However, due to the

high nonlinearity of the derivative pricing formula, even if θ̂II
n,K has little bias, P (θ̂II

n,K) may

still be severely biased, sometimes even worse than P̂ML
n .

In order to improve the finite-sample properties of P̂ML
n , Phillips and Yu (2009) proposed

a direct simulation-based method for contingent-claims pricing. They considered the time-

series case, where the data generating process of the stock price is described as equation (1).

This direct simulation method has the following steps:

(1) We get θ̂ML
n from the observed data. Inserting θ̂ML

n into the pricing formula P (θ),

we have P̂ML
n = P (θ̂ML

n );

(2) Given a value of the derivative price p, by p = P (θ), we get θ(p) = P−1(p). Here,

P−1(·) is the inverse of the pricing formula P (θ);
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(3) For any θ(p), from equation (1), we can get the simulated data S̃k(p) =

{S̃k
1 , S̃k

2 , ..., S̃k
n}, where k = 1, 2, ..., K is the simulation path. Same as before, in order

to calibrate the finite-sample bias, we choose the number of the observations in S̃k(p) to be

the same as the number of the real data;

(4) From the k-th simulation path, we get the MLE of θ, φ̃ML,k
n (p). Then, inserting

φ̃ML,k
n (p) into the pricing formula, we get P̃ML,k

n = P
(
φ̃ML,k

n (p)
)
;

(5) Choose p so that the average behavior of P̃ML,k
n is matched with P̂ML

n , i.e.,

P̂ SM
n,K = arg min

p

∥∥∥P̂ML
n − 1

K

K∑

k=1

P̃ML,k
n (p)

∥∥∥

where the binding function is the mean.

Intuitively, whenever bias occurs in P̂ML
n and from whatever source, this bias will also

be present in P̃ML,k
n (p) for the same reason. So, as K goes to infinity, 1/K

∑K
k=1 P̃ML,k

n (p)

tends to converge to P̂ML
n if p is the true value of the option price. As a result, P̂ SM

n,K ap-

proaches P (θ).

Alternatively, if the median is chosen to be the binding function, the estimator is

P̂ SM
n,K = arg min

p

∥∥∥P̂ML
n − ρ̂0.5P̃

ML,k
n (p)

∥∥∥

where ρ̂0.5P̃
ML,k
n (p) is the median of

{
P̃ML,1

n (p), P̃ML,2
n (p), ..., P̃ML,K

n (p)
}

.

2.2.2 Cross-sectional Case

In this section, we assume that the relation between the theoretical derivative prices and

the observed prices are described by the following model:

P̂i(τi, Xi) = Pi(σ
2; τi, Xi) + εi, εi ∼ N(0, σ2

e) (2.5)

Here, our observed data are the derivative prices P̂i(τi, Xi), i = 1, 2, ..., n, and they are

contingent on the same underlying asset. τi is the time to maturity of option i. Xi is the strike

price of option i. Pi(σ
2; τi, Xi) is the theoretical option price from the Black-Scholes model.

Our objective is to price the derivative price P̂n+1(τn+1, Xn+1), given time to maturity τn+1

and strike price Xn+1.
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In this cross-sectional case, if we use OLS method to estimate σ2 and σ2
e , we get

σ̂2 = arg min
σ2

n∑
i=1

(
P̂i(τi, Xi)− Pi(σ

2; τi, Xi)
)2

and

σ̂2
e =

1

n− 1

n∑
i=1

(
P̂i(τi, Xi)− Pi(σ̂

2; τi, Xi)
)2

Insert σ̂2 into the derivative pricing formula, then we get the estimate of the option price of

time to maturity τn+1 and strike price Xn+1,

P̂n+1 = P (σ̂2; τn+1, Xn+1)

Because it is a cross-sectional case, we expect little bias from the OLS estimator of σ2. How-

ever, same as we discussed in the previous section, due to the nonlinearity of the derivative

pricing formula, P̂n+1 may suffer severe bias.

If we using the direct simulation-based method to estimate the option price, it is imple-

mented as follows:

(1) From the observed data, using OLS method, we can get σ̂2 and σ̂2
e . Then insert σ̂2

into the derivative pricing formula, and we get P̂n+1 = P (σ̂2; τn+1, Xn+1);

(2) Given a value of the option price p, time to maturity τn+1 and strike price

Xn+1, by p = P (σ2; τn+1, Xn+1), we get σ2(p) = P−1(p; τn+1, Xn+1) and σ̂2
e =

1
n−1

∑n
i=1

(
P̂i(τi, Xi) − Pi(σ

2(p); τi, Xi)
)2. Here, P−1(·) is the inverse of the pricing for-

mula P (σ2);

(3) Given σ2(p), {τi, Xi}n
i=1 and σ̂2

e , from equation (5), we get the simulated data

P̃ k(p) =
{
P̃ k

1 (p), P̃ k
2 (p), ..., P̃ k

n (p)
}

, where k = 1, 2, ..., K is the simulation path. Same

as before, in order to calibrate the finite-sample bias, we choose the number of observations

in P̃ k(p) to be the same as the number of the observed data;

(4) From the k-th simulation path, P̃ k(p) ={
P̃ k(p; τ1, X1), P̃

k(p; τ2, X2), ..., P̃
k(p; τn, Xn)

}
, we get the OLS estimate of σ2, say,

σ̃2
k,

σ̃2
k(p) = arg min

σ2

n∑
i=1

(
P̃ k(p; τi, Xi)− P

(
σ2(p); τi, Xi

))2
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Then insert σ̃2
k into P (σ2; τn+1, Xn+1), and we get

P̃ k
n+1(p) = P (σ̃2

k(p); τn+1, Xn+1)

(5) Choose p so that the average behavior of P̃ k
n+1 is matched with P̂n+1, i.e.,

P̂ SM,K
n+1 = arg min

p

∥∥∥P̂n+1 − 1

K

K∑

k=1

P̃ k
n+1(p)

∥∥∥

where the binding function is the mean.

Intuitively, whenever bias occurs in P̂n+1 and from whatever source, this bias will also be

present in P̃ k
n+1(p) for the same reason. So, 1/K

∑K
k=1 P̃ k

n+1(p) tends to converge to P̂n+1

if p is the true value of the option price. As a result, P̂ SM,K
n+1 approaches P (σ2; τn+1, Xn+1)

as K goes to infinity.

Alternatively, if the median is chosen to be the binding function, the estimator is

P̂ SM,K
n+1 = arg min

p

∥∥∥P̂n+1 − ρ̂0.5P̃
k
n+1(p)

∥∥∥

where ρ̂0.5P̃
k
n+1(p) is the median of

{
P̃ 1

n+1(p), P̃ 2
n+1(p), ..., P̃K

n+1(p)
}

.
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3 Monte Carlo Simulation

3.1 Time-series case: Black-Scholes Model

In order to illustrate the finite-sample problems of P̂ML
n , we consider the example of es-

timating the price of a deep-out-of-the-money option in the context of Black-Scholes model.

In this section, let S(t) be the underlying stock price at time t. And we assume S(t) follows

the geometric Brownian motion process, which is used by Black and Scholes to price Eu-

ropean option (Black and Scholes (1973)). The reasons we choose this kind model are that

the estimates of the parameter of the underlying asset σ2 have analytic solutions, and that

the pricing formula has a tractable form. We assume the stock prices follow the following

process,

dS(t) = µS(t)dt + σS(t)dB(t) (3.1)

Let {St}n
t=0 be a sample of time-series observation of stock price S(t) with sampling interval

h and T = nh. In the Black-Scholes option pricing formula, the only relevant unknown

parameter is σ2. In this case, the log-likelihood function is available. By Itô’s lemma, ln S

has the log-normal property when S follows the process in equation (3.1), i.e.,

ln
S(t + 1)

S(t)
∼ N(0, σ

√
dt)

Hence, the MLE of σ2 is

σ̂2,ML
n =

1

nh

n−1∑
t=0

(ln
St+1

St

− 1

n

n−1∑
t=0

ln
St+1

St

)2

=
1

T

n−1∑
t=0

(ln
St+1

St

− 1

n

n−1∑
t=0

ln
St+1

St

)2

and P̂ML
n = P (σ̂2,ML

n ).

We use 250 daily stock return to estimate the price of a European call option price whose

time to maturity is 1 month (21 days) and strike price is X . We define the following nota-

tions and the parameter values:

S0: initial stock price,

X: strike prices,

τ : time to maturity,
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r: interest rate,

h: sampling interval,

σ̂2,ML
n : MLE of σ2 defined as 1

T

∑n−1
t=0 (ln St+1

St
− 1

n

∑n−1
t=0 ln St+1

St
)2,

s2
n: bias-corrected MLE of σ2 defined as n

n−1
σ̂2,ML

n ,

P : Price of a European call option obtained from Black-Scholes pricing formula,

P (σ2, τ, X) = SΦ(d1)−Xe−rτΦ(d2),

Φ: the cumulative distribution function of standard normal distribution,

d1 = 1
σ
√

τ

(
ln(S0/X) + (r + 0.5σ2)τ

)
,

d2 = 1
σ
√

τ

(
ln(S0/X) + (r − 0.5σ2)τ

)
,

P̂ SM,1
n : the simulation-based estimator when mean is chosen to be the binding function,

P̂ SM,2
n : the simulation-based estimator when median is chosen to be the binding func-

tion.

The simulated data comes from the model

ln
S(t + 1)

S(t)
∼ N(0, σ

√
h)

where S0 = 100,

X = α · S0 exp(rτ). When α = 0.95, the option is in the money; when α = 1, the option is

at the money; α = 1.2, the option is out of the money;

τ = 21
250

,

r = 5%,

h = 1
250

,

σ2 = 0.4.

The experiment is replicated 5000 times. Here are the simulation results:

Table 3.1 In-the-money Option, True value=9.8960, α=0.95
Estimator mean bias (in %) std err RMSE median

σ̂2,ML
n 0.3981 -0.4791 0.0364 0.0365 0.3971
s2

n 0.3997 -0.0794 0.0366 0.0366 0.3986
P (σ̂2,ML

n ) 9.8731 -0.2322 0.3110 0.3119 9.8709
P (s2

n) 9.8867 -0.0943 0.3117 0.3119 9.8845
P̂ SM,1

n 9.8960 -0.0001 0.3122 0.3122 9.8938
P̂ SM,2

n 9.8983 0.0224 0.3123 0.3123 9.8960

Table 3.1 shows the simulation results of the in-the-money option, i.e. α = 0.95. The

strike price of this option is X = 0.95 ·S0 exp(rτ). By Black-Scholes model, the true value
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of this call option is 9.8960. In this case, the percentage bias of the MLE of σ2 is small,

say, -0.4719%. Since it is an in-the-money option, P (·) is not severely nonlinear. P (σ̂2,ML
n )

has little percentage bias, -0.2322%. Moreover, P (σ̂2,ML
n ) has the smallest standard error,

0.3110. s2
n reduces the percentage bias to -0.0794%. As a result, the plug-in estimator P (s2

n)

reduces the percentage bias to -0.0943%, but slightly increases the standard error to 0.3117.

The bias is further reduced by the direct simulation-based estimator P̂ SM,1
n to -0.0001%

when mean is chosen to be the binding function. Similarly, the bias is further reduced by

the direct simulation-based estimator P̂ SM,2
n to 0.0224% when median is chosen to be the

binding function. Moreover, P̂ SM,2
n is even median unbiased. While both simulation-based

estimators reduce the bias over P (σ̂2,ML
n ), they slightly increase the standard error. As a

result, these four estimators have similar performance in terms of RMSE.

Table 3.2 At-the-money Option, True value=7.3025, α=1
Estimator mean bias (in %) std err RMSE median

σ̂2,ML
n 0.3981 -0.4791 0.0364 0.0365 0.3971
s2

n 0.3997 -0.0794 0.0366 0.0366 0.3986
P (σ̂2,ML

n ) 7.2774 -0.3440 0.3320 0.3329 7.2756
P (s2

n) 7.2919 -0.1446 0.3327 0.3328 7.2902
P̂ SM,1

n 7.3025 -0.0000 0.3331 0.3331 7.3007
P̂ SM,2

n 7.3043 0.0241 0.3332 0.3332 7.3025

Table 3.2 shows the simulation results of the at-the-money option, i.e., α = 1. The

results are quite similar with the results in Table 1. By Black-Scholes model, the true value

of this call option is 7.3025. In this case, the percentage bias of the MLE of σ2 is small,

say, -0.4719%. Since it is an at-the-money option, P (·) is not strongly nonlinear. P (σ̂2,ML
n )

has little percentage bias, -0.3440%. Moreover, P (σ̂2,ML
n ) has the smallest standard error,

0.3320. s2
n reduces the percentage bias to -0.0794%. As a result, the plug-in estimator P (s2

n)

reduce the percentage bias to -0.1446%, but slightly increases the standard error to 0.3327.

The bias is further reduced by the direct simulation-based estimator P̂ SM,1
n to -0.0000%

when mean is chosen to be the binding function. Similarly, the bias is further reduced by

the direct simulation-based estimator P̂ SM,2
n to 0.0241% when median is chosen to be the

binding function. While both simulation-based estimators reduce the bias over P (σ̂2,ML
n ),

they slightly increase the standard error. So, these four estimators have similar performance

in terms of RMSE.

Table 3.3 shows the simulation results of the out-of-the-money option, i.e., α = 1.2.

The results are also similar with the results in Table 1 and Table 2 except that, the bias
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Table 3.3 Out-of-the-money Option, True value=1.6856, α=1.2
Estimator mean bias (in %) std err RMSE median

σ̂2,ML
n 0.3981 -0.4791 0.0364 0.0365 0.3971
s2

n 0.3997 -0.0794 0.0366 0.0366 0.3986
P (σ̂2,ML

n ) 1.6739 -0.6949 0.2210 0.2213 1.6677
P (s2

n) 1.6836 -0.1194 0.2219 0.2219 1.6774
P̂ SM,1

n 1.6856 -0.0014 0.2225 0.2225 1.6794
P̂ SM,2

n 1.6918 0.3685 0.2226 0.2227 1.6856

of P (σ̂2,ML
n ) is larger than that of the previous 2 cases. By Black-Scholes model, the true

value of this call option is 1.6856. In this case, it is an out-of-the-money option, and P (·)
is nonlinear. P (σ̂2,ML

n ) has larger percentage bias, -0.6949%, but P (σ̂2,ML
n ) still has the

smallest standard error, 0.2210. s2
n reduces the percentage bias to -0.0794%. As a result, the

plug-in estimator P (s2
n) reduce the percentage bias to -0.1194%, but slightly increases the

standard error to 0.2219. The bias is further reduced by the direct simulation-based estimator

P̂ SM,1
n to -0.0014% when mean is chosen to be the binding function. When median is chosen

to be the binding function, the median of the estimator of the option price is exact the true

value. While both simulation-based estimators reduce the bias over P (σ̂2,ML
n ), they do not

significantly increase the standard error or RMSE.

3.2 Cross-Sectional Data of Option Prices

In this section, we consider the situation: at a time spot, we observe many option prices

of different time to maturity and different strike prices contingent on the same underlying

asset, and we want to estimate another option price contingent on the same underlying asset

given its time to maturity and strike price. Our simulated data of call option prices come

from the following model

P̂i(τi, Xi) = Pi(σ
2; τi, Xi) + εi, εi ∼ N(0, σ2

e) (3.2)

The notations are the same as last section. We define the following parameter values:

S0 = 100

r = 0.05

σ2 = 0.4

At first, we fix α, and let τi vary. Then Xi = α · S0 · exp(r · τi). When α = 1, it is an

at-the-money option; when α = 0.95, it is an in-the-money option; when α > 1(1.1, 1.2...),

it is an out-of-the-money option.
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Pi(σ
2; τi, Xi) = S0Φ(d1)−Xi exp(−r · τi)Φ(d2)

σ̂2: OLS estimator of σ2, defined as

σ̂2 = arg min
σ2

n∑
i=1

(
P̂i(τi, Xi)− Pi(σ

2; τi, Xi)
)2

P̂OLS = P (σ̂2)

P̂ SM,1
n : the simulation-based estimator when mean is chosen to be the binding function,

P̂ SM,2
n : the simulation-based estimator when median is chosen to be the binding func-

tion.

The experiment is replicated 5000 times. We take σe around 10% of the theoretical

option price, which is reasonable. In the first simulation, let τi = 1
250

, 2
250

, 3
250

, 4
250

, and

τn+1 = 5
250

, i.e., we want to estimate the spot price of the option whose time to maturity is

5 days (5/250), given the spot price of the option contingent on the same stock whose time

to maturity is 1,2,3,4 days (1/250, 2/250, 3/250, 4/250). The simulation results are shown

from Table 4 to Table 8.

Table 3.4 In-the-money option price, α = 0.95, True value P=6.5341, σe = 0.5

Estimator mean bias (in %) std err RMSE median median bias (in %)
σ̂2 0.4031 0.7630 0.1129 0.1129 0.4001 0.0293

P̂OLS 6.5264 -0.1169 0.4158 0.4158 6.5345 0.0066
P̂ SM,1 6.5339 -0.0025 0.4141 0.4141 6.5421 0.1220
P̂ SM,2 6.5254 -0.1333 0.4184 0.4184 6.5341 0.0000

Table 3.4 shows the simulation results of the in-the-money option, i.e., α = 0.95. In

this simulation, the data we observe are the prices of in-the-money option with different

time-to-maturity, and our objective is to price another in-the-money option of a given time-

to-maturity. By Black-Scholes model, the true value of this call option is 6.5341. We take

σe = 0.5. In this case, the percentage bias of the OLS of σ2 is small, say, 0.7630%. Since

it is an in-the-money option, P (·) is not strongly nonlinear. P̂OLS has little percentage

bias, -0.1169%. The bias is further reduced by the simulation-based estimator P̂ SM,1, to

-0.0025%. Moreover, the estimator P̂ SM,1 also decreases the variance, producing an overall

gain in RMSE over P̂OLS . Another simulation-based estimator P̂ SM,2 is median-unbiased,

but it slightly increases the standard error and RMSE.

Table 3.5 shows the simulation results of the at-the-money option, i.e., α = 1. By Black-

Scholes model, the true value of this call option is 3.5671. In this case, we take σe = 0.3.

The percentage bias of the OLS of σ2 is small, say, 0.3690%. Since it is an at-the-money
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Table 3.5 At-the-money option price, α = 1, True value P=3.5671, σe = 0.3

Estimator mean bias (in %) std err RMSE median median bias (in %)
σ̂2 0.4015 0.3690 0.0481 0.0482 0.3998 -0.0391

P̂OLS 3.5672 0.0032 0.2144 0.2144 3.5664 -0.0195
P̂ SM,1 3.5671 -0.0000 0.2144 0.2144 3.5662 -0.0228
P̂ SM,2 3.5670 0.0227 0.2144 0.2144 3.5671 0

option, P (·) is not strongly nonlinear. P̂OLS has little percentage bias, 0.0032%. The bias

is further reduced by the simulation-based estimator P̂ SM,1, which is almost unbiased. If

median is taken as the binding function, the simulation-based estimator P̂ SM,2 is median-

unbiased. Moreover, both of the simulation-based estimators, P̂ SM,1 and P̂ SM,2 have the

similar variance and RMSE as P̂OLS .

Table 3.6 Out-of-the-money option price, α = 1.1, True value P=0.6883, σe = 0.07

Estimator mean bias (in %) std err RMSE median median bias (in %)
σ̂2 0.3997 -0.0756 0.0274 0.0274 0.4002 0.0391

P̂OLS 0.6876 -0.0905 0.0724 0.0724 0.6887 0.0601
P̂ SM,1 0.6883 0.0020 0.0723 0.0723 0.6893 0.1504
P̂ SM,2 0.6871 -0.1628 0.0724 0.0724 0.6883 0

Table 3.6 shows the simulation results of the out-of-the-money option when α = 1.1.

By Black-Scholes model, the true value of this call option is 0.6883. So, we take σe = 0.07.

In this case, the percentage bias of the OLS of σ2 is only -0.0756%. As a result, P̂OLS

also has little percentage bias, -0.0905%. The bias is further reduced by the simulation-

based estimator P̂ SM,1, to 0.0020%. Meanwhile, it slightly reduces the variance, producing

smaller RMSE. Another simulation-based estimator P̂ SM,2 is almost median-unbiased.

Table 3.7 Out-of-the-money option price, α = 1.2, True value P=0.0749, σe = 0.007

Estimator mean bias (in %) std err RMSE median median bias (in %)
σ̂2 0.3988 -0.2913 0.0209 0.0210 0.4002 0.0488

P̂OLS 0.0748 -0.2395 0.0125 0.0125 0.0751 0.1594
P̂ SM,1 0.0750 0.0169 0.0125 0.0125 0.0752 0.3975
P̂ SM,2 0.0746 -0.4194 0.0126 0.0126 0.0749 0

Table 3.7 shows the simulation results of the out-of-the-money option when α = 1.2. By

Black-Scholes model, the true value of this call option is 0.0749. Here, we take σe = 0.007.

In this case, the percentage bias of the OLS of σ2 is small, say, -0.2913%. Since it is a
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severe out-of-the-money option, P (·) is strongly nonlinear. P̂OLS suffer larger percentage

bias than before, -0.2395%. The bias is reduced by the simulation-based estimator P̂ SM,1

to 0.0169%. Moreover, when median is chosen be to the binding function, the simulation-

based estimator P̂ SM,2 is even median-unbiased. Meanwhile, both of the simulation-based

estimators do not increase the variance significantly.

Table 3.8 Out-of-the-money option price, α = 1.3, True value P=0.0049, σe = 0.0003

Estimator mean bias (in %) std err RMSE median median bias (in %)
σ̂2 0.3987 -0.3299 0.0151 0.0152 0.4002 0.0391

P̂OLS 0.0049 -0.3527 0.0010 0.0010 0.0049 0.2187
P̂ SM,1 0.0049 0.0309 0.0010 0.0010 0.0049 0.5685
P̂ SM,2 0.0049 -0.6018 0.0010 0.0010 0.0049 0

Table 3.8 shows the simulation results of the out-of-the-money option when α = 1.3. By

Black-Scholes model, the true value of this call option is 0.0049. Here, we take σe = 0.0003.

In this case, the percentage bias of the OLS of σ2 is a littile bit larger, say, -0.3299%. As

a result, P̂OLS suffer larger percentage bias than before, -0.3527%. The bias is reduced

by the simulation-based estimator P̂ SM,1 to 0.0309%. Moreover, when median is chosen

be to the binding function, the simulation-based estimator P̂ SM,2 is even median-unbiased.

Meanwhile, both of the simulation-based estimators do not increase the variance or RMSE

over those of P̂OLS .

In the second simulation, we change the value of time-to-maturity. Let τi =
21
250

, 42
250

, 63
250

, 84
250

, and τn+1 = 126
250

, i.e., we want to estimate the spot price of the option

whose time to maturity is 6 months (126/250), given the spot price of the option whose time

to maturity is 1,2,3,4 months (21/250, 42/250, 63/250, 84/250). The results are shown from

Table 3.9 to Table 3.14.

Table 3.9 In-the-money option price, α = 0.95, True value P=19.9300, σe = 1.5

Estimator mean bias (in %) std err RMSE median median bias (in %)
σ̂2 0.4019 0.4839 0.0554 0.0555 0.3999 -0.0195

P̂OLS 19.9289 -0.0056 1.1709 1.1709 19.9284 -0.0083
P̂ SM,1 19.9300 0.0001 1.1708 1.1708 19.9295 -0.0027
P̂ SM,2 19.9311 0.0053 1.1715 1.1715 19.9300 0

From these tables, we find out: (1) As α increases, the true value of the option price

decreases. Then the value we take for σe decreases. As a result, the percentage bias of
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Table 3.10 At-the-money option price, α = 1, True value P=17.7631, σe = 1.5

Estimator mean bias (in %) std err RMSE median median bias (in %)
σ̂2 0.4018 0.4595 0.0532 0.0532 0.3998 -0.0391

P̂OLS 17.7628 -0.0019 1.1601 1.1601 17.7597 -0.0192
P̂ SM,1 17.7631 -0.0000 1.1602 1.1602 17.7601 -0.0173
P̂ SM,2 17.7663 0.0181 1.1601 1.1601 17.7631 0

Table 3.11 Out-of-the-money option price, α = 1.1, True value P=14.0626, σe = 1

Estimator mean bias (in %) std err RMSE median median bias (in %)
σ̂2 0.4007 0.1873 0.0356 0.0356 0.4000 0

P̂OLS 14.0615 -0.0077 0.7979 0.7979 14.0626 0
P̂ SM,1 14.0626 0.0001 0.7978 0.7978 14.0636 0.0077
P̂ SM,2 14.0620 -0.0039 0.7984 0.7984 14.0626 0

Table 3.12 Out-of-the-money option price, α = 1.2, True value P=11.0967, σe = 0.8

Estimator mean bias (in %) std err RMSE median median bias (in %)
σ̂2 0.4004 0.1058 0.0312 0.0312 0.3998 -0.0391

P̂OLS 11.0941 -0.0233 0.6883 0.6883 11.0932 -0.0310
P̂ SM,1 11.0967 0.0003 0.6880 0.6880 11.0958 -0.0077
P̂ SM,2 11.0984 0.0153 0.6885 0.6885 11.0967 0

Table 3.13 Out-of-the-money option price, α = 1.3, True value P=8.7388, σe = 0.5

Estimator mean bias (in %) std err RMSE median median bias (in %)
σ̂2 0.4001 0.0299 0.0226 0.0226 0.4001 0.0195

P̂OLS 8.7366 -0.0254 0.4736 0.4736 8.7405 0.0188
P̂ SM,1 8.7389 0.0003 0.4734 0.4734 8.7427 0.0441
P̂ SM,2 8.7347 -0.0475 0.4742 0.4742 8.7388 0

Table 3.14 Out-of-the-money option price, α = 1.4, True value P=6.8752, σe = 0.5

Estimator mean bias (in %) std err RMSE median median bias (in %)
σ̂2 0.4000 -0.0003 0.0270 0.0270 0.4004 0.0977

P̂OLS 6.8708 -0.0631 0.5260 0.5261 6.8828 0.1108
P̂ SM,1 6.8752 0.0012 0.5254 0.5254 6.8871 0.1738
P̂ SM,2 6.8638 -0.1658 0.5264 0.5264 6.8752 0

OLS estimator of σ2, σ̂2, decrease. However, the percentage bias of P̂OLS increases due

to the nonlinearity of the out-of-the-money option price formula. (2) The percentage bias

can be further reduced over that of P̂OLS by the simulation-based estimator P̂ SM,1. When
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median is chosen to be the binding function, the simulation-based estimator P̂ SM,2 is always

median-unbiased. (3)Both of the simulation-based estimators do not significantly increase

the variance or RMSE over those of P̂OLS . In some cases, P̂ SM,1 even produces smaller

variance and RMSE.

In the third simulation, we keep τ fixed, let α vary. Now, the model is,

P̂i(τ,Xi) = Pi(σ
2; τ,Xi) + εi, εi ∼ N(0, σ2

e) (3.3)

Similar as before, we define the following notations and parameter values.

αi = 0.95, 1, 1.1 , and αn+1 = 1.2

S0 = 100

r = 0.05

σ2 = 0.4

Xi = αi · S0 · exp(r · τ),

Pi(σ
2; τi, Xi) = S0φ(d1)−Xi exp(−r · τi)φ(d2)

Here, for any given τ , the data we observe are the option prices of time-to-maturity τ

with different α. We want to estimate the price of the option of the same time-to-maturity

with α = 1.2, given the price of the option of α = 0.95, 1, 1.1. This experiment is replicated

5000 times. Same as before, we take σe around 10% of the theoretical option price. The

simulation results are shown from Table 3.15 to Table 3.17.

Table 3.15 τ = 21/250, True value P=1.6856, σe = 1

Estimator mean bias (in %) std err RMSE median median bias (in %)
σ̂2 0.4006 0.1441 0.0333 0.0333 0.4000 0

P̂OLS 1.6890 0.2039 0.2020 0.2020 1.6856 0
P̂ SM,1 1.6856 -0.0014 0.2024 0.2024 1.6822 -0.2042
P̂ SM,2 1.6888 0.1927 0.2019 0.2019 1.6856 0

Table 3.15 shows the simulation results of the option of time-to-maturity 1 month

(21/250). By Black-Scholes model, the true value of this call option is 1.6856. Here, we

take σe = 1. The percentage bias of the OLS estimator of σ2 is 0.1441%. P̂OLS has little

percentage bias, say 0.2039%. The bias is further reduced by the simulation-based estimator

P̂ SM,1 to -0.0014%. When median is taken as the binding function, the simulation-based

estimator P̂ SM,2 is median-unbiased. Moreover, both of the simulation-based estimators do

not significantly increase the variance or RMSE over P̂OLS .

Table 3.16 and Table 3.17 show the simulation results of the option of time-to-maturity
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Table 3.16 τ = 63/250, True value P=6.0749, σe = 1

Estimator mean bias (in %) std err RMSE median median bias (in %)
σ̂2 0.4008 0.2004 0.0373 0.0373 0.4001 0.0195

P̂OLS 6.0778 0.0475 0.5412 0.5412 6.0761 0.0187
P̂ SM,1 6.0749 -0.0008 0.5416 0.5416 6.0732 -0.0289
P̂ SM,2 6.0767 0.0284 0.5417 0.5417 6.0749 0

Table 3.17 τ = 126/250, True value P=11.0967, σe = 1.5

Estimator mean bias (in %) std err RMSE median median bias (in %)
σ̂2 0.4010 0.2383 0.0397 0.0397 0.4001 0.0195

P̂OLS 11.0985 0.0166 0.8730 0.8730 11.0984 0.0155
P̂ SM,1 11.0966 -0.0005 0.8735 0.8735 11.0965 -0.0011
P̂ SM,2 11.0964 -0.0024 0.8729 0.8729 11.0967 0

3 month (63/250)and half a year (126/250) respectively. The results are quite similar as

that of Table 15. We find out that the simulation-based estimator P̂ SM,1 can always re-

duce the percentage bias of P̂OLS . If the median is chosen to be the binding function, the

simulation-based estimator P̂ SM,2 is median-unbiased. Moreover, both of the simulation-

based estimators do not significantly increase the variance or RMSE over P̂OLS .
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4 Conclusion and Further Studies

In this paper, we extend the simulation-based estimation method proposed by Phillips

and Yu (2009) to the cross-sectional case. In order to illustrate their finite-sample properties,

we conduct Monte-Carlo simulations of this simulation-based method to both the time-

series model and the cross-sectional model of the option prices. The simulation results

show that the proposed simulation-based estimator can always reduce the percentage bias

over the respective MLE and OLS estimator. Meanwhile, the simulation-based estimator

does not significantly increase the variance or RMSE over their correspondent MLE and

OLS estimator. The findings are consistent with Phillips and Yu (2009) of the time-series

case. However, this paper does not consider the problem of misspecification. In further

studies, we can analyze how this simulation-based estimator will perform when the model

is misspecified.
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