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Abstract

As one of the most important models in finance, Efficient Portfo-

lio Theory pioneered by Markowitz (1952)has been developed since

1950s. Although it has been widely used in practice, Markowitz’s

mean-variance model has been questioned about its validity because

of its bad estimation performance especially in small samples due to

the parameter uncertainty problem. Many strategies have been pro-

posed for the purpose of lower the estimation error of mean-variance

model. This paper gives a review of the existing literature with the

goal of improving the performance of the Markowitz mean-variance

model. We evaluate across five empirical data sets of 11 estimation

methods. Among these methods, the combination rules by Tu and

Zhou (2010) are practicable in terms of Sharpe ratio, and optimal

two-fund rule and shrinkage on the covariance rule are practicable in

terms of CEQ return. However, in comparison with the in-sample

performance, these models surely still have room to improve.

Keywords: Markowitz mean-variance portfolio, Parameter uncer-

tainty, Estimation error
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Chapter 1

Introduction

Mean-variance framework about portfolio choice theory pioneered by Markowitz

(1952) has been frequently used in practice nowadays in asset allocation problem.

It has become a standard platform for portfolio construction in financial invest-

ment; see Brandt (2005) for an excellent overview of the literature. According to

Markowitz (1952), the mean-variance optimal portfolio is the one minimizes the

variance of the portfolio return given a certain level of portfolio return. Whether

for academic researchers or practitioners, one very important step in implement-

ing mean-variance method is to relate the theoretical formulation of the problem

to the real data. Since the true parameters in the model are unknown and have

to be estimated from the real data, there exists a parameter uncertainty problem

due to the random errors of the estimated parameters. In this case, the true pa-

rameters are the mean of the n-vector of asset returns and the covariance matrix

of asset returns. Under the assumption that the n-vector of asset returns follows

an independently and identically multi-normal distribution, the most widely used

estimates of the mean and covariance matrix of return vector are the maximum

likelihood estimates (MLE). Treating the MLEs as true parameters and plug-

ging them into the theoretical formulation of optimal weights give the maximum

likelihood estimates of optimal weights.

Although MLE of portfolio weights has good asymptotic property, it is not

necessarily the best estimation in finite samples. Since it is difficult to estimate

the mean and covariance matrix of the return vector, adding to the linearity

problem, the plug-in estimates are seriously biased especially in finite samples.
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Kan and Zhou (2007) derive the theoretical formula of the expected loss of out-of-

sample performance using MLEs when the true parameters are unknown, showing

that the expected loss of out-of-sample performance depends on the number of

assets, the time periods of the data sample, the investor’s tolerance of risk and

the squared Sharpe ratio of the ex ante tangency portfolio of the risky assets.

There are a lot of literature which give a view of the parameter uncertainty

problem. Frankfurter, Phillips, and Seagle (1971) state that, since sampling er-

ror is so large, portfolios selected according to the Markowitz criterion are likely

not more efficient than an equally weighted portfolio for three stocks case. Job-

son and Korkie (1980) state that naive formation rules such as the equal weight

rule can outperform the Markowitz rule. Kan and Zhou (2007) show that “the

standard plugging-in approach that replaces the population parameters by their

sample estimates can lead to very poor out-of-sample performance; with param-

eter uncertainty, holding the sample tangency portfolio and the risk-less asset

is never optimal”. DeMiguel, Garlappi, and Uppal (2009) compare the sample-

based mean-variance model and sophisticated rules designed to reduce estima-

tion error, relative to the naive 1/N portfolio. In their study, none of the other

rules is consistently better than the 1/N rule in terms of Sharpe ratio, certainty-

equivalent return, or turnover. They note that “the estimation window needed

for the sample-based mean-variance strategy and its extensions to outperform the

1/N benchmark is around 3000 months for a portfolio with 25 assets and about

6000 months for a portfolio with 50 assets”.

In order to reduce estimation error, different econometric approaches have

been proposed. Bayesian approach based on the predictive distributions is one

general framework. Bayesian approach assumes that the investor cares about the

expected utility under predictive distribution which is determined by the prior and

the historical data. Brown (1976), Klein and Bawa (1976) give Bayesian optimal

portfolio weights under the standard prior on mean and covariance matrix of the

return vector. Their bayesian solution suggests taking smaller positions in the

risky assets compared to the case when the true parameters are known. In a

Bayesian framework, the choice of prior matters and it is not easy to construct

useful informative prior in practice. Later, Jorion (1986) develops a Bayes-Stein

approach. He uses the average excess return on the sample global minimum-
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variance portfolio as the shrinkage target, and then gets a Bayes-Stein estimator

of the expected mean return vector. Kan and Zhou (2007) propose a three-fund

rule that optimally combines the risk free asset, the sample tangency portfolio

and the sample global minimum-variance portfolio, which dominates a portfolio

combines just the risk free asset and the sample tangency portfolio. Tu and

Zhou (2010) study the optimal combinations of the 1/N rule with MLE or Kan

and Zhou’s three-fund rule as a way to improve the performance. Overall, their

combinations improves over both the 1/N rule and the existing rules substantially

in most scenarios. There are also methods that focus on reducing the estimation

error of covariance matrix such as Ledoit and Wolf (2004), and Ren and Shimotsu

(2009). Also, portfolio rules that exploit moment restrictions imposed by factor

models are proposed, like Craig and Pastor (2000). Besides, there are portfolio

rules that impose short selling constraints, like Frost and Savarino (1988) and

Jagannathan and Ma (2003).

The remainder of the paper is organized as follows. Chapter 2 reviews the

theory of portfolio choice in single period case. Chapter 3 presents the different

econometric approaches to the portfolio choice problem. In Chapter 4, we then do

an empirical study to compare these different econometric approaches. Chapter

5 concludes.
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Chapter 2

Markowitz Paradigm

Markowitz Efficient Theory of Markowitz (1952) is by far the most commonly

used formulation of portfolio choice problem. Suppose, there are N risky assets

with a random return vector Rt+1, and a risk-free asset with a known return Rf
t .

Then the excess returns are defined as rt+1 = Rt+1 − Rf
t 1, and its conditional

mean (or risk premia) and covariance matrix are defined as µt and Σt, respectively.

And Rt has a conditional mean et = µt +Rf
t 1.

2.1 Case 1: Without risk-free asset

Suppose the investor can only allocate all his wealth to N risky assets. In the

absence of a risk-free asset, mean-variance criteria basically chooses the vector of

portfolio weights, w, which represents the relative allocations of wealth to each

of N risky assets, to maximize the expected return of the portfolio under a given

level of risk (measured by variance of the total return of the portfolio), or to

minimize the risk of the resulting portfolio return Rp,t+1 = w′Rt+1, subject to a

certain value of the expected portfolio return µ̄. Suppose µt and Σt do not change

across time, then the optimization problem will be

min
w

w′Σw (2.1)

subject to

w′e = µ̄ and w′1 = 1. (2.2)
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The first constraint fixes the return of the portfolio to a certain target, and the

second constraint makes sure all the wealth invested in the risky assets. The

Lagragian function with Lagragian multipliers λ and γ is given by

L(w, λ, γ) =
1

2
w′Σw + λ(µ̄− w′e) + γ(1− w′1). (2.3)

Solving the first-order conditions, the optimal portfolio weights are:

w?(µ̄) = g + µ̄h (2.4)

with

g =
1

D
(BΣ−11− AΣ−1e) and h =

1

D
(CΣ−1e− AΣ−11), (2.5)

where 1 denotes an N × 1 vector of ones and where A = 1′Σ−1e, B = e′Σ−1e,

C = 1′Σ−11, and D = BC − A2.

Plugging (2.4) into (2.1), we have the minimized portfolio variance equal to

σ2(µ̄) = w?(µ̄)′Σw?(µ̄) =
C

D
(µ̄− A

C
)2 +

1

C
, (2.6)

which, after rearranging, is a hyperbola in the σ(µ̄)−µ̄ plane with center (0, A/C)

and asymptotes of slopes ±
√
D/C,

σ2(µ̄)
1
C

−
(µ̄− A

C
)2

D
C2

= 1. (2.7)

2.2 Case 2: With risk-free asset

Suppose the investor can allocate his wealth to a risk-free asset with return Rf
t

without any borrowing and lending limit. Assume the investor allocate w on N

risky assets, then the weight he allocates on the risk-free asset will be 1 − w′1.

In this case, the the optimization problem becomes:

min
w

w′Σw (2.8)
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subject to

w′e+ (1− w′1)Rf
t = µ̄. (2.9)

If µ̄ = Rf
t , the solution is trivial: w?(µ̄) = 0. Now we assume µ̄ > Rf

t . Using

the method of Lagrangian multipliers, we solve

min
w,λ

L(w, λ) =
1

2
w′Σw + λ(µ̄− w′e− (1− w′1)Rf

t ). (2.10)

By solving the first order conditions, we get

w?(µ̄) = Σ−1(e−Rf
t 1)

µ̄−Rf
t

H
, (2.11)

where H = (e−Rf
t 1)′Σ−1(e−Rf

t 1) = B − 2Rf
tA+ (Rf

t )2C. Plugging (2.11) into

(2.8), we can obtain

σ2(µ̄) = w?(µ̄)′Σw?(µ̄) =
(µ̄−Rf

t )2

H
, (2.12)

where σ2(µ̄) denotes the variance of the portfolio return R(w?(µ̄)) on w?(µ̄). By

(2.12) we get

σ(µ̄) =
1√
H
|µ̄−Rf

t |. (2.13)

Therefore, the graph (σ(µ̄), µ̄) forms two half-lines emanating from (0, Rf
t ) in the

σ(µ̄)− µ̄ plane with slopes ±
√
H.

Case 1 and Case 2 are expressed in terms of asset return, not asset excess

return. People also use excess return to describe mean-variance problem in the

literatures.

2.3 Case 1’: Without risk-free asset

Suppose the investor can only allocate all his wealth to the N risky assets. Let

µt = et − Rf
t 1 be the conditional mean of rt+1 = Rt+1 − Rf

t 1, which is the

conditional mean of the vector of the excess returns of the N risky assets. Then
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the optimization problem becomes:

min
w

w′Σw (2.14)

subject to

w′µ = µ̃ and w′1 = 1, (2.15)

where µ̃ is the desired excess return of the portfolio. In this case, we can have

a similar solution to the one of Case 1, by replacing e and µ̄ with µ and µ̃,

respectively. Thus, the optimal weight can be written as

w?(µ̃) = Λ1 + µ̃Λ2 (2.16)

with

Λ1 =
1

D̄
(B̄Σ−11− ĀΣ−1µ) and Λ2 =

1

D̄
(CΣ−1µ− ĀΣ−11), (2.17)

where Ā = 1′Σ−1µ, B̄ = µ′Σ−1µ, C = 1′Σ−11, and D̄ = B̄C − Ā2.

Plugging (2.16) into (2.14), we can get

σ2(µ̃)
1
C

−
(µ̃− Ā

C
)2

D̄
C2

= 1, (2.18)

which is a hyperbola in the σ(µ̃)− µ̃ plane with center (0, Ā/C) and asymptotes

of slopes ±
√
D̄/C. Since Ā = A−Rf

t , and

D̄ = B̄C − Ā2

= D + (2µ+Rf
t )′Σ−11(Rf

t )′Σ−11− (2µ+Rf
t )′Σ−1Rf

t 1
′Σ−11

= D + (2µ+Rf
t )′Σ−1(1(Rf

t )′ −Rf
t 1
′)Σ−11

= D + 0

= D,

(2.19)
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let µ̃+Rf
t = µ̄, then (2.18) can be rewritten into

σ2(µ̄)
1
C

−
(µ̄− A

C
)2

D
C2

= 1, (2.20)

which is exactly the same formula as (2.7). And the graph of formula (2.18) has

the same shape as the graph of formula (2.7), only by moving the center (0, A/C)

down to (0, Ā/C).

2.4 Case 2’: With risk-free asset

The case that allows the investor to allocate his wealth to a risk-free asset with

return Rf
t without any borrowing and lending limit can also be expressed in terms

of excess return. Since equation (2.9) is equivalent to

w′µ = w′(e−Rf
t 1) = µ̄−Rf

t =: µ̃, (2.21)

the optimization problem can be written as:

min
w

w′Σw (2.22)

subject to

w′µ = µ̃. (2.23)

This leads to

w?(µ̃) =
µ̃

µ′Σ−1µ
Σ−1µ = λΣ−1µ, (2.24)

where λ is a constant that scales proportionately all elements of Σ−1 to achieve

the desired portfolio risk premium µ̃. Thus the variance of the portfolio return is

σ2(µ̃) =
µ̃2

µ′Σ−1µ
, (2.25)

and the standard error of the portfolio return is

σ(µ̃) =
1√

µ′Σ−1µ
|µ̃| = 1√

µ′Σ−1µ
|µ̄−Rf

t | =
1√
H
|µ̄−Rf

t |, (2.26)
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Figure 2.1: Mean-variance frontiers with and without risk-free asset

where H = (e − Rf
t 1)′Σ−1(e − Rf

t 1) = µ′Σ−1µ. Therefore, the graph (σ(µ̃), µ̃)

forms two half-lines emanating from (0, 0) in the σ(µ̃)−µ̃ plane with slopes ±
√
H.

From expression (2.24), the weights of the tangency portfolio can be found

by noting that the weights of the tangency portfolio must sum to one because it

lies on the mean-variance frontier of the risky assets. Therefore, for the tangency

portfolio:

λtgc =
1

1′Σ−1µ
, µ̃tgc =

µ′Σ−1µ

1′Σ−1µ
and w?tgc =

Σ−1µ

1′Σ−1µ
. (2.27)

Figure 2.1 illustrates the efficient frontier generated by mean-variance criteria.

The two hyperbolas in the figure illustrate the relationship between portfolio re-

turn (or portfolio excess return) and standard deviation of the portfolio return of

the efficient portfolio in the absence of a risk-free asset. The upper hyperbola rep-

resents the efficient frontier in “return-standard deviation” plane while the lower

hyperbola represents the efficient frontier in “excess return-standard deviation”

plane. The two radials illustrate the cases in the present of a risk-free asset. Sim-

ilarly, the upper radial is drawn in the “return-standard deviation” plane while

the lower one is drawn in the “excess return-standard deviation” plane. Each dot

on the frontier gives lowest risk for a given level of expected return (or expected

excess return). This figure illustrates the fundamental trade-off between expected

return and risk. In the presence of a risk-free asset, the investor allocates fraction

w of his wealth to the risky assets and the rest to the risk-free asset.
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2.5 Utility maximization

The formulations (2.1)-(2.2), (2.8)-(2.9), (2.14)-(2.15) or (2.22)-(2.23) of the mean-

variance problem generate a mapping from a desired portfolio risk premium µ̃ to

the minimum-variance portfolio weights w? and resulting portfolio return volatil-

ity
√
w?′Σw?. However, the choice of the desired risk premium depends on the

investor’s tolerance for risk. Taking investor’s tolerance for risk into consideration,

mean-variance problem can be formulated alternatively as an utility maximiza-

tion problem as following, where the utility function takes a quadratic form:

max
w

w′µ− γ

2
w′Σw, (2.28)

where γ represents the investor’s level of relative risk aversion. The solution to

(2.28) is

w? =
1

γ
Σ−1µ, (2.29)

which is exactly the solution to Case 2’ when λ = 1/γ, and it links the optimal

allocation of the tangency portfolio to the investor’s tolerance of the risk.

10



Chapter 3

Econometric Approaches

From now on, we consider the standard portfolio selection problem that an in-

vestor chooses a portfolio which consists a risk-free asset and N risky assets.

Using the notation in the last chapter, we denotes rt+1 = Rt+1 − Rf
t 1 as the

excess rate of return on the N assets at time t + 1. Assume that rt+1 is inde-

pendent and identically distributed over time and follows a multivariate normal

distribution with mean µ and covariance matrix Σ.

Suppose w is the portfolio weights invested on the N risky assets, then 1−w′1
is the weight invested on the risk-free asset. Thus, the excess return on the

portfolio at time t + 1 is rp,t+1 = w′rt+1, with mean µp = w′µ and variance

σ2
p = w′Σw respectively. Assume the investor maximizes the quadratic utility

function as follows:

max
w

U(w) = w′µ− γ

2
w′Σw, (3.1)

where γ measures the investor’s level of relative risk aversion. The higher the γ

is, the more the investor dislikes risk. The solution to the utility maximization

problem is given by

w?(µ,Σ) =
1

γ
Σ−1µ, (3.2)

where µ and Σ are both known, resulting the expected utility as

U(w?) =
1

2γ
µ′Σ−1µ. (3.3)

However, in practice, we don’t know the true values of the parameters µ and

11



Σ usually. Therefore we cannot compute the true optimal weight w? in practice.

What we normally do, when implementing the mean-variance portfolio, is to

estimate the mean and covariance matrix of the vector of asset excess returns

from the previous T−period observed data Φ(T ) = {rt+1}Tt=1 and then construct

a portfolio for period T + 1. Therefore, for investors, what matters is finding

proper estimate for optimal weight w, which means finding proper estimates

for µ and Σ. The following part is focused on the econometric approaches to

estimating µ and Σ.

3.1 Simple plug-in estimation

Under the standard i.i.d normal assumption, the maximum likelihood estimators

of µ and Σ given the observed sample return data Φ(T ) = {rt+1}Tt=1 are

µ̂ =
1

T

T∑
t=1

rt+1 (3.4)

and

Σ̂ =
1

T

T∑
t=1

(rt+1 − µ̂)(rt+1 − µ̂)′. (3.5)

Thus the maximum likelihood estimator of w? is ŵML = 1
γ
Σ̂−1µ̂. Although that

maximum likelihood estimator ŵML has good asymptotic property, its small sam-

ple performance is not good.

Kan and Zhou (2007) state that ŵML is not optimal in terms of maximizing

the expected out-of-sample performance. They provide an analytical expression

of the expected out-of-sample performance or the risk function of the plug-in

portfolio rule:

ρ(w?, ŵML) = (1− k1)
θ2

2γ
+

NT (T − 2)

2γ(T −N − 1)(T −N − 2)(T −N − 4)
, (3.6)

where k1 = ( T
T−N−2

)[2− T (T−2)
(T−N−1)(T−N−4)

], θ2 = µ′Σ−1µ is the squared Sharpe ratio

of the ex ante tangency portfolio of the risky assets and ρ(w?, ŵ) is the expected

loss function defined by ρ(w?, ŵ) = U(w?)−E[Ũ(ŵ)] where Ũ(ŵ) = ŵ′µ− γ
2
ŵ′Σŵ.
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Marx and Hocking (1977) show that T−N−2
T

Σ̂−1 is an unbiased estimator of

Σ−1 under the i.i.d. normality assumption. Hence, it is suggested to use

Σ̃ =
1

T −N − 2

T∑
t=1

(rt+1 − µ̂)(rt+1 − µ̂)′ =
T

T −N − 2
Σ̂ (3.7)

as an estimator of Σ. Then the new plug-in estimator for the optimal portfolio

weights is given by

w̃ =
1

γ
Σ̃−1µ̂, (3.8)

which is an unbiased estimator of w?. Kan and Zhou (2007) also prove that w̃ has

better expected out-of-sample performance than maximum likelihood estimate

ŵML.

3.2 Naive portfolio

The naive strategy is basically to hold a portfolio with equal weight in each of

the N risky assets. In that case,

we =
1

N
1. (3.9)

That is, the investor allocates all his wealth equally to the risky assets rather than

staying cash. This strategy completely ignores the data and does not consider

optimization or estimation. The rule is known for a long time and has been used

in practice oftenly. Jobson and Korkie (1980) state that “naive formation rules

such as equal weight rule can outperform the Markowitz rule.” Michaud (1998)

notes that “an equally weighted portfolio may often be substantially closer to the

true MV optimality than an optimized portfolio.” DeMiguel, Garlappi, and Uppal

(2009) state that “various extensions to the sample-based mean-variance model

that have been proposed in the literature to deal with the problem of estimation

error typically do not outperform the 1/N benchmark for the seven empirical

datasets.” Tu and Zhou (2010) find that “for some of the real data sets examined

by DeMiguel, Garlappi, and Uppal (2009) and our new data sets here, all of the

existing sophisticated strategies, which are the best ones we choose for our study,
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not only underperform the 1/N , but also have negative risk-adjusted returns!”

3.3 Minimum-variance portfolio

Under the minimum variance strategy, we choose a portfolio of risky assets that

minimize the variance of the return of the portfolio without any consideration of

portfolio return. That is,

min
w

w′Σw s.t. w′1 = 1. (3.10)

The solution to (3.10) is wmin = Σ−11
1′Σ−11

. To implement minimum-variance strat-

egy, we use the estimate of the covariance matrix of the asset returns, Σ̃. The

estimate of the minimum-variance portfolio weight will be

ŵmin =
Σ̃−11

1′Σ̃−11
(3.11)

3.4 Bayesian portfolio

Brown (1976) shows that, under the standard diffuse prior on µ and Σ, Bayesian

optimal portfolio weights perform better than usual plug-in estimation. Suppose

the prior distribution on µ and Σ is

p0(µ,Σ) ∝ |Σ|−
N+1

2 , (3.12)

then the Bayesian optimal portfolio weights will be

wBayes =
1

γ
(
T −N − 2

T + 1
)Σ̂−1µ̂ (3.13)

Kan and Zhou (2007) note that Bayesian rule strictly outperforms simple plug-in

estimation by showing analytically that Bayesian rule results in higher expected

out-of-sample performance.
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3.5 Optimal two-fund portfolio

Kan and Zhou (2007) proposed an optimal two-fund rule by assuming the optimal

weights have the form

ŵ =
c

γ
Σ̂−1µ̂. (3.14)

They show that the optimal c under the criteria that it maximizes the expected

out-of-sample performance will be

c? =
(T −N − 1)(T −N − 4)

T (T − 2)

θ2

θ2 + N
T

. (3.15)

Since θ2 is unknown in practice, it needs to be estimated too. To avoid the heavy

estimation bias when T is small, they use an adjusted estimator of θ2, resulting

an adjusted estimator of c? as

ĉ? =
(T −N − 1)(T −N − 4)

T (T − 2)

θ̂2
a

θ̂2
a + N

T

, (3.16)

where θ̂2
a = (T−N−2)θ̂2−N

T
+ 2(θ̂2)N/2(1+θ̂2)−(T−2)/2

TBθ̂2/(1+θ̂2)(N/2,(T−N)/2)
, θ̂2 = µ̂′Σ̂−1µ̂, and Bx(a, b) =∫ x

0
ya−1(1− y)b−1dy. The resulting optimal two-fund portfolio weights are

ŵtwo =
1

γ
ĉ?Σ̂−1µ. (3.17)

3.6 Three-fund portfolio

Kan and Zhou (2007) propose another method called three-fund separation that

holding a combination of a risk-free asset, the sample tangency portfolio and a

third risky portfolio. They believe that “if there is parameter uncertainty, the

use of another risky portfolio can help to diversify estimation risk of the sam-

ple tangency portfolio”. In their construction, they choose the sample global

minimum-variance portfolio as the third risky portfolio. They consider the port-

folio rule of the form

ŵ =
1

γ
(cΣ̂−1µ̂+ dΣ̂−11) (3.18)
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By maximizing the expected out-of-sample performance of this class of portfolio

rules, they obtain the optimal c and d as

c?? =
(T −N − 2)(T −N − 4)

T (T − 2)
(

ψ2

ψ2 + N
T

), (3.19)

d?? =
(T −N − 2)(T −N − 4)

T (T − 2)
(

N
T

ψ2 + N
T

)µg, (3.20)

where ψ2 = µ′Σ−1µ − (µ′Σ−11)2

1′Σ−11
= (µ − µg1)′Σ−1(µ − µg1) and µg = 1′Σ−1µ

1′Σ−11
.

Therefore, the optimal three-fund portfolio weights are

ŵ?? =
(T −N − 2)(T −N − 4)

γT (T − 2)
[(

ψ2

ψ2 + N
T

)Σ̂−1µ̂+ (
N
T

ψ2 + N
T

)µgΣ̂
−11] (3.21)

The usual estimates of µg and ψ2 are

µ̂g =
1′Σ̂−1µ̂

1′Σ̂−11
, (3.22)

ψ̂2 = (µ̂− µ̂g1)′Σ̂−1(µ̂− µ̂g1). (3.23)

To avoid the problem that ψ̂2 being a heavily biased estimator when T is small,

they use the adjusted estimator of ψ2:

ψ̂2
a =

(T −N − 1)ψ̂2 − (N − 1)

T
+

2(ψ̂2)(N−1)/2(1 + ψ̂2)−(T−2)/2

TBψ̂2/(1+ψ̂2)((N − 1)/2, (T −N + 1)/2)

(3.24)

Thus, there three-fund portfolio weights estimators are

ŵthree =
(T −N − 2)(T −N − 4)

γT (T − 2)
[(

ψ̂2
a

ψ̂2
a + N

T

)Σ̂−1µ̂+ (
N
T

ψ̂2
a + N

T

)µ̂gΣ̂
−11] (3.25)

3.7 Bayes-Stein portfolio

The Bayes-Stein portfolio is actually an application of the idea of shrinkage esti-

mation. Basically, the new estimator shrinks the sample mean toward a common

“grand mean”. Jorion (1986) takes the grand mean to be the mean of the mini-
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mum variance portfolio, µmin. Assuming that the informative prior of µ is

p0(µ|Σ, µg, λ) ∝ exp[−1

2
(µ− 1µg)

′(λΣ−1)(µ− 1µg)] (3.26)

the Bayes-Stein estimation for µ will be

µ̂bs = (1− φ̂)µ̂+ φ̂µ̂g1, (3.27)

where

φ̂ =
N + 2

(N + 2) + T (µ̂− µ̂g1)′Σ̃−1(µ̂− µ̂g1)
. (3.28)

Hence, the Bayes-Stein estimators of portfolio weights are

ŵbs =
1

γ
Σ̃−1µ̂bs. (3.29)

3.8 A combination of sophisticated and naive

diversification strategies

Tu and Zhou (2010) propose some new methods that combining existing mean-

variance portfolio rules with naive portfolio rule. They find that “the combi-

nations improve over both the 1/N and the existing rules substantially in most

scenarios”. First, they propose a combination rule which combines the naive rule

and unbiased rule together defined as

wCML = (1− δ)we + δw̃ (3.30)

They minimize the expected loss function under the wCML rule,

min
δ

L(w?, wCML) =
γ

2
[(1− δ)2π1 + δ2π2], (3.31)

where

π1 = (we − w?)′Σ(we − w?), (3.32)

π2 = E[(w̃ − w?)′Σ(w̃ − w?)], (3.33)
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getting

δ? =
π1

π1 + π2

. (3.34)

They obtain the estimator of π1 being

π̂1 = w′eΣ̂we −
2

γ
w′eµ̂+

1

γ2
θ̂2
a, (3.35)

where θ̂2
a is defined in section 3.5, and the estimator of π2 being

π̂2 =
1

γ2
(c1 − 1)θ̂2

a +
c1

γ2

N

T
, (3.36)

where c1 = (T−2)(T−N−2)
(T−N−1)(T−N−4)

. Thus, the estimator of δ is

δ̂ =
π̂1

π̂1 + π̂2

, (3.37)

and the resulting estimated optimal rule is

ŵCML = (1− δ̂)we + δ̂w̃. (3.38)

Tu and Zhou (2010) also try to combine the three-fund rule by Kan and Zhou

(2007) with naive portfolio rule together. They consider the combination rule as

follows:

wCKZ = (1− δk)we + δkŵ
three. (3.39)

The obtained estimate of δk is

δ̂k =
π̂1 − π̂13

π̂1 − 2π̂13 + π̂3

, (3.40)

where

π̂13 =
1

γ2
θ̂2
a −

1

γ
w′eµ̂+

1

γc1

([(
ψ̂2
a

ψ̂2
a + N

T

)w′eµ̂+ (
N
T

ψ̂2
a + N

T

)µ̂gw
′
e1] (3.41)

−1

γ
[(

ψ̂2
a

ψ̂2
a + N

T

)µ̂′Σ̃−1µ̂+ (
N
T

ψ̂2
a + N

T

)µ̂gµ̂
′Σ̃−11]) (3.42)
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where ψ̂2
a is defined in section 3.6, and

π̂3 =
1

γ2
θ̂2
a −

1

γ2c1

(θ̂2
a −

N

T

ψ̂2
a

ψ̂2
a + N

T

). (3.43)

3.9 Shrinkage on the covariance

The shrinkage estimation on the covariance basically employs the idea of getting

a more accurate estimator of covariance matrix in small sample by Ren and

Shimotsu (2009),

Σ̂bs = (1− α̂)Σ̂ + α̂F, (3.44)

where F is an estimated covariance matrix of the asset returns implied by a factor

model.

Assume the asset returns follow a factor model,

rit = µi +Xtβi + εit, t = 1, ..., T (3.45)

where Xt is a vector of factors, and εit is a mean-zero idiosyncratic error for asset

i in period t. εit has constant variance δii across time, and is uncorrelated to εjt

and to the factors. Denote µ = [µ1, ..., µN ], β = [β1, ..., βN ], ε = [ε1, ..., εN ], then

the factor model is written as

rt = µ+Xtβ + εt, t = 1, ..., T (3.46)

The covariance matrix of rt implied by the factor model is:

Φ = β′V ar(Xt)β + ∆, (3.47)

where ∆ = diag(δii) is the covariance of εt. Thus, the estimate of Φ can be

obtained as:

F = b′V ar(Xt)b+D, (3.48)

where b = [b1, ..., bN ], D = diag(dii). bi and dii denote the OLS estimates of βi

and δii by regressing the i−th asset returns on an intercept and the factors.

The optimized α is complicated and thus omitted here. Please refer to Ren
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and Shimotsu (2009) for the specific calculation.
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Chapter 4

Empirical Study

In this chapter, we try to understand which econometric approach of mean-

variance model performs better by evaluating the performance of the sophisti-

cated strategies discussed in the last chapter across five different empirical data

sets of monthly returns, using two performance criteria suggested by DeMiguel,

Garlappi, and Uppal (2009):

(1) the out-of-sample Sharpe ratio;

(2) the certainty-equivalent (CEQ) return for the expected utility of a mean-

variance investor.

There are 11 portfolio rules we are going to evaluate, including the sample-

based simple plugging-in portfolio rule, its different extensions designed to reduce

the estimation error and the naive rule which allocates 1/N wealth to each of the

N assets.

4.1 Data Sets

The real data sets used in our study include Fama-French’s size- and book-to-

market-sorted portfolio value-weighted monthly return data and industry portfo-

lio value-weighted monthly return data. For the size- and book-to-market-sorted

portfolio, we consider two cases: 6 portfolios and 25 portfolios. And for the

industry portfolio, we consider three cases, including 10 industry portfolios, 30
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industry portfolios, and 49 industry portfolios. Different types of data sets and

data sets with different numbers of assets help to figure out how the portfolio

rules work under different kinds of data.

(1) 6 portfolios formed on size and book-to-market:

The data is obtained from Kenneth R. French’s web site and spanned from July

1963 to December 2010. The portfolios are the intersections of 2 portfolios formed

on the size (market equity, ME) and 3 portfolios formed on the ratio of book equity

to market equity (BE/ME). The size breakpoint for year t is the median NYSE

market equity at the end of June of year t. BE/ME for June of year t is the book

equity for the last fiscal year end in t-1 divided by ME for December of t-1. The

BE/ME breakpoints are the 30th and 70th NYSE percentiles.

(2) 25 portfolios formed on size and book-to-market:

The data is obtained from Kenneth R. French’s web site and spanned from July

1963 to December 2010. The portfolios are the intersections of 5 portfolios formed

on size (market equity, ME) and 5 portfolios formed on the ratio of book equity

to market equity (BE/ME). The size breakpoints for year t are the NYSE market

equity quintiles at the end of June of t. BE/ME for June of year t is the book

equity for the last fiscal year end in t-1 divided by ME for December of t-1. The

BE/ME breakpoints are NYSE quantiles.

(3) 10 industry portfolios:

The data is obtained from Kenneth R. French’s web site and spanned from July

1963 to December 2010. Each NYSE, AMEX, and NASDAQ stock is assigned

to an industry portfolio at the end of June of year t based on its four-digit SIC

code at that time. (The codes used here are the Compustat SIC codes for the

fiscal year ending in calender year t-1. Whenever Compustat SIC codes are not

available, CRSP SIC codes are used.) Then the returns from July of t to June

of t+1 are computed. The industry categories include (1)consumer nondurables

(food, tobacco, textiles, apparel, leather, toys), (2)consumer durables (cars, TV’s,

furniture, household appliances), (3)manufacturing (machinery, trucks, planes,

chemicals, off furn, paper, com printing), (4)energy (oil, gas, and coal extrac-

tion and products), (5)business equipment (computers, software, and electronic

equipment), (6)telephone and television transmission, (7)wholesale, retail, (8)and

some services, healthcare, medical equipment, and drugs, (9)utilities, (10)other.
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Table 4.1: List of data sets
# Data set and source N time period
1 Six (2× 3) size- and book-to-market portfolio 6 07/1963-12/2010

Source: Ken French’s web site
2 Twenty-five (5×5) size- and book-to-market port-

folio
25 07/1963-12/2010

Source: Ken French’s web site
3 10 industry portfolio 10 07/1963-12/2010

Source: Ken French’s web site
4 30 industry portfolio 30 07/1963-12/2010

Source: Ken French’s web site
5 49 industry portfolio 49 07/1963-12/2010

Source: Ken French’s web site

(4) 30 industry portfolios:

The data is obtained from Kenneth R. French’s web site and spanned from July

1963 to December 2010. The portfolios are constructed in a similar way to the

one 10 industry portfolios constructed only with 30 different (or more detailed)

categories.

(5) 49 industry portfolios:

The data is obtained from Kenneth R. French’s web site and spanned from July

1963 to December 2010. The portfolios are constructed in a similar way to the

one 10 industry portfolios constructed only with 49 different (or more detailed)

categories.

Table 4.1 has listed the five data sets we used in the empirical study.

4.2 Evaluating Performance

Following DeMiguel, Garlappi, and Uppal (2009), we use a “rolling-sample” ap-

proach in our analysis. For a given T -month-long data set of monthly returns,

we choose an estimation window of length M = 120 or M = 240 months. In

each month t, starting from t = M , we use the data in the previous M months

up to month t to implement various portfolio rules. The resulting rules are used

to determine the investment decisions for the next month t + 1. That is, for
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example, suppose wk,t are the estimated portfolio weights in month t under a

portfolio rule k and suppose the realized excess asset returns in month t + 1 are

rt+1, then the realized excess return in month t + 1 under the portfolio rule k

is rk,t+1 = w′k,trt+1. Re-do this process by adding the asset returns of the next

period in the data set and dropping the earliest ones, until it reaches the end

of the data set. By doing this “rolling-sample” approach, we can get a series

of T −M monthly out-of-sample returns generated by the 11 different portfolio

rules.

Given the time series of out-of-sample returns generated by each portfolio

rule, we then compute the certainty-equivalent(CEQ) return as

ˆCEQk = µ̂k −
γ

2
σ̂2
k, (4.1)

in which µ̂k and σ̂k are the mean and standard deviation of out-of-sample excess

portfolio return. The results we report are for the cases when γ = 1 and γ = 3.

CEQ return can be regarded as the risk-free rate an investor is willing to accept

rather than adopting a particular risky portfolio rule. The CEQ, is the guaranteed

amount of money that an individual would view as equally desirable as a risky

asset. It is obvious that the higher the CEQ, the better the rule k for investors.

We also calculate the out-of-sample Sharpe ratio associated with rule k, de-

fined as the sample mean of out-of-sample excess portfolio return, µ̂k, divided by

the sample standard deviation of out-of-sample excess portfolio return, σ̂k:

ŜRk =
µ̂k
σ̂k
. (4.2)

Although the true parameters are unknown in the real data, we still calculate

the in-sample Sharpe ratio and in-sample certainty-equivalent return on the pur-

pose of comparing the estimation errors under different rules. They are computed

by using the whole sample of excess returns, that is, when M = T . The in-sample

Sharpe ratio is

ŜR
is

k =
µ̂isk′ŵk√
ŵ′kΣ̂

is
k ŵk

, (4.3)
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and the in-sample CEQ is

ˆCEQ = µ̂is
′

k ŵk −
γ

2
ŵ′kΣ̂

is
k ŵk. (4.4)

4.3 Results for the Data Set Considered

For each data set, we calculate the Sharpe ratio and the CEQ return under

different portfolio rules. We set the risk aversion coefficient γ to be 1 or 3. The

results are listed from Table 4.2 to Table 4.9.

4.3.1 Sharpe ratios

Table 4.2 gives the Sharpe ratio across all the data sets listed in Table 4.1 for each

strategy when γ = 1 and M = 120. The first row of Table 4.2, “in-sample”, gives

the Sharpe ratio of the Markowitz mean-variance strategy in-sample, that is, we

assume the whole sample estimates of the parameters to be the true values of the

parameters, hence there is no estimation error. The second row of the table gives

the Sharpe ratio of the simple plugging-in maximum likelihood estimation. The

third row uses the unbiased estimation of portfolio weights. The fourth row gives

the Sharpe ratio under the naive 1/N strategy. The fifth row uses the minimum

variance portfolio rule. The sixth row uses the bayesian rule under a diffuse prior.

The seventh row uses the optimal two-fund rule by Kan and Zhou (2007). The

eighth row uses the optimal three-fund rule which is also proposed by Kan and

Zhou (2007). The ninth row uses the Bayesian-Stein rule. The tenth row gives

the Sharpe ratio under the rule which combines the naive rule and maximum

likelihood rule together suggested by Tu and Zhou (2010). The eleventh row

gives the Sharpe ratio of the combination rule which combines the naive rule and

the Kan-Zhou’s optimal three-fund rule together which is also suggested by Tu

and Zhou (2010). The last one uses the shrinkage-on-covariance method by Fang

and Ren.

For example, for the “10 industry portfolios” data set, the in-sample mean-

variance portfolio has a Sharpe ratio of 0.1803, while the Sharpe ratio of the

simple plugging-in MLE is much less, only 0.0278. Similarly, for the “49 industry
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Table 4.2: Sharpe ratio under different portfolio rules when M = 120 and γ = 1

F-F portfo-
lios

F-F portfo-
lios

Industry
portfolios

Industry
portfolios

Industry
portfolios

Strategy N=6 N=25 N=10 N=30 N=49
in-sample 0.4115 0.4548 0.1803 0.2836 0.5111
mle 0.3775 0.3246 0.0278 0.1801 0.0254
unbiased 0.3775 0.3246 0.0278 0.1801 0.0254
1/N 0.1581 0.1486 0.1288 0.1502 0.1257
min 0.2870 0.2572 0.1555 0.0851 0.0528
bayesian 0.3775 0.3246 0.0278 0.1801 0.0254
two-fund 0.3776 0.3284 0.0294 0.1646 -0.0209
three-fund 0.3794 0.3356 0.0647 0.1748 0.0159
b-s 0.3795 0.3368 0.0717 0.1726 0.0104
cml 0.3795 0.3296 0.0344 0.1882 0.0423
ckz 0.3837 0.3366 0.0715 0.1870 0.0566
shrinkage 0.3477 0.2858 0.0407 0.1992 0.0362

Table 4.3: Sharpe ratio under different portfolio rules when M = 240 and γ = 1

FF FF Industry
portfolios

Industry
portfolios

Industry
portfolios

Strategy N=6 N=25 N=10 N=30 N=49
in-sample 0.4115 0.4548 0.1803 0.2836 0.5111
mle 0.3870 0.3698 0.0757 0.1063 0.0597
unbiased 0.3870 0.3698 0.0757 0.1063 0.0597
1/N 0.1388 0.1369 0.1462 0.1162 0.1281
min 0.3357 0.3407 0.1995 0.1521 0.1052
bayesian 0.3870 0.3698 0.0757 0.1063 0.0597
two-fund 0.3735 0.3351 0.0388 0.0813 0.0701
three-fund 0.3786 0.3687 0.1117 0.1211 0.0664
b-s 0.3760 0.3684 0.1160 0.1237 0.0679
cml 0.3881 0.3717 0.0794 0.1111 0.0687
ckz 0.3790 0.3705 0.1173 0.1286 0.0920
shrinkage 0.3794 0.3766 0.0788 0.1094 0.0541
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Table 4.4: Sharpe ratio under different portfolio rules when M = 120 and γ = 3

FF FF Industry
portfolios

Industry
portfolios

Industry
portfolios

Strategy N=6 N=25 N=10 N=30 N=49
in-sample 0.4115 0.4548 0.1803 0.2801 0.5111
mle 0.3775 0.3246 0.0278 0.1801 0.0254
unbiased 0.3775 0.3246 0.0278 0.1801 0.0254
1/N 0.1581 0.1486 0.1288 0.1502 0.1257
min 0.2870 0.2572 0.1555 0.0851 0.0528
bayesian 0.3775 0.3246 0.0278 0.1801 0.0254
two-fund 0.3776 0.3284 0.0294 0.1646 -0.0209
three-fund 0.3794 0.3356 0.0647 0.1748 0.0159
b-s 0.3790 0.3368 0.0717 0.1726 0.0104
cml 0.3782 0.3266 0.0300 0.1830 0.0310
ckz 0.3818 0.3366 0.0684 0.1812 0.0394
shrinkage 0.3470 0.2852 0.0408 0.1989 0.0354

Table 4.5: Sharpe ratio under different portfolio rules when M = 240 and γ = 3

FF FF Industry
portfolios

Industry
portfolios

Industry
portfolios

Strategy N=6 N=25 N=10 N=30 N=49
in-sample 0.4115 0.4548 0.1803 0.2836 0.5111
mle 0.3870 0.3698 0.0757 0.1063 0.0597
unbiased 0.3870 0.3698 0.0757 0.1063 0.0597
1/N 0.1388 0.1369 0.1462 0.1162 0.1281
min 0.3357 0.3407 0.1995 0.1521 0.1052
bayesian 0.3870 0.3698 0.0757 0.1063 0.0597
two-fund 0.3735 0.3351 0.0388 0.0813 0.0701
three-fund 0.3786 0.3687 0.1117 0.1211 0.0664
b-s 0.3760 0.3684 0.1160 0.1237 0.0679
cml 0.3873 0.3704 0.0769 0.1079 0.0626
ckz 0.3781 0.3704 0.1162 0.1237 0.0834
shrinkage 0.3797 0.3764 0.0786 0.1094 0.0541
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portfolios” data set, the in-sample Sharpe ratio for the mean-variance portfolio

strategy is 0.5111, while the Sharpe ratio of MLE is only 0.0254. Although, for the

two “size- and book-to-market-sorted portfolios” data sets, the simple plugging-in

MLE seems to give a reasonable out-of-sample Sharpe ratio, this strategy doesn’t

work for the “10 industry portfolios”, “30 industry portfolios”, and “49 industry

portfolios” data sets. It confirms the perils of using traditional sample-based

MLE to implement Markowitz’s mean-variance portfolios.

Let’s look at the results given by the sophisticated strategies designed to

reduce the estimation errors. Of course, if all the parameters are known to the

investors, then all these designed strategies will outperform the simple plugging-

in MLE. However, due to the parameter uncertainty problem, whether these

strategies can outperform MLE or not leaves to be a question.

In Table 4.2, the Sharpe ratios for the unbiased strategy and Bayesian strategy

are the same as the ones under simple plugging-in MLE. The Bayes-Stein strategy

has a higher out-of-sample Sharpe ratio than MLE for all the data sets except

for “30 industry portfolios” and “49 industry portfolios”. The same situation

happens to optimal two-fund rule and optimal three-fund rule.

As for the combination rules, the rule that combines naive rule and unbiased

estimation performs well in terms of higher Sharpe ratio than MLE across all

these data sets. Moreover, the rule that combines naive rule and Kan-Zhou’s

optimal three-fund rule generates even higher Sharpe ratios across most of the

data sets.

Also, we find that shrinkage method has a higher out-of-sample Sharpe ratio

for all the industry data sets than simple plugging-in MLE.

When we increase the rolling window M to 240, things are slightly different

but not too much. But we find that most of the rules fail for the 2× 3 size- and

book-to-market-sorted portfolios. The reason for that might be the improving of

estimation accuracy when the length of rolling window increases. If we change

the risk aversion rate γ to 3, there are no big differences.

Among all the above case, only the combination rule (cml) always outperforms

simple plugging-in MLE in terms of out-of-sample Sharpe ratio. Other portfolio

rules such as optimal three-fund rule and shrinkage on the covariance rule perform

better in many cases but not all cases.
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Table 4.6: CEQ return under different portfolio rules when M = 120 and γ = 1

FF FF Industry
portfolios

Industry
portfolios

Industry
portfolios

Strategy N=6 N=25 N=10 N=30 N=49
in-sample 0.0847 0.1034 0.0163 0.0402 0.1306
mle -0.0065 -0.3167 -0.0658 -0.6047 -1.5482
unbiased 0.0125 -0.1232 -0.0524 -0.2796 -0.5008
1/N -14.6305 -12.8966 -9.2684 -16.1834 -12.2495
min -9.0708 -6.7345 -6.1585 -9.3280 -9.1599
bayesian 0.0145 -0.1187 -0.0514 -0.2736 -0.4923
two-fund 0.0462 0.0434 -0.0026 0.0024 -0.0269
three-fund 0.0423 0.0255 -0.0087 -0.0375 -0.0763
b-s 0.0376 -0.0117 -0.0084 -0.0783 -0.1638
cml 0.0462 -0.1179 -0.0532 -0.2684 -0.4624
ckz 0.0462 0.0211 -0.0147 -0.0423 -0.0809
shrinkage 0.0585 -0.0113 -0.0473 -0.2068 -0.5903

Moreover, in the case when M = 240 and γ = 3, the out-of-sample Sharpe

ratio for MLE is less than that for the naive 1/N rule for three of five data sets.

That means the effect of estimation error sometimes is so large that the optimal

diversification fails. For instance, for the data set “10 industry portfolio”, MLE

results in a Sharpe ratio of 0.0597 compared to its in-sample value of 0.5111, and

0.1281 for the 1/N strategy.

4.3.2 Certainty equivalent return

Since the CEQ return can be interpreted as the risk-free rate that an investor is

willing to accept in stead of adopting a given risky portfolio, the higher the CEQ

return, the better the optimal rule.

When M = 120 and γ = 1, the in-sample MLE always has a positive CEQ re-

turn across all these data sets, while the simple plugging-in MLE gives a negative

CEQ return for all the data sets. Surprisingly, bayesian rule, optimal two fund

rule, optimal three fund rule, Bayes-Stein rule, combination rules, and shrinkage

rule all generate higher CEQ return than simple plugging-in MLE for all the data

sets. Furthermore, shrinkage rule has a decent value 0.0585, which is the high-
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Table 4.7: CEQ return under different portfolio rules when M = 240 and γ = 1

FF FF Industry
portfolios

Industry
portfolios

Industry
portfolios

Strategy N=6 N=25 N=10 N=30 N=49
in-sample 0.0847 0.1034 0.0163 0.0402 0.1306
mle 0.0405 -0.0640 -0.0203 -0.2228 -0.3223
unbiased 0.0460 -0.0177 -0.0173 -0.1577 -0.1913
1/N -13.3065 -11.6986 -8.5390 -14.7439 -10.8981
min -8.5516 -5.5325 -6.2033 -6.7251 -6.7873
bayesian 0.0466 -0.0164 -0.0171 -0.1561 -0.1895
two-fund 0.0506 0.0340 -0.0014 -0.0123 0.0006
three-fund 0.0519 0.0437 0.0023 -0.0279 -0.0328
b-s 0.0493 0.0306 0.0029 -0.0348 -0.0455
cml 0.0467 -0.0168 -0.0173 -0.1521 -0.1843
ckz 0.0527 0.0439 0.0015 -0.0276 -0.0325
shrinkage 0.0704 0.0543 -0.0149 -0.1399 -0.2276

Table 4.8: CEQ return under different portfolio rules when M = 120 and γ = 3

FF FF Industry
portfolios

Industry
portfolios

Industry
portfolios

Strategy N=6 N=25 N=10 N=30 N=49
in-sample 0.0282 0.0345 0.0054 0.0134 0.0435
mle -0.0022 -0.1056 -0.0219 -0.2016 -0.5161
unbiased 0.0042 -0.0411 -0.0175 -0.0932 -0.1669
1/N -45.6529 -40.2445 -28.9479 -50.3046 -38.0250
min -29.8272 -22.2287 -19.6166 -28.7339 -27.9376
bayesian 0.0048 -0.0396 -0.0171 -0.0912 -0.1641
two-fund 0.0154 0.0145 -0.0009 0.0008 -0.0090
three-fund 0.0141 0.0085 -0.0029 -0.0125 -0.0254
b-s 0.0125 -0.0039 -0.0028 -0.0261 -0.0546
cml 0.0043 -0.0410 -0.0176 -0.0925 -0.1639
ckz 0.0151 0.0080 -0.0045 -0.0140 -0.0274
shrinkage 0.0194 -0.0039 -0.0158 -0.0688 -0.1963
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Table 4.9: CEQ return under different portfolio rules when M = 240 and γ = 3

FF FF Industry
portfolios

Industry
portfolios

Industry
portfolios

Strategy N=6 N=25 N=10 N=30 N=49
in-sample 0.0282 0.0345 0.0045 0.0134 0.0435
mle 0.0135 -0.0213 -0.0068 -0.0743 -0.1074
unbiased 0.0153 -0.0059 -0.0058 -0.0526 -0.0638
1/N -41.3904 -36.4577 -26.8686 -45.5205 -33.9235
min -28.6656 -19.1085 -20.0975 -21.3378 -21.1591
bayesian 0.0155 -0.0055 -0.0057 -0.0520 -0.0632
two-fund 0.0169 0.0113 -0.0005 -0.0041 -0.0002
three-fund 0.0173 0.0146 0.0008 -0.0093 -0.0109
b-s 0.0164 0.0102 0.0010 -0.0116 -0.0152
cml 0.0154 -0.0060 -0.0058 -0.0521 -0.0632
ckz 0.0175 0.0150 0.0006 -0.0098 -0.0109
shrinkage 0.0235 0.0180 -0.0050 -0.0466 -0.0759

est CEQ return for the “6 size- and book-to-market-sorted portfolios” data set.

Optimal two fund rule performs best for the rest of the data sets, among which

the CEQ returns for “25 size- and book-to-market-sorted portfolios” and “30 in-

dustry portfolios” data sets are positive and the ones for “10 industry portfolios”

and “49 industry portfolios” are negative.

When M is increased to 240, shrinkage rule has the best performance for the

“6 size- and book-to-market-sorted portfolios” and “25 size- and book-to-market-

sorted portfolios” data sets. Bayes-Stein rule has the best performance for the

“10 industry portfolios” data set. And the optimal two fund rule performs best

for the “30 industry portfolios” and “49 industry portfolios”data sets.

When M = 120 and γ = 3, bayesian rule, optimal two fund rule, optimal three

fund rule, Bayes-Stein rule, combination rules, and shrinkage rule still generate

higher CEQ return than simple plugging-in MLE for all the data sets. Shrinkage

rule gives the highest CEQ return for “6 size- and book-to-market-sorted port-

folios” data set. Optimal two fund rule gives the highest CEQ return for the

rest four data sets. When M is increased to 240, the best rule for “25 size- and

book-to-market-sorted portfolios” data set becomes shrinkage on the covariance

rule and the best rule for “10 industry portfolios” data set becomes Bayes-Stein
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rule.

4.3.3 Summary of finding from the empirical data sets

From the above discussion, we find that, in terms of Sharpe ratio, the combi-

nation rule that combines naive rule and unbiased estimation together always

outperforms simple plugging-in MLE. The combination rule that combines naive

rule and three-fund rule together outperforms simple plugging-in MLE for most

of the cases. The reason why it fails when rolling window is 240 might be the

improving of estimation accuracy of MLE when the sample size increases. Hence,

combination rules are highly recommended if the investor takes the out-of-sample

Sharpe ratio as the most important measure of the performance for a portfolio

rule.

In terms of CEQ return, optimal two-fund rule performs best most often

for all these data sets. Shrinkage on the covariance rule has the best performs

for “size- and book-to-market-sorted portfolios” data sets. Since shrinkage on

the covariance rule takes factor model into consideration, that’s maybe the rea-

son why it performs better for “size- and book-to-market-sorted portfolios” data

sets. Overall, the optimal two-fund rule and shrinkage on the covariance rule

are recommended if the investor takes the out-of-sample CEQ return as the most

important measure of the performance for a portfolio rule.

It all depends on the investor’s preference which criteria he would like to take

as a measure of performance or both.

Moreover, none of the strategies discussed above can beat the in-sample

Sharpe ratio and in-sample CEQ return. It means that there still exists quite

much room for the improvement of the estimation approach of the mean-variance

problem.
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Chapter 5

Conclusions

Markowitz’s mean-variance portfolio theory has been widely used in practice since

it was born. However, a lot of researchers have doubts on its usefulness since it

faces severely estimation error. Quite many new approaches have been proposed

such as Bayesian rule, optimal two-fund rule, optimal three-fund rule, Bayes-Stein

rule, combination rules, shrinkage rule and so on, on the purpose of reducing its

estimation error.

In this paper, we give a review of the existing literature about the portfolio

rules designed to improve the estimation of mean-variance problem. We provide

an empirical study using five real data sets. We find that, the optimal combination

of the naive rule with unbiased estimation and the optimal combination of the

naive rule with the three-fund rule can perform well most of the time across

different data sets in terms of out-of-sample Sharpe ratio. Shrinkage on the

covariance rule performs well in terms of CEQ return for “size- and book-to-

market-sorted portfolios” data sets and optimal two-fund rule performs well in

terms of CEQ return for the rest of the data sets. Overall, in comparison with

all these existing rules, the combination rules proposed by Tu and Zhou (2010)

are the most recommended rules if the investor views the out-of-sample Sharpe

ratio as the most important measure of portfolio performance, and the optimal

two-fund rule and shrinkage on the covariance rule are the most recommended

ones if the investor views the out-of-sample CEQ return as the most important

measure.

However, since parameter uncertainty problem exists anyway, there’s still a lot
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miles to go. How to make an investment decision concerns about many aspects,

not only in finding out more efficient estimation rule, but also in choosing what

assets to invest in and how many assets to invest in. We believe there’s still a lot

of work to do in this area.
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