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Parametric Estimation of Monthly Volatility Using
Autoregressive Conditional Duration Models
Liu Shouwei

Abstract:

This paper employs a method to estimate monthly volatility by integrating the conditional return
variance over a month using the autoregressive conditional duration (ACD) models. The ACD
models fit the daily data surprisingly well. Maximum likelihood Estimation (MLE) method is
used to estimate the conditional expected duration equation, which is assumed to follow the aug-
mented ACD models. The estimated monthly stock volatility are adopted to investigate, if any,
the link between macroeconomic variability and the stock market volatility. We find that, for the
period 1944/01-1975/06, PPI inflation, monetary base growth and industrial production predict
stock market volatility very well, which are estimated by ACD methods; the monthly stock volatil-
ity, estimated from ACD models, also helps predict the macroeconomic volatility in the period
1975/07-2008/12.
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1 Introduction

The volatility of stock returns has been a hot issue for research since a very long time but
still searching for the factors affecting them. The financial econometrics literature has been
strikingly successful at measuring, modeling, and forecasting time-varying return volatility,
contributing to improved asset pricing, portfolio management, and risk management, as
surveyed for example in|Andersen et al.| (2006a) and |Andersen et al.| (2006b). Interestingly,
the otherwise-massive financial econometric volatility literature is largely silent on the links,

if any, between asset return volatility and its underlying determinants.

In the present value model such as Shiller’s, a change in the volatility of either future
cash flows or discount rates causes a change in the volatility of stock returns. If the volatility
of real activity changes, the volatility of stock returns will change. From the point of aggre-
gate level, the value of corporate equity clearly depends on the health of the economy. If
macroeconomic data provide information about the volatility of either future expected cash
flows or future discount rates, they can help explain why stock return volatility changes over

time.

If the underlying business risk of the firm rises, the risk of both the stock and the bonds
of the firm should increase. If leverage increases, both the stocks and the bonds of the
firm become more risky. Thus, in many instances the risk of corporate stock and long-term

corporate debt should change over time in a similar way.

Interest rates are determined by monetary policy of a country according to its economic
situation. High interest rates induce the investors to keep their money deposited in saving
accounts to get high interest rather to put it into risky stock market. As the risk free returns
come down, investors switch their money from bank accounts to stock market investments.
Consequently, demand of stocks increases and the stock markets go up as a result of in-
terest rate cut. Thus, interest rates determined by monetary policy of economy has also
been considered as an important factor to determine the stock return variance. However no
unanimous viewpoint about the predictive power of interest rates to determine stock return

variance has yet been observed.

The stock returns analyzed above all measure nominal payoff. When inflation of good’s
prices is uncertain, the volatility of normal asset returns should reflect inflation volatility.
Monetary policy, as the most credible means to achieve sustainable economic growth, pri-

marily focused on stability of the general level of prices of goods and services. Monetary
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policy is also a determinant of interest rate. Thus, there must exist a link between the stock

return volatility and the monetary policy.

Movements in the stock market can also have a significant impact on the macroeconomy
and are therefore likely to be an important factor in the determination of macroeconomic
volatility. Stock market also plays a vital role in assessing its economic conditions in any
economy. Improved stock returns means higher profitability of firms and thus overall growth
of economic, and vice verse. Stock market basically serves as a channel to direct the funds
from individuals to investors by mobilizing individually-owned resources. With this role
of the stock market, volatility in stock price can significantly affect the performance of
financial sector as well as the entire economy. Stock return volatility refers to the variation
in stock price changes during a period of time. Normally investors and agents perceive this
variation as a measure of risk. The policy makers use market estimates of volatility as a tool
to measure the vulnerability of the stock market. An unexpected increase in volatility today
leads to the upward revision of future expected volatility and risk premium, which further
leads to discounting of future expected cash flows at an increased rate, which in turn results

in lower stock prices or negative returns today (Pindyckl (1984)).

Since the frequency of most obtainable macroeconomic factor data are monthly (such
as, industrial production index), the estimation of monthly stock volatility is becoming in-

creasing important in the macro-finance research field.



2 Literature Review

Schwert (1989) analyzes the relation of stock volatility with real and nominal macroeco-
nomic volatility, also economic activity, financial leverage, and stock trading activity using
monthly data and conclude a volatility puzzle, which is, the stock volatility is not more
closely related to other measures of economic volatility. This is probably the first compre-
hensively research investigation in stock market volatility and macroeconomic factors. In
his paper, he uses two methods to estimate the monthly stock market volatility. The first one

is sum of the squared daily returns,

Ny
ol =) 7 2.1
=1

where -y;; 1s the daily return subtracting the average return in the month ¢. The second
method is monthly volatility estimated from monthly data (thereafter we call it rolling

volatility). The procedure for obtaining rolling monthly volatility is as follows:

(1) Estimate a 12th-order autoregression for the returns, including dummy variables to

allow for different monthly mean returns, using all data available for the series,
12 12
Ri=> a;Dj+ Y BiR1+e 2.2)
j=1 i=1

(2) Estimate a 12th-order autoregression for the absolute values of the errors form (2.2),

including dummy variables to allow for different monthly standard deviations,
12 12
& = wDj+ > pileisil +w (2.3)
j=1 i=1

(3) The regressand |€;| is an estimate of the standard deviation of the stock market return
for month ¢ similar to ;. The fitted values from (2.3) estimate the conditional standard

deviation of R?; , given information available before month ¢.

The rolling volatility is similar to the autoregressive conditional heteroskedasticity
(ARCH) model proposed by [Engle (1982). Actually it is a generation of the 12-month
rolling standard deviation estimator used by |Officer (1973), Fama (1976), and Merton
(1980). The monthly volatility series was obtained by estimating the standard deviation
of the stock return for the first 12 months of data, then the first month was dropped and

the thirteen month was added to obtain a new estimate. Each estimate was centered at its
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approximate midpoint, for example, 6 months. This procedure was followed until the last

month of data was included in an estimate.

The rolling methods have given way to ARCH and GARCH models, since the first ap-
pearance of ARCH and GARCH models. ARCH model was proposed by |[Engle| (1982),
but often requires many parameters to adequately describe the volatility process of an as-
set return. [Bollerslev! (1986) proposed a useful extension known as the generalized ARCH
(GARCH) model. For a long return series 7, let a; = 7; — u; be the innovation at time ¢,
then q, follows a GARCH(m,s) model if

m S
2 2 2
a; = 0464, o, =g+ g oa;_; + E ﬁjat_j 2.4)
i=1 j=1

where ¢; is a sequence of iid random variables with mean O and variance 1, ooy > 0, c; >
0,6; > 0and Zz’iaf(m’s) (a; + ;) < 1. The latter constraint on «; + (3; implies that the un-
conditional variance of return series a, is finite, whereas its conditional variance af evolves
over time. ¢; is often assumed to be a standard normal or standardized Student-t distribu-
tion or generalized error distribution. To overcome some weaknesses of the GARCH model
in handling financial time series analysis, many improved version are studied such as, the
integrated GARCH model, the GARCH-M model, the exponential GARCH model etc.

Since the seminal work of |/Andersen et al.| (2001b), realized volatility has been actively
studied, both theoretically and empirically. To estimate a model for the volatility of the
return on the stock market index, we first construct measures of “actual” volatility using
daily data. If the daily returns data do not exhibit any autocorrelation, the variance of the

return in month ¢ can be estimated as

Ny

5= (v —n) 2.5)

i=1
where /N, is the number of trading days in month ¢, ~;; is the return of days in month ¢, and

v; denotes the average daily return in month ¢.

Akgiray (1989) shows that there exists linear dependence in daily return series of market
indexes, and the presence of linear dependence can be attributed to various market phenom-
ena and anomalies. The presence of a common market factor, the problem of thin trading
in some stocks, the speed of information processing by market participants, and day-of-the-

week effects could contribute partially to the observed first-order autocorrelation.

So, if daily returns are positively correlated, the estimation in (2.5) will underestimate

the true volatility of monthly return. Therefore, we follow Akgiray (1989), and use an
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adjusted estimator, based upon the assumption that daily returns in month ¢ are appropriately
described by a first-order autoregressive process with coefficient ¢;. In particular, we use
the following measure for realized monthly volatility.

N Ne—1
RV, = (v —w)’[L+2N" > (N — )] (2.6)

i=1 j=1
In this paper, we employ a method to estimate monthly volatility by integrating the
conditional variance obtained from the ACD models. The ACD-ICV method was first pro-
posed by [T'se and Yang (2009) to estimate high-frequency volatility. They compared daily
ACD-ICV estimate against several version of the realized volatility method, and find that
ACD-ICV provide the smallest RMSE and ACD-ICV estimates perform well for intraday
volatility estimation over 15-min and 1 hour intervals. In our work, we also investigate the
relation between stock volatility and macroeconomic factors, and find that, in the early pe-
riod of the sample, the macroeconomic volatility can predict the stock market volatility very
well; whereas the stock market volatility play an vital role in predicting the macroeconomic

volatility in later period.



3 ACD Models and Monthly Volatility

The ACD model was first proposed by Engle and Russell (1998)) to analyze the durations
of transaction data. A recent review of the literature on the ACD models and their applica-
tions to finance can be found in[Pacurar (2008)). Analogous to the generalized autoregressive
conditional heteroscedasticity (GARCH) models, which capture the clustering of volatility,
the ACD model analyzes the clustering of transaction durations. The latter phenomenon
describes the stylized fact that short (long) transaction durations tends to be followed by
short (long) transaction durations. Following [Engle and Russell (1998)), the research of [Tse
and Yang| (2009) shows that the instantaneous variance per unit time derived from the ACD
model can be used to calculate the integrated volatility over a time interval, thus providing
a parametric daily (even intraday) estimate of volatility. In this section, we first review the
ACD model and its augmented version, the empirical estimation of these models. We then

outline our method for the estimation of monthly volatility using the ACD models.

3.1 ACD Models

Consider a sequence of times %, ¢y, - - - , ¢t in which ¢; denotes the time of the ith trans-
action. Thus, z; = t; — t;,_q, fort = 1,2,--- , N are the intervals between consecutive
transaction, called transaction duration. In this paper we consider the daily price index du-
ration, which is defined as the time interval need to observe a cumulative change in the index
of at least §. Thus from day ¢; _; to t;, the index changes by at least an amount 9, whether

upwards or downwards. The occurrence of this incident is called a price index change event.

Let ®; denote the information set upon the day ¢;. We denote ¢; = E(x;|®;_1) which is

conditional expectation of the price index duration. We assume that

P—— i=1,2,---,N 3.1)
Pi
are a sequence of i.i.d. positive random variables with mean 1 and density function f(-).
Thus, the hazard function of ¢; is 0
f(
M) = < (3.2)
S()

where S(-)is the survival function of €;. Assuming ¢; is known given ®,_, the conditional



hazard function (also called the conditional intensity) of xz;, denoted by A, (x;|®;_1), is

Ao (@i|i1) = AM(—)—
fZ_"’tf?l . (3.3)
Vi il
Pi Pi

which is related to the base hazard function A(-).

To model the conditional duration ¢;, Engle and Russell| (1998)) proposed the AC D(p, q)
defined by

p q
pi=wt ) amig+ ) Bipi (3.4)
i=1 j=1
In particular, setting p = ¢ = 1, we obtain the AC'D(1, 1) which is,

©i = w+ a1 + Bri (3.5)

where o, f and w > O with o + 3 < 1.

Recently, [Fernandes and Grammig| (2006)) proposed some extensions of the AC'D(1,1)
model, incorporating a Box-Cox type transformation with possible asymmetry in duration
shocks. We shall consider their AAC' D model, which is defined by

90? =w+ a@?—1[|5i—1 — bl +c(eim1 — 0)]" + 590?—1 (3.6)

The AAC D model nests the AC'D(1, 1) model as a special case and provides a more flexible
model for the conditional expected duration. The Box-Cox transformation parameter A > 0
determines the shape of the transformation, with A > 1 representing a convex transformation
and A < 1 representing a concave transformation. Asymmetric responses in duration shocks
are permitted through the shift parameter b and the rotation parameter c. In particular, a
clockwise rotation is generated if ¢ < 0 and a counter-clockwise rotation is obtained if
¢ > 0. The shape parameter v assumes a similar role as A\, with v < 1 including concavity
and v > 1 inducing convexity. As in the case of the AC'D(1, 1) model, the parameters «, 3

and w are assumed to be nonnegative.

3.2 Estimation of ACD Models

Given an assumed density function f(-), the maximum likelihood estimates (MLE) of
the parameters of the AC'D equation can be computed straightforwardly. In this model,
g; are assumed to be standard exponential. Under this assumption the hazard function is

constant and does not vary with the duration. Furthermore, the MLE computed using the
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exponential assumption is consistent (provided the conditional expected duration equation

is correctly specified), regardless of the true distribution of the error.

3.3 Estimation of monthly volatility using ACD Models

Given the information ®; at time ¢;, the conditional intensity function defined in equa-
tion (3.3) characterizes the probability that the next price event will occur at time ¢ > ¢;.
Specifically, A\, (z;|®;_1)Ax is the probability that the next price event after time ¢; occurs
in the interval (¢; + z, t; + x + Ax) given the information at time ¢; (which includes the fact
that there is a price event at time ¢;). The instantaneous return variance per unit time at time

t; is defined as
p(t+ At) —p(t)

p(t)

where p(t) is the price at time ¢. From [Engle and Russell (1998), we see that the condi-

o2() = Tim {—Var]

Atmo A i G-D

tional instantaneous return variance per unit time give information ®; at time ¢;, denoted by
o (t|®;), is

o2 (t|®;) = (§)2>\x(x|<1>i_1) (3.8)

(2

where v =t — t;, t > t; and Using equation (3.3), we have

5 t—t;. 1
o?(t|®;) = (=)*A( ,
Di Pit+1  Pit1

t>t (3.9)

where ;1 = F(;11|®P;) is the conditional expected duration of the next price event given
®;, and \(-)is the base hazard function (of ¢;). Thus, the integrated variance IV over the

interval (¢;,¢;11) , denoted by IV, is

tit1
Jcm:/ o (t|®;)dt

t.
i _ (3.10)
0., 1 [t t—t
(o [
bi Pit1 Jy i+l
if ¢; are 7.1.d. standard exponential distributions, then A(-) = 1 and we have
§ otivt — t;
IcV; = (=) [— (3.11)
pi Pi+1

Thus, if g < t; < --- < ty denotes the price events on one month, the integrated volatility
IV of the month is

N-1 + +
<2 z : i+1 7 g
=0 t
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Since ¢; are assumed to be standard exponential and the QMLE method is adopted, the
ACD-IV is,

Nol,o
eV =5Y%" ﬁ (3.13)
i=0 ¢ t

We can also calculate the return duration using the above method. For example, assume

s(t) = log(p(t)), equation (3.7) can be rewritten into,

o*(t) = Alitmo{é‘/ar[s(t + At) — s(t)]} (3.14)
and we have,
o2 (t|®;) = 0° Ny (]| Ps_1) (3.15)

Finally, the estimated volatility of one month is,

N-1

ICV =6") el (3.16)

—  Pitl
In this paper, we will use the logarithm of the price index series instead of price index
to model the duration series, so there is little difference from the research of Tse and Yang
(2009). As a matter of fact, in our work, there is a price event when the accumulative index
return excess d, and there is a price event when the accumulative change of price exces &
Tse and Yang| (2009). The levels of § and ¢ are also very different because of the logarithm

procedure we take.



4 Data

The daily data used in this paper are extracted from the Center for Research in Security

Prices (CRSP) database and Datastream. I download and compile the daily stock market
index data of U.S.A. from CRSP database. The data of U.K., Australia, Japan and Canada

are from Datastream. Table 1 shows the data description of each country. For instance,

within the index of Nikkei 225, there is 696 month in the whole sample period and the

entire sample period is 1951/01-2008/12.

From Table 1, we can see that the minimum of the daily stock market index is 3.0863,

the maximum of the daily index is 4477.9 in the USA stock market. As time passed by, there

were rapid growth in Economic and Financial areas and so did the stock index. In order to

make the index series a smooth time series, we take the logarithm of the index and equation

(3.16) will be used to estimate monthly volatility.

Table 1: Data description of each country

Country U.S. U.K. Japan Australia Canada
Begin of Date 1944-01-03  1969-01-01 1951-01-01 1980-01-01  1969-01-01
End of Date 2008-12-31 2008-12-31 2008-12-31 2008-12-31 2008-12-31
Name of Index NYSE* FTSE Nikkei 225 ASX S&P/TSX
Number of days 16645 10436 15133 7567 10436
Number of month 780 480 696 348 480
Average Days per Month 20.3 20.7 20.7 20.7 20.7
Minimum index 3.0863 61.92 101.91 443.1 800.29
Maximum index 44779 3479.0 38916 6853.6 15073

Notes: The price index of American stock market including dividends to the Value-weighted portfolio

of all New York Stock Exchange (NYSE) stocks.
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Duration evolution over the entire sample period
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Fig 1: The average duration of five years is calculated when the price index return change is 2%. We then roll over
the entire sample one year at a time by dropping the first one year and adding the next one year duration. This is done
until the last year is included.

There are about 20 days excluding weekends and public holidays in each month. Firstly, we take
the logarithm of the price index, then interpolate one day into 10 parts using linear interpolation in
case there is some big index change within one day. There are more than 200 observations in one

month, and the duration we have will not be integer any more.

There is little difference between the price index change in this paper and price change [Engle and
Russelll (1998)) has proposed. After taking the logarithm of the index series, we define the logarithm
price index change as the logarithm index of the current observation subtracting the logarithm price
index of previous observation(in another word, the difference between two consecutive observations
is return). If the accumulate index return excess the threshold &, we call it a return invent. We arrange
the threshold ¢ from 1% to 3.25% by incremental 0.25%. Table 2 are the statistics of the duration
series of each country. From Table 2 we can see that all the statistics (Mean, Median, Maximum and

Minimum) increase as d increases except the sample size.

Autoregressive Conditional Duration (ACD) models are widely used to model durations of in-
traday transactions. To manipulate the intraday data, we need to correct for the opening auction and
time-of-day effects; we also have to take account of the diurnal factor. But for daily data, although

the whole sample period is much longer than intraday data, we do not have so many observations as
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intraday data. Since manipulating a much longer period of daily data, we have to consider market
liquidity. In the early part of the sample period, it took longer time for the market price index return
to move by §. The average value of the durations in the first five years is taken as the initial expected
duration. Fig 1 is the plot of duration evolution of five years rolling frequency when the price index
return threshold is 2%. The plots are pretty much the same when the price index return threshold
differs from 2%. From Fig 1, we can see, there is a strong decreasing trend of the duration in the
cases of the stock markets in U.S.A. and Japan. Since the sample period of the other countries are
not as long as U.S.A. and Japan, the trend are not obvious. In order to model market liquidity, the

time trend are considered in the AACD model,

0} =wHni+ o) [lei-1 — b+ c(ei_1 — b)]" + B, (4.1)

where ¢ is the time in the sample period. Equation (4.1) is exactly the same with equation (3.6)

without time trend, and we expect 77 to be negative.

— 13-



S Empirical Results

In this part, we first estimate whether the AACD models fit the daily data well or not, and find the
AACD models do fit the daily data very well. Then, we use the estimated parameters to calculate the
monthly volatility by equation (3.16). After that, we select the optimal index return threshold §*, and

use that model to investigate the link between stock market volatility and macroeconomic factors.
5.1 Results of AACD Model Estimation

Since we have a long time period of daily data, the AACD models with time trend (which is
equation (4.1)) are consider to be estimated and to construct the monthly volatility. Tables 3a-3e (see
3b-3e in the Appendix) shows the results of estimation of U.S., U.K., Japan, Australia and Canada,

respectively.

The asymptotic standard errors estimated here are the same with|Fernandes and Grammig|(2006).
We employ the outer-product-of-the-gradient (OPG) estimator of the information matrix since the
absolute value function in the shocks impact curve makes Hessian-based estimates tricky to compute

due to numerical problems.

From table 3a - 3b, we can see that, all the estimated parameters are significantly different from
zero except the rotation parameters c. The Box-Cox transformation parameter A are all greater than
zero although very close to zero in some cases (U.S.A 2.5%, U.K. 2%, U.K. 2.75%, Japan 1%, and
Japan 1.5%). ) is smaller than one in all the cases and smaller than 0.1 in most cases, which represent
concave transformation. Because durations are nonnegative, the shift parameters b are important to
the identification of the asymmetric response implied by the shocks impact curve. The parameter c
determines whether rotation is clockwise (¢ < 0) or counter-clockwise (¢ > 0). From these tables,
we can see ¢ > 0 in all the cases for the stock market of U.S.A and Canada. In some cases ¢ < (
(UK. 1.5%, UK. 2%, U.K. 2.25% etc). Indeed, the shift parameter affects mostly small shocks,
whereas rotation parameter is dominant for large shocks. Despite the fact that b are significantly
different from zero, the standard error of ¢ are quite large, showing that the shocks impact curve

features no rotation.
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Fig 2: Shocks impact curves for the AACD model of each country when the price index return change is 0.02.

From Fig 2, we can see ¢ =-0.1367 for Austria, compared to Canada of which the other parameter
are very close to each other, the shock impact curve is more flat. The shape parameter v assumes a
similar role as A. For country U.K., v is close to zero and the shock impact curve turns out to be a
flatter line. Time trend parameter 7 is negative for all the cases of U.S.A, Japan and Canada, which
indicates that for these stock market, it took a longer time for the market price to move by ¢ in the
early part of the period.

Q(12) describes Ljung-Box Q-statistic lack-of-fit hypothesis test of €; with lags up to 12 and the
critical value is 21.0261. From the Q(12), we cannot reject that € is a sequence of i.i.d. random
variables (except Australia 1.5%). From this section, we conclude that AACD models fit the daily

data very well.
5.2 Estimation of Monthly Volatility

In this section, we will calculate the monthly volatility by equation (3.16) using the parameters
estimated in the last section. If a index return event spread across two (or more than two) month,
the accumulated volatility during the index return event is divided into two (or more than two) parts

according to their weight in each month. We then annualized the integrated volatility by +/(vol * 12).
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Table 4 is the description of the monthly volatility calculated from AACD methods. From Table
4 we can see that when the index return threshold increases, the level of monthly volatility shifts
up (the average of monthly volatility of each county increases); the variation of monthly volatility
becomes bigger. Figure 3 presents the plots of monthly volatility when ¢ changes from 1% to 3%
by an incremental of 1%. From the same figure, we can also see the level of volatility shifts up as ¢

increases.

We can see that, in this section, the monthly volatility estimated from AACD models are very

sensitive to the index return threshold.
5.3 Model Selection

Since for different index return threshold, the estimated monthly volatility are different, the op-

timal index return threshold §* is the following task we will face.

For daily data, as mentioned earlier, daily returns are positively correlated; equation (2.5) will
underestimate the true volatility of daily return. Therefore, we use an adjusted estimator based
upon the assumption that daily returns within month ¢ are appropriately described by a first-order
autoregressive process. In particular, we use the measure of realized monthly volatility by equation
(2.6) as the true monthly volatility, then, we employ the cross-validation, a data-driven selection
method, to calculate the integrated square error between adjusted monthly realized volatility and

monthly volatility estimated from AACD method. Consider the integrated square error,

Tu
ISE(8) = / (02 — 522 0<Ty<Tu<T (5.1
T,

where o2 is the true monthly volatility and &2 is the estimated monthly volatility, 7; and T'u are the

lower and upper bound, respectively. In our case, the integrated square error will be

N
ISE(s) = Y[RV (i) — ACDIV (i)]* (5.2)
i=1
where IV is the number of month in the sample period. We then define the cross-validated index

return threshold as d,, = argmin5>0@ (0)

In case that the realized volatility miss-estimates the true monthly volatility, we also compute
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the average standard deviation of monthly volatility series, using delta method, to select the optimal
index return threshold. The parameters 6 of AACD model are estimated from Maximum likelihood
estimation (MLE). Suppose that conditions for consistency of maximum likelihood are satisfiedd,

then the maximum likelihood estimator has asymptotically normal distribution,

~

Vvl —0) — N(0,Q) (5.3)

where 6 is the true value of parameters. Since the monthly volatility is a function of the parameters
estimated from the AACD model, we can employ delta method to estimate the standard deviation of

monthly volatility.

Vn(voly(6) — voly(0)) — N (0, yvoll (0) - Q - gvoly(6)) (5.4)

from equation (5.4), we can see that the monthly volatility also has an asymptotically normal distri-
bution. After this is done, we expect a small average standard derivation of monthly volatility series
with respect to the optimal index return threshold. We also calculate the correlation between the

monthly volatility estimated from ACD method and realized volatility.

Although we use the integrated square error between adjusted monthly realized volatility and
monthly volatility estimated from ACD method to select the optimal J, we also should take into
account the case that the realized volatility is not the true monthly volatility. In order to avoid miss-
estimating of realized monthly volatility, we select several smaller § instead of the smallest one
compared to the others. From table 5, we can see that IS/\E(é ) is smaller when the price index return
threshold § are 2%, 2.25% , 2.5% and 2.75%. The correlations between monthly volatility estimated
from ACD method and Realized method decreases when 4 increases. The average standard deviation
of monthly volatility is very small when 0 are 1.5%, 1.75% and 2%. Compared with all the factors,

0 = 2% is the optimal index return threshold.

The same reason, the optimal ¢ is 2.25%, 2.5%, 2.5% and 2.25% for U.K., Japan, Australia and
Canada respectively. From this section, we can see that there are 2-3 index return events with respect

to the optimal §.

® Newey & McFadden (1994, Theorem 3.3.)
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6 Stock Market and Macroeconomy

The link between the macroeconomy and the stock market has been intuitive appeal, as macroe-
conomic variables affect both expected cash flows accruing to stockholders and discount rates. A
common theoretical framework connecting stock prices to fundamentals is the dividend discount
model. According to this model, new macroeconomic information will affect stock prices if it im-

pacts on either expectations about future dividends, discount rates, or both.

Empirically, the evidence linking macroeconomic factors to the stock market is mixed at best.
Chen et al.| (1986) were one of the first to explore the link between macroeconomic variables and
stock prices. Using a multifactor model, they found evidence that macroeconomic factors are priced.
Some researchers also conclude that stock prices respond to macroeconomic news. Subsequent stud-

ies have produced more mixed results.

Moving from first to second moments, [Veronesi| (1999)) presents a theoretical model that for-
malizes the link between economic uncertainty and stock market volatility. He shows that investors
are more sensitive to news during periods of high uncertainty, which in turn increases asset price
volatility. Yet establishing the empirical link between the second moments of stock returns and
macroeconomic variables has proven to be even more challenging than that between their first mo-

ments.

Schwertl (1989) analyzes the relation of stock volatility with real and nominal macroeconomic
volatility, also economic activity, financial leverage, and stock trading activity using monthly data
and conclude there is a volatility puzzle, which is, the stock volatility is not more closely related to

other measures of economic volatility.

In this section, we will follow the analysis of [Schwert (1989) using monthly volatility estimated
from ACD models to find whether there is a link between macroeconomic factors and stock market

volatility.

As|Schwert (1989) described, it is useful to think of the stock price P; as the discounted present

value of expected future cash flows to stockholders:

D
Ei_1P, = By 12 1+Jt%+kk ©6.1)
t+
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Fig 4: Predictions of the monthly annualized monthly volatility based on ACD-IV, Realized volatility and Rolling
Volatility (MV for convenience).

where Dy, is the dividends paid to stockholders in period ¢ + k and 1/[1 + Ry, ] is the discount

rate for period ¢ 4 k based on the information available at time ¢ — 1.

Since common stocks reflect claims on future profits of corporations, it is plausible that the
volatility of real economic activity is a major determinant of stock return volatility. In the present
value model, the volatility of future expected cash flows, as well as discount rates changes, if the
volatility of real activity changes. As mentioned in the introduction of this paper, the bond return
volatility, interest rate, PPI inflation, monetary base growth and industrial production have a plausible
link with the stock market. Also, movements in the stock market can also have a significant impact
on the macroeconomy and are therefore likely to be an important factor in the determination of
macroeconomic volatility. In our analysis, since we can only get the monthly data of the economic
variables, the macroeconomic variable volatilities are estimated using equation (2.2)and equation
(2.3).

For the stock market return volatility, we use the rolling volatility (MV for convenience), realized
volatility and conditional monthly volatility from AACD method to estimate the monthly volatility.
Fig 4 plots the predicted annualized monthly volatility of three measures. From the figure we can
see that the rolling volatility is more fluctuant than the other two measures. The monthly volatility

estimated by ACD model traces the Realized volatility extremely well, but is more smooth than
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Fig 5: Predictions of the monthly annualized monthly stock market volatility based on ACD-IV, and annualized
monthly macroeconomic volatility based on Rolling Volatility.

realized volatility when realized volatility jump up. All the monthly volatility measures share the

same evolution trend.

Table 5 contains means, standard deviations, skewness, and kurtosis coefficients and autocorre-
lations of the estimates of stock volatility based on the rolling volatility, realized volatility, AACD

measure, and also the monthly volatility of short-interest rate, bond return, PPI inflation, money
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growth and industrial production based on rolling volatility. From Table 5, we can see the level of
stock market volatility based on ACD methods is much bigger than the macroeconomic volatility,
but the standard deviation of stock market volatility based on the ACD methods is smaller than each
macroeconomic volatility based on rolling volatility. This can also can be seen from Fig 5. Some-
times the macroeconomic volatility based on rolling volatility is bigger than stock market volatility
based on ACD methods. Table 5 also contains the unit root test of the volatility series. From the

T-statistic and P value, we conclude that the volatility series are stationary.

Table 6a contains tests of the incremental predictive power of 12 lags of PPI inflation volatility
in a 12th-order vector autoregressive (VAR) system for stock volatility, bond return volatility, and
short-term interest volatility that allows for different monthly intercepts. The VAR model uses both
the monthly measure (Rolling Volatility) and daily measure (Realized Volatility and ACD-IV) of
stock market volatility. The F-statistics measure the significance of the lagged values of the column

variable in predicting the row variable, given the other variables in the model.

The largest F-statistics are on the main diagonal of these matrices, and the size of the statis-
tics decrease away from the diagonal. For example, lagged stock volatility is the most important
variable in predicting current stock volatility. Lagged PPI inflation volatility also helps in the period
1944/01-1975/06. Lagged bond return volatility and short-term interest rate volatility contribute less.
Likewise, stock volatility estimated by realized volatility helps predict PPI inflation volatility in pe-
riod 1944/01-1975/06; stock volatility estimated by Rolling method and ACD method help to predict
the PPI inflation volatility in period 1975/07-2008/12. There is a strong evidence that bond return
volatility helps predict short interest rate volatility; Interest rate helps predict bond return volatility

in period 1975/07-2008/12.

Table 6b contains tests of the incremental predictive power of 12 lags of monetary base growth
volatility in a 12th-order VAR system similar to table 6a. There is strong evidence that monetary
base growth volatility predicts the stock return volatility estimated by both ACD method and rolling
method. Also, the stock return volatility estimated by ACD methods can predict monetary base
growth volatility in both periods 1944/01-1975/06 and 1975/07-2008/12. The link between interest

rate and bond return is the same with Table 6a.
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Table 6¢ contains tests of the incremental predictive power of 12 lags of industrial production
volatility in a 12th-order VAR system similar to Table 6a and Table 6b. From table 6¢ industrial
production volatility predicts stock volatility estimated by ACD method very well in period 1944/01-
1975/06. Stock volatility estimated by ACD method can predict industrial production volatility in
period 1975/07-2008/12. Bond return volatility still predicts interest rate very well; interest rate

contribute less in predicting bond return in this case.

To sum up, bond return volatility help a lot in predicting stock volatility estimated by both rolling
method and realized method in period 1944/01-1975/06 but not in period 1975/07-2008/12. Interest
volatility contributes less. PPI inflation volatility predicts stock volatility in period 1944/01-1975/06.
Monetary base growth volatility helps much in prediction of stock volatility estimated by rolling
method and ACD method in the entire sample period. Industrial production volatility help much to
predict stock volatility estimated by ACD method in period 1944/01-1975/06. There is also strong
evidence that stock volatility estimated by ACD method can predict macroeconomic volatility in

period 1975/07-2008/12.

There are also strong evidence that bond return volatility can predict interest rate volatility using

all three measures in the entire sample period.

From the table 6a-6¢, PPI inflation, monetary base growth and industrial production predict stock
market volatility using ACD methods very well in the period 1944/01-1975/06; the stock market
volatility estimated from ACD models also predict PPI inflation, monetary base growth and indus-
trial production very well in the period 1975/07-2008/12. It is big improvement compared to the
performance of realized volatility and rolling volatility. In the early period, the stock market was not
developed as the recent decades, the transactions in one day are very thin. The individual and the
firm perform their transaction according to their economic situations, no wonder the macroeconomic
volatility predict the stock market volatility well. As the economic develops, stock transactions be-
come more and more frequently, there are not only investor but also speculators in the market.The
stock market volatility become an predictor of the macroeconomic factors.

In this section we employ stock volatility estimated from ACD method, compared with rolling
volatility and realized volatility, to test the link between stock market volatility and macroeconomic
factor volatilities. We find that sometime macroeconomic factor volatility can predict stock market

volatility estimated by ACD method but not realized volatility, and sometime macroeconomic factor
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volatility can predict volatility of realized volatility measure but not ACD method. Based on our
methods, in the early period , the macroeconomic factor predict the stock market volatility very well,
and the stock market volatility predicts the macroeconomic volatility very well in the recent decades.

This is different from the research of [Schwertl (1989).
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7 Conclusions

I employ a method to estimate monthly volatility by integrating the variance per unit time ob-
tained from the ACD models. Time trend is inserted into AACD model to model the market liquidity.
The ACD equations are estimated by MLE method. In our empirical test, we find when the index

return threshold increases, the level and variance of monthly volatility increases.

We also compare our method to realized volatility and find that the monthly volatility series
estimated from ACD models are smoother than those realized volatility. In order to find an optimal
price index return threshold, we use integrated square error between ACD-ICV and realized volatility

to select the one makes the smallest integrated square.

We also employ the monthly volatility estimated from ACD methods to test the link between
stock market volatility and macroeconomic factors volatility. We find that sometime macroeconomic
factors volatility can predict volatility estimated from ACD methods but not realized volatility, and
sometime macroeconomic factor volatility can predict volatility of realized volatility measure but
not ACD-ICV measure. ACD-ICV performs better than rolling volatility. The stock volatility of

ACD-ICV measure can also predict macroeconomic factor volatility well.
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8 Appendix

Data series used in Stock Market and Macroeconomy
A. Stock Returns, 1944-2008

I use the daily stock return index from the Center for Research in Security Prices (CRSP). The
index return including dividends to the Value-weighted portfolio of all New York Stock Exchange

(NYSE) stocks.

B. Short-Term Interest Rates, 1944-2008

I use the monthly yields on the shortest term U.S. Government security (90 days T-bills) which

matures after the end of the month from the Government Bond File constructed by CRSP.
C. Long-Term Interest Rates, 1944-2008
I use the high-grade corporate bond yield for 1944-2008, from Federal Reserve Bank.

D. Returns to Long-Term Corporate Bonds, 1944-2008

I use the monthly yields on the long-term U.S. Government security (20 years bond) from the

Government Bond File constructed by CRSP.
E. Inflation Rates, 1944-2008

For the period 1926-2009, I use the Industrial Production Index from Board of Governors of the

Federal Reserve System, not seasonally adjusted.
F. Industrial Production, 1926-2008
I use the index of industrial production from the Federal Reserve Board.

G. Money Supply, 1926-2008

I use the seasonally adjusted monetary base reported by the Federal Reserve Board.
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