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Parametric Estimation of Monthly Volatility Using
Autoregressive Conditional Duration Models

Liu Shouwei

Abstract:

This paper employs a method to estimate monthly volatility by integrating the conditional return
variance over a month using the autoregressive conditional duration (ACD) models. The ACD
models fit the daily data surprisingly well. Maximum likelihood Estimation (MLE) method is
used to estimate the conditional expected duration equation, which is assumed to follow the aug-
mented ACD models. The estimated monthly stock volatility are adopted to investigate, if any,
the link between macroeconomic variability and the stock market volatility. We find that, for the
period 1944/01-1975/06, PPI inflation, monetary base growth and industrial production predict
stock market volatility very well, which are estimated by ACD methods; the monthly stock volatil-
ity, estimated from ACD models, also helps predict the macroeconomic volatility in the period
1975/07-2008/12.
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1 Introduction

The volatility of stock returns has been a hot issue for research since a very long time but

still searching for the factors affecting them. The financial econometrics literature has been

strikingly successful at measuring, modeling, and forecasting time-varying return volatility,

contributing to improved asset pricing, portfolio management, and risk management, as

surveyed for example in Andersen et al. (2006a) and Andersen et al. (2006b). Interestingly,

the otherwise-massive financial econometric volatility literature is largely silent on the links,

if any, between asset return volatility and its underlying determinants.

In the present value model such as Shiller’s, a change in the volatility of either future

cash flows or discount rates causes a change in the volatility of stock returns. If the volatility

of real activity changes, the volatility of stock returns will change. From the point of aggre-

gate level, the value of corporate equity clearly depends on the health of the economy. If

macroeconomic data provide information about the volatility of either future expected cash

flows or future discount rates, they can help explain why stock return volatility changes over

time.

If the underlying business risk of the firm rises, the risk of both the stock and the bonds

of the firm should increase. If leverage increases, both the stocks and the bonds of the

firm become more risky. Thus, in many instances the risk of corporate stock and long-term

corporate debt should change over time in a similar way.

Interest rates are determined by monetary policy of a country according to its economic

situation. High interest rates induce the investors to keep their money deposited in saving

accounts to get high interest rather to put it into risky stock market. As the risk free returns

come down, investors switch their money from bank accounts to stock market investments.

Consequently, demand of stocks increases and the stock markets go up as a result of in-

terest rate cut. Thus, interest rates determined by monetary policy of economy has also

been considered as an important factor to determine the stock return variance. However no

unanimous viewpoint about the predictive power of interest rates to determine stock return

variance has yet been observed.

The stock returns analyzed above all measure nominal payoff. When inflation of good’s

prices is uncertain, the volatility of normal asset returns should reflect inflation volatility.

Monetary policy, as the most credible means to achieve sustainable economic growth, pri-

marily focused on stability of the general level of prices of goods and services. Monetary
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policy is also a determinant of interest rate. Thus, there must exist a link between the stock

return volatility and the monetary policy.

Movements in the stock market can also have a significant impact on the macroeconomy

and are therefore likely to be an important factor in the determination of macroeconomic

volatility. Stock market also plays a vital role in assessing its economic conditions in any

economy. Improved stock returns means higher profitability of firms and thus overall growth

of economic, and vice verse. Stock market basically serves as a channel to direct the funds

from individuals to investors by mobilizing individually-owned resources. With this role

of the stock market, volatility in stock price can significantly affect the performance of

financial sector as well as the entire economy. Stock return volatility refers to the variation

in stock price changes during a period of time. Normally investors and agents perceive this

variation as a measure of risk. The policy makers use market estimates of volatility as a tool

to measure the vulnerability of the stock market. An unexpected increase in volatility today

leads to the upward revision of future expected volatility and risk premium, which further

leads to discounting of future expected cash flows at an increased rate, which in turn results

in lower stock prices or negative returns today (Pindyck (1984)).

Since the frequency of most obtainable macroeconomic factor data are monthly (such

as, industrial production index), the estimation of monthly stock volatility is becoming in-

creasing important in the macro-finance research field.
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2 Literature Review

Schwert (1989) analyzes the relation of stock volatility with real and nominal macroeco-

nomic volatility, also economic activity, financial leverage, and stock trading activity using

monthly data and conclude a volatility puzzle, which is, the stock volatility is not more

closely related to other measures of economic volatility. This is probably the first compre-

hensively research investigation in stock market volatility and macroeconomic factors. In

his paper, he uses two methods to estimate the monthly stock market volatility. The first one

is sum of the squared daily returns,

σ̂2
t =

Nt∑
i=1

γ2
it (2.1)

where γit is the daily return subtracting the average return in the month t. The second

method is monthly volatility estimated from monthly data (thereafter we call it rolling

volatility). The procedure for obtaining rolling monthly volatility is as follows:

(1) Estimate a 12th-order autoregression for the returns, including dummy variables to

allow for different monthly mean returns, using all data available for the series,

Rt =
12∑

j=1

αjDjt +
12∑
i=1

βiRt−1 + εt (2.2)

(2) Estimate a 12th-order autoregression for the absolute values of the errors form (2.2),

including dummy variables to allow for different monthly standard deviations,

|ε̂t| =
12∑

j=1

γjDjt +
12∑
i=1

ρi| ˆεt−i|+ ut (2.3)

(3) The regressand |ε̂t| is an estimate of the standard deviation of the stock market return

for month t similar to σ̂t. The fitted values from (2.3) estimate the conditional standard

deviation of Rt , given information available before month t.

The rolling volatility is similar to the autoregressive conditional heteroskedasticity

(ARCH) model proposed by Engle (1982). Actually it is a generation of the 12-month

rolling standard deviation estimator used by Officer (1973), Fama (1976), and Merton

(1980). The monthly volatility series was obtained by estimating the standard deviation

of the stock return for the first 12 months of data, then the first month was dropped and

the thirteen month was added to obtain a new estimate. Each estimate was centered at its
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approximate midpoint, for example, 6 months. This procedure was followed until the last

month of data was included in an estimate.

The rolling methods have given way to ARCH and GARCH models, since the first ap-

pearance of ARCH and GARCH models. ARCH model was proposed by Engle (1982),

but often requires many parameters to adequately describe the volatility process of an as-

set return. Bollerslev (1986) proposed a useful extension known as the generalized ARCH

(GARCH) model. For a long return series γt, let at = γt − ut be the innovation at time t,

then at follows a GARCH(m,s) model if

at = σtεt, σ2
t = α0 +

m∑
i=1

αia
2
t−i +

s∑
j=1

βjσ
2
t−j (2.4)

where εt is a sequence of iid random variables with mean 0 and variance 1, α0 > 0, αi ≥
0, βj ≥ 0 and

∑max(m,s)
i=1 (αi + βi) < 1. The latter constraint on αi + βi implies that the un-

conditional variance of return series at is finite, whereas its conditional variance σ2
t evolves

over time. εt is often assumed to be a standard normal or standardized Student-t distribu-

tion or generalized error distribution. To overcome some weaknesses of the GARCH model

in handling financial time series analysis, many improved version are studied such as, the

integrated GARCH model, the GARCH-M model, the exponential GARCH model etc.

Since the seminal work of Andersen et al. (2001b), realized volatility has been actively

studied, both theoretically and empirically. To estimate a model for the volatility of the

return on the stock market index, we first construct measures of ”actual” volatility using

daily data. If the daily returns data do not exhibit any autocorrelation, the variance of the

return in month t can be estimated as

σ̂2
t =

Nt∑
i=1

(γit − γt)
2 (2.5)

where Nt is the number of trading days in month t, γit is the return of days in month t, and

γt denotes the average daily return in month t.

Akgiray (1989) shows that there exists linear dependence in daily return series of market

indexes, and the presence of linear dependence can be attributed to various market phenom-

ena and anomalies. The presence of a common market factor, the problem of thin trading

in some stocks, the speed of information processing by market participants, and day-of-the-

week effects could contribute partially to the observed first-order autocorrelation.

So, if daily returns are positively correlated, the estimation in (2.5) will underestimate

the true volatility of monthly return. Therefore, we follow Akgiray (1989), and use an
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adjusted estimator, based upon the assumption that daily returns in month t are appropriately

described by a first-order autoregressive process with coefficient φt. In particular, we use

the following measure for realized monthly volatility.

RVt =
Nt∑
i=1

(γit − γt)
2[1 + 2N−1

t

Nt−1∑
j=1

(Nt − j)φ̂j
t ] (2.6)

In this paper, we employ a method to estimate monthly volatility by integrating the

conditional variance obtained from the ACD models. The ACD-ICV method was first pro-

posed by Tse and Yang (2009) to estimate high-frequency volatility. They compared daily

ACD-ICV estimate against several version of the realized volatility method, and find that

ACD-ICV provide the smallest RMSE and ACD-ICV estimates perform well for intraday

volatility estimation over 15-min and 1 hour intervals. In our work, we also investigate the

relation between stock volatility and macroeconomic factors, and find that, in the early pe-

riod of the sample, the macroeconomic volatility can predict the stock market volatility very

well; whereas the stock market volatility play an vital role in predicting the macroeconomic

volatility in later period.
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3 ACD Models and Monthly Volatility

The ACD model was first proposed by Engle and Russell (1998) to analyze the durations

of transaction data. A recent review of the literature on the ACD models and their applica-

tions to finance can be found in Pacurar (2008). Analogous to the generalized autoregressive

conditional heteroscedasticity (GARCH) models, which capture the clustering of volatility,

the ACD model analyzes the clustering of transaction durations. The latter phenomenon

describes the stylized fact that short (long) transaction durations tends to be followed by

short (long) transaction durations. Following Engle and Russell (1998), the research of Tse

and Yang (2009) shows that the instantaneous variance per unit time derived from the ACD

model can be used to calculate the integrated volatility over a time interval, thus providing

a parametric daily (even intraday) estimate of volatility. In this section, we first review the

ACD model and its augmented version, the empirical estimation of these models. We then

outline our method for the estimation of monthly volatility using the ACD models.

3.1 ACD Models

Consider a sequence of times t0, t1, · · · , tN in which ti denotes the time of the ith trans-

action. Thus, xi = ti − ti−1, for i = 1, 2, · · · , N are the intervals between consecutive

transaction, called transaction duration. In this paper we consider the daily price index du-

ration, which is defined as the time interval need to observe a cumulative change in the index

of at least δ. Thus from day ti−1 to ti, the index changes by at least an amount δ, whether

upwards or downwards. The occurrence of this incident is called a price index change event.

Let Φi denote the information set upon the day ti. We denote ϕi = E(xi|Φi−1) which is

conditional expectation of the price index duration. We assume that

εi =
xi

ϕi

, i = 1, 2, · · · , N (3.1)

are a sequence of i.i.d. positive random variables with mean 1 and density function f(·).
Thus, the hazard function of εi is

λ(·) =
f(·)
S(·) (3.2)

where S(·)is the survival function of εi. Assuming ϕi is known given Φi−1, the conditional
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hazard function (also called the conditional intensity) of xi, denoted by λx(xi|Φi−1), is

λx(xi|Φi−1) = λ(
xi

ϕi

)
1

ϕi

= λ(
ti − ti−1

ϕi

)
1

ϕi

(3.3)

which is related to the base hazard function λ(·).
To model the conditional duration ϕi, Engle and Russell (1998) proposed the ACD(p, q)

defined by

ϕi = ω +

p∑
i=1

αjxi−j +

q∑
j=1

βjϕi−j (3.4)

In particular, setting p = q = 1, we obtain the ACD(1, 1) which is,

ϕi = ω + αϕi−1 + βxi−1 (3.5)

where α, β and ω ≥ 0 with α + β ≤ 1.

Recently, Fernandes and Grammig (2006) proposed some extensions of the ACD(1, 1)

model, incorporating a Box-Cox type transformation with possible asymmetry in duration

shocks. We shall consider their AACD model, which is defined by

ϕλ
i = ω + αϕλ

i−1[|εi−1 − b|+ c(εi−1 − b)]v + βϕλ
i−1 (3.6)

The AACD model nests the ACD(1, 1) model as a special case and provides a more flexible

model for the conditional expected duration. The Box-Cox transformation parameter λ > 0

determines the shape of the transformation, with λ ≥ 1 representing a convex transformation

and λ ≤ 1 representing a concave transformation. Asymmetric responses in duration shocks

are permitted through the shift parameter b and the rotation parameter c. In particular, a

clockwise rotation is generated if c < 0 and a counter-clockwise rotation is obtained if

c > 0. The shape parameter υ assumes a similar role as λ, with υ ≤ 1 including concavity

and υ ≥ 1 inducing convexity. As in the case of the ACD(1, 1) model, the parameters α, β

and ω are assumed to be nonnegative.

3.2 Estimation of ACD Models

Given an assumed density function f(·), the maximum likelihood estimates (MLE) of

the parameters of the ACD equation can be computed straightforwardly. In this model,

εi are assumed to be standard exponential. Under this assumption the hazard function is

constant and does not vary with the duration. Furthermore, the MLE computed using the
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exponential assumption is consistent (provided the conditional expected duration equation

is correctly specified), regardless of the true distribution of the error.

3.3 Estimation of monthly volatility using ACD Models

Given the information Φi at time ti, the conditional intensity function defined in equa-

tion (3.3) characterizes the probability that the next price event will occur at time t > ti.

Specifically, λx(xi|Φi−1)4x is the probability that the next price event after time ti occurs

in the interval (ti + x, ti + x +4x) given the information at time ti (which includes the fact

that there is a price event at time ti). The instantaneous return variance per unit time at time

ti is defined as

σ2(t) = lim
4t→0

{ 1

4t
V ar[

p(t +4t)− p(t)

p(t)
]} (3.7)

where p(t) is the price at time t. From Engle and Russell (1998), we see that the condi-

tional instantaneous return variance per unit time give information Φi at time ti, denoted by

σ2(t|Φi), is

σ2(t|Φi) = (
δ̄

pi

)2λx(x|Φi−1) (3.8)

where x = t− ti, t > ti and Using equation (3.3), we have

σ2(t|Φi) = (
δ̄

pi

)2λ(
t− ti
ϕi+1

)
1

ϕi+1

, t > ti (3.9)

where ϕi+1 = E(xi+1|Φi) is the conditional expected duration of the next price event given

Φi, and λ(·)is the base hazard function (of εi). Thus, the integrated variance IV over the

interval (ti, ti+1) , denoted by IVi, is

ICVi =

∫ ti+1

ti

σ2(t|Φi)dt

= (
δ̄

pi

)2 1

ϕi+1

∫ ti+1

ti

λ(
t− ti
ϕi+1

)dt

(3.10)

if εi are i.i.d. standard exponential distributions, then λ(·) ≡ 1 and we have

ICVi = (
δ̄

pi

)2[
ti+1 − ti

ϕi+1

] (3.11)

Thus, if t0 < t1 < · · · < tN denotes the price events on one month, the integrated volatility

IV of the month is

ICV = δ̄2

N−1∑
i=0

ti+1 − ti
ϕi+1p2

i

(3.12)
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Since εi are assumed to be standard exponential and the QMLE method is adopted, the

ACD-IV is,

ICV = δ̄2

N−1∑
i=0

ti+1 − ti
ϕ̂i+1p2

i

(3.13)

We can also calculate the return duration using the above method. For example, assume

s(t) = log(p(t)), equation (3.7) can be rewritten into,

σ2(t) = lim
4t→0

{ 1

4t
V ar[s(t +4t)− s(t)]} (3.14)

and we have,

σ2(t|Φi) = δ2λx(x|Φi−1) (3.15)

Finally, the estimated volatility of one month is,

ICV = δ2

N−1∑
i=0

ti+1 − ti
ϕ̂i+1

(3.16)

In this paper, we will use the logarithm of the price index series instead of price index

to model the duration series, so there is little difference from the research of Tse and Yang

(2009). As a matter of fact, in our work, there is a price event when the accumulative index

return excess δ, and there is a price event when the accumulative change of price exces δ̄

Tse and Yang (2009). The levels of δ and δ̄ are also very different because of the logarithm

procedure we take.
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4 Data

The daily data used in this paper are extracted from the Center for Research in Security

Prices (CRSP) database and Datastream. I download and compile the daily stock market

index data of U.S.A. from CRSP database. The data of U.K., Australia, Japan and Canada

are from Datastream. Table 1 shows the data description of each country. For instance,

within the index of Nikkei 225, there is 696 month in the whole sample period and the

entire sample period is 1951/01-2008/12.

From Table 1, we can see that the minimum of the daily stock market index is 3.0863,

the maximum of the daily index is 4477.9 in the USA stock market. As time passed by, there

were rapid growth in Economic and Financial areas and so did the stock index. In order to

make the index series a smooth time series, we take the logarithm of the index and equation

(3.16) will be used to estimate monthly volatility.

Table 1: Data description of each country

Country U.S. U.K. Japan Australia Canada

Begin of Date 1944-01-03 1969-01-01 1951-01-01 1980-01-01 1969-01-01

End of Date 2008-12-31 2008-12-31 2008-12-31 2008-12-31 2008-12-31

Name of Index NYSE∗ FTSE Nikkei 225 ASX S&P/TSX

Number of days 16645 10436 15133 7567 10436

Number of month 780 480 696 348 480

Average Days per Month 20.3 20.7 20.7 20.7 20.7

Minimum index 3.0863 61.92 101.91 443.1 800.29

Maximum index 4477.9 3479.0 38916 6853.6 15073

Notes: The price index of American stock market including dividends to the Value-weighted portfolio

of all New York Stock Exchange (NYSE) stocks.
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Fig 1: The average duration of five years is calculated when the price index return change is 2%. We then roll over
the entire sample one year at a time by dropping the first one year and adding the next one year duration. This is done
until the last year is included.

There are about 20 days excluding weekends and public holidays in each month. Firstly, we take

the logarithm of the price index, then interpolate one day into 10 parts using linear interpolation in

case there is some big index change within one day. There are more than 200 observations in one

month, and the duration we have will not be integer any more.

There is little difference between the price index change in this paper and price change Engle and

Russell (1998) has proposed. After taking the logarithm of the index series, we define the logarithm

price index change as the logarithm index of the current observation subtracting the logarithm price

index of previous observation(in another word, the difference between two consecutive observations

is return). If the accumulate index return excess the threshold δ, we call it a return invent. We arrange

the threshold δ from 1% to 3.25% by incremental 0.25%. Table 2 are the statistics of the duration

series of each country. From Table 2 we can see that all the statistics (Mean, Median, Maximum and

Minimum) increase as δ increases except the sample size.

Autoregressive Conditional Duration (ACD) models are widely used to model durations of in-

traday transactions. To manipulate the intraday data, we need to correct for the opening auction and

time-of-day effects; we also have to take account of the diurnal factor. But for daily data, although

the whole sample period is much longer than intraday data, we do not have so many observations as
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intraday data. Since manipulating a much longer period of daily data, we have to consider market

liquidity. In the early part of the sample period, it took longer time for the market price index return

to move by δ. The average value of the durations in the first five years is taken as the initial expected

duration. Fig 1 is the plot of duration evolution of five years rolling frequency when the price index

return threshold is 2%. The plots are pretty much the same when the price index return threshold

differs from 2%. From Fig 1, we can see, there is a strong decreasing trend of the duration in the

cases of the stock markets in U.S.A. and Japan. Since the sample period of the other countries are

not as long as U.S.A. and Japan, the trend are not obvious. In order to model market liquidity, the

time trend are considered in the AACD model,

ϕλ
i = ω + η i + αϕλ

i−1[|εi−1 − b|+ c(εi−1 − b)]v + βϕλ
i−1 (4.1)

where i is the time in the sample period. Equation (4.1) is exactly the same with equation (3.6)

without time trend, and we expect η to be negative.
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5 Empirical Results

In this part, we first estimate whether the AACD models fit the daily data well or not, and find the

AACD models do fit the daily data very well. Then, we use the estimated parameters to calculate the

monthly volatility by equation (3.16). After that, we select the optimal index return threshold δ∗, and

use that model to investigate the link between stock market volatility and macroeconomic factors.

5.1 Results of AACD Model Estimation

Since we have a long time period of daily data, the AACD models with time trend (which is

equation (4.1)) are consider to be estimated and to construct the monthly volatility. Tables 3a-3e (see

3b-3e in the Appendix) shows the results of estimation of U.S., U.K., Japan, Australia and Canada,

respectively.

The asymptotic standard errors estimated here are the same with Fernandes and Grammig (2006).

We employ the outer-product-of-the-gradient (OPG) estimator of the information matrix since the

absolute value function in the shocks impact curve makes Hessian-based estimates tricky to compute

due to numerical problems.

From table 3a - 3b, we can see that, all the estimated parameters are significantly different from

zero except the rotation parameters c. The Box-Cox transformation parameter λ are all greater than

zero although very close to zero in some cases (U.S.A 2.5%, U.K. 2%, U.K. 2.75%, Japan 1%, and

Japan 1.5%). λ̂ is smaller than one in all the cases and smaller than 0.1 in most cases, which represent

concave transformation. Because durations are nonnegative, the shift parameters b are important to

the identification of the asymmetric response implied by the shocks impact curve. The parameter c

determines whether rotation is clockwise (c < 0) or counter-clockwise (c > 0). From these tables,

we can see c > 0 in all the cases for the stock market of U.S.A and Canada. In some cases c < 0

(U.K. 1.5%, U.K. 2%, U.K. 2.25% etc). Indeed, the shift parameter affects mostly small shocks,

whereas rotation parameter is dominant for large shocks. Despite the fact that b are significantly

different from zero, the standard error of c are quite large, showing that the shocks impact curve

features no rotation.
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b = 0.0073 c = 0.1399 v = 7.4e−07 δ = 2% U.K.
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b = 0.0932 c = −0.1367 v = 0.1566 δ = 2% Austria.

b = 0.0481 c = 0.0769 v = 0.2234  δ = 2% Canada

Fig 2: Shocks impact curves for the AACD model of each country when the price index return change is 0.02.

From Fig 2, we can see c = -0.1367 for Austria, compared to Canada of which the other parameter

are very close to each other, the shock impact curve is more flat. The shape parameter v assumes a

similar role as λ. For country U.K., v is close to zero and the shock impact curve turns out to be a

flatter line. Time trend parameter η is negative for all the cases of U.S.A, Japan and Canada, which

indicates that for these stock market, it took a longer time for the market price to move by δ in the

early part of the period.

Q(12) describes Ljung-Box Q-statistic lack-of-fit hypothesis test of εi with lags up to 12 and the

critical value is 21.0261. From the Q(12), we cannot reject that ε is a sequence of i.i.d. random

variables (except Australia 1.5%). From this section, we conclude that AACD models fit the daily

data very well.

5.2 Estimation of Monthly Volatility

In this section, we will calculate the monthly volatility by equation (3.16) using the parameters

estimated in the last section. If a index return event spread across two (or more than two) month,

the accumulated volatility during the index return event is divided into two (or more than two) parts

according to their weight in each month. We then annualized the integrated volatility by
√

(vol ∗ 12).
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Table 4 is the description of the monthly volatility calculated from AACD methods. From Table

4 we can see that when the index return threshold increases, the level of monthly volatility shifts

up (the average of monthly volatility of each county increases); the variation of monthly volatility

becomes bigger. Figure 3 presents the plots of monthly volatility when δ changes from 1% to 3%

by an incremental of 1%. From the same figure, we can also see the level of volatility shifts up as δ

increases.

We can see that, in this section, the monthly volatility estimated from AACD models are very

sensitive to the index return threshold.

5.3 Model Selection

Since for different index return threshold, the estimated monthly volatility are different, the op-

timal index return threshold δ∗ is the following task we will face.

For daily data, as mentioned earlier, daily returns are positively correlated; equation (2.5) will

underestimate the true volatility of daily return. Therefore, we use an adjusted estimator based

upon the assumption that daily returns within month t are appropriately described by a first-order

autoregressive process. In particular, we use the measure of realized monthly volatility by equation

(2.6) as the true monthly volatility, then, we employ the cross-validation, a data-driven selection

method, to calculate the integrated square error between adjusted monthly realized volatility and

monthly volatility estimated from AACD method. Consider the integrated square error,

ISE(δ) =
∫ Tu

Tl

[σ2
s − σ̂2

s ]
2 0 < Tl < Tu < T (5.1)

where σ2
s is the true monthly volatility and σ̂2

s is the estimated monthly volatility, Tl and Tu are the

lower and upper bound, respectively. In our case, the integrated square error will be

ÎSE(δ) =
N∑

i=1

[RV (i)−ACDIV (i)]2 (5.2)

where N is the number of month in the sample period. We then define the cross-validated index

return threshold as δcv = argminδ>0ÎSE(δ)

In case that the realized volatility miss-estimates the true monthly volatility, we also compute
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the average standard deviation of monthly volatility series, using delta method, to select the optimal

index return threshold. The parameters θ̂ of AACD model are estimated from Maximum likelihood

estimation (MLE). Suppose that conditions for consistency of maximum likelihood are satisfied 1© ,

then the maximum likelihood estimator has asymptotically normal distribution,

√
n(θ̂ − θ) −→ N(0,Ω) (5.3)

where θ is the true value of parameters. Since the monthly volatility is a function of the parameters

estimated from the AACD model, we can employ delta method to estimate the standard deviation of

monthly volatility.

√
n(volt(θ̂)− volt(θ)) −→ N(0,5volTt (θ) · Ω · 5volt(θ)) (5.4)

from equation (5.4), we can see that the monthly volatility also has an asymptotically normal distri-

bution. After this is done, we expect a small average standard derivation of monthly volatility series

with respect to the optimal index return threshold. We also calculate the correlation between the

monthly volatility estimated from ACD method and realized volatility.

Although we use the integrated square error between adjusted monthly realized volatility and

monthly volatility estimated from ACD method to select the optimal δ, we also should take into

account the case that the realized volatility is not the true monthly volatility. In order to avoid miss-

estimating of realized monthly volatility, we select several smaller δ instead of the smallest one

compared to the others. From table 5, we can see that ÎSE(δ) is smaller when the price index return

threshold δ are 2%, 2.25% , 2.5% and 2.75%. The correlations between monthly volatility estimated

from ACD method and Realized method decreases when δ increases. The average standard deviation

of monthly volatility is very small when δ are 1.5%, 1.75% and 2%. Compared with all the factors,

δ = 2% is the optimal index return threshold.

The same reason, the optimal δ is 2.25%, 2.5%, 2.5% and 2.25% for U.K., Japan, Australia and

Canada respectively. From this section, we can see that there are 2-3 index return events with respect

to the optimal δ.

1© Newey & McFadden (1994, Theorem 3.3.)
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Fig 3: Monthly Volatility estimated from AACD models. Period: 2003/01-2008/12
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6 Stock Market and Macroeconomy

The link between the macroeconomy and the stock market has been intuitive appeal, as macroe-

conomic variables affect both expected cash flows accruing to stockholders and discount rates. A

common theoretical framework connecting stock prices to fundamentals is the dividend discount

model. According to this model, new macroeconomic information will affect stock prices if it im-

pacts on either expectations about future dividends, discount rates, or both.

Empirically, the evidence linking macroeconomic factors to the stock market is mixed at best.

Chen et al. (1986) were one of the first to explore the link between macroeconomic variables and

stock prices. Using a multifactor model, they found evidence that macroeconomic factors are priced.

Some researchers also conclude that stock prices respond to macroeconomic news. Subsequent stud-

ies have produced more mixed results.

Moving from first to second moments, Veronesi (1999) presents a theoretical model that for-

malizes the link between economic uncertainty and stock market volatility. He shows that investors

are more sensitive to news during periods of high uncertainty, which in turn increases asset price

volatility. Yet establishing the empirical link between the second moments of stock returns and

macroeconomic variables has proven to be even more challenging than that between their first mo-

ments.

Schwert (1989) analyzes the relation of stock volatility with real and nominal macroeconomic

volatility, also economic activity, financial leverage, and stock trading activity using monthly data

and conclude there is a volatility puzzle, which is, the stock volatility is not more closely related to

other measures of economic volatility.

In this section, we will follow the analysis of Schwert (1989) using monthly volatility estimated

from ACD models to find whether there is a link between macroeconomic factors and stock market

volatility.

As Schwert (1989) described, it is useful to think of the stock price Pt as the discounted present

value of expected future cash flows to stockholders:

Et−1Pt = Et−1

∞∑

k=1

Dt+k

[1 + Rt+k]k
(6.1)
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Fig 4: Predictions of the monthly annualized monthly volatility based on ACD-IV, Realized volatility and Rolling
Volatility (MV for convenience).

where Dt+k is the dividends paid to stockholders in period t + k and 1/[1 + Rt+k] is the discount

rate for period t + k based on the information available at time t− 1.

Since common stocks reflect claims on future profits of corporations, it is plausible that the

volatility of real economic activity is a major determinant of stock return volatility. In the present

value model, the volatility of future expected cash flows, as well as discount rates changes, if the

volatility of real activity changes. As mentioned in the introduction of this paper, the bond return

volatility, interest rate, PPI inflation, monetary base growth and industrial production have a plausible

link with the stock market. Also, movements in the stock market can also have a significant impact

on the macroeconomy and are therefore likely to be an important factor in the determination of

macroeconomic volatility. In our analysis, since we can only get the monthly data of the economic

variables, the macroeconomic variable volatilities are estimated using equation (2.2)and equation

(2.3).

For the stock market return volatility, we use the rolling volatility (MV for convenience), realized

volatility and conditional monthly volatility from AACD method to estimate the monthly volatility.

Fig 4 plots the predicted annualized monthly volatility of three measures. From the figure we can

see that the rolling volatility is more fluctuant than the other two measures. The monthly volatility

estimated by ACD model traces the Realized volatility extremely well, but is more smooth than
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realized volatility when realized volatility jump up. All the monthly volatility measures share the

same evolution trend.

Table 5 contains means, standard deviations, skewness, and kurtosis coefficients and autocorre-

lations of the estimates of stock volatility based on the rolling volatility, realized volatility, AACD

measure, and also the monthly volatility of short-interest rate, bond return, PPI inflation, money
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growth and industrial production based on rolling volatility. From Table 5, we can see the level of

stock market volatility based on ACD methods is much bigger than the macroeconomic volatility,

but the standard deviation of stock market volatility based on the ACD methods is smaller than each

macroeconomic volatility based on rolling volatility. This can also can be seen from Fig 5. Some-

times the macroeconomic volatility based on rolling volatility is bigger than stock market volatility

based on ACD methods. Table 5 also contains the unit root test of the volatility series. From the

T-statistic and P value, we conclude that the volatility series are stationary.

Table 6a contains tests of the incremental predictive power of 12 lags of PPI inflation volatility

in a 12th-order vector autoregressive (VAR) system for stock volatility, bond return volatility, and

short-term interest volatility that allows for different monthly intercepts. The VAR model uses both

the monthly measure (Rolling Volatility) and daily measure (Realized Volatility and ACD-IV) of

stock market volatility. The F-statistics measure the significance of the lagged values of the column

variable in predicting the row variable, given the other variables in the model.

The largest F-statistics are on the main diagonal of these matrices, and the size of the statis-

tics decrease away from the diagonal. For example, lagged stock volatility is the most important

variable in predicting current stock volatility. Lagged PPI inflation volatility also helps in the period

1944/01-1975/06. Lagged bond return volatility and short-term interest rate volatility contribute less.

Likewise, stock volatility estimated by realized volatility helps predict PPI inflation volatility in pe-

riod 1944/01-1975/06; stock volatility estimated by Rolling method and ACD method help to predict

the PPI inflation volatility in period 1975/07-2008/12. There is a strong evidence that bond return

volatility helps predict short interest rate volatility; Interest rate helps predict bond return volatility

in period 1975/07-2008/12.

Table 6b contains tests of the incremental predictive power of 12 lags of monetary base growth

volatility in a 12th-order VAR system similar to table 6a. There is strong evidence that monetary

base growth volatility predicts the stock return volatility estimated by both ACD method and rolling

method. Also, the stock return volatility estimated by ACD methods can predict monetary base

growth volatility in both periods 1944/01-1975/06 and 1975/07-2008/12. The link between interest

rate and bond return is the same with Table 6a.
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Table 6c contains tests of the incremental predictive power of 12 lags of industrial production

volatility in a 12th-order VAR system similar to Table 6a and Table 6b. From table 6c industrial

production volatility predicts stock volatility estimated by ACD method very well in period 1944/01-

1975/06. Stock volatility estimated by ACD method can predict industrial production volatility in

period 1975/07-2008/12. Bond return volatility still predicts interest rate very well; interest rate

contribute less in predicting bond return in this case.

To sum up, bond return volatility help a lot in predicting stock volatility estimated by both rolling

method and realized method in period 1944/01-1975/06 but not in period 1975/07-2008/12. Interest

volatility contributes less. PPI inflation volatility predicts stock volatility in period 1944/01-1975/06.

Monetary base growth volatility helps much in prediction of stock volatility estimated by rolling

method and ACD method in the entire sample period. Industrial production volatility help much to

predict stock volatility estimated by ACD method in period 1944/01-1975/06. There is also strong

evidence that stock volatility estimated by ACD method can predict macroeconomic volatility in

period 1975/07-2008/12.

There are also strong evidence that bond return volatility can predict interest rate volatility using

all three measures in the entire sample period.

From the table 6a-6c, PPI inflation, monetary base growth and industrial production predict stock

market volatility using ACD methods very well in the period 1944/01-1975/06; the stock market

volatility estimated from ACD models also predict PPI inflation, monetary base growth and indus-

trial production very well in the period 1975/07-2008/12. It is big improvement compared to the

performance of realized volatility and rolling volatility. In the early period, the stock market was not

developed as the recent decades, the transactions in one day are very thin. The individual and the

firm perform their transaction according to their economic situations, no wonder the macroeconomic

volatility predict the stock market volatility well. As the economic develops, stock transactions be-

come more and more frequently, there are not only investor but also speculators in the market.The

stock market volatility become an predictor of the macroeconomic factors.

In this section we employ stock volatility estimated from ACD method, compared with rolling

volatility and realized volatility, to test the link between stock market volatility and macroeconomic

factor volatilities. We find that sometime macroeconomic factor volatility can predict stock market

volatility estimated by ACD method but not realized volatility, and sometime macroeconomic factor
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volatility can predict volatility of realized volatility measure but not ACD method. Based on our

methods, in the early period , the macroeconomic factor predict the stock market volatility very well,

and the stock market volatility predicts the macroeconomic volatility very well in the recent decades.

This is different from the research of Schwert (1989).
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7 Conclusions

I employ a method to estimate monthly volatility by integrating the variance per unit time ob-

tained from the ACD models. Time trend is inserted into AACD model to model the market liquidity.

The ACD equations are estimated by MLE method. In our empirical test, we find when the index

return threshold increases, the level and variance of monthly volatility increases.

We also compare our method to realized volatility and find that the monthly volatility series

estimated from ACD models are smoother than those realized volatility. In order to find an optimal

price index return threshold, we use integrated square error between ACD-ICV and realized volatility

to select the one makes the smallest integrated square.

We also employ the monthly volatility estimated from ACD methods to test the link between

stock market volatility and macroeconomic factors volatility. We find that sometime macroeconomic

factors volatility can predict volatility estimated from ACD methods but not realized volatility, and

sometime macroeconomic factor volatility can predict volatility of realized volatility measure but

not ACD-ICV measure. ACD-ICV performs better than rolling volatility. The stock volatility of

ACD-ICV measure can also predict macroeconomic factor volatility well.
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8 Appendix

Data series used in Stock Market and Macroeconomy

A. Stock Returns, 1944-2008

I use the daily stock return index from the Center for Research in Security Prices (CRSP). The

index return including dividends to the Value-weighted portfolio of all New York Stock Exchange

(NYSE) stocks.

B. Short-Term Interest Rates, 1944-2008

I use the monthly yields on the shortest term U.S. Government security (90 days T-bills) which

matures after the end of the month from the Government Bond File constructed by CRSP.

C. Long-Term Interest Rates, 1944-2008

I use the high-grade corporate bond yield for 1944-2008, from Federal Reserve Bank.

D. Returns to Long-Term Corporate Bonds, 1944-2008

I use the monthly yields on the long-term U.S. Government security (20 years bond) from the

Government Bond File constructed by CRSP.

E. Inflation Rates, 1944-2008

For the period 1926-2009, I use the Industrial Production Index from Board of Governors of the

Federal Reserve System, not seasonally adjusted.

F. Industrial Production, 1926-2008

I use the index of industrial production from the Federal Reserve Board.

G. Money Supply, 1926-2008

I use the seasonally adjusted monetary base reported by the Federal Reserve Board.
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