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Abstract 

 Improving forecasts of macroeconomic indicators such as output growth and inflation is of 

focal interest to academics and policy makers.  Because stock returns can be observed at very 

high frequencies, there is the question of whether high frequency information is useful for 

forecasting output and inflation. Furthermore, stock data is timely, whereas macro data is 

available only at a lag, so there is a question of whether stock returns can help to indicate the 

current state of the economy, i.e., "nowcasting".  In this thesis, we study the predictive power of 

daily stock returns on output growth and inflation with Mixed Data Sampling (henceforth, 

MIDAS) regression models both in forecasting and nowcasting contexts.  We filter the daily 

stock returns with a newly proposed frequency domain filter, and aggregate the daily data with 

MIDAS weights using estimated parameter values. We find that predictors with MIDAS 

regressions perform quite well in inflation forecasting.  For Singapore inflation, filtered stock 

returns forecast better than unfiltered stock returns; for US inflation, on the other hand, unfiltered 

stock returns forecast better than filtered stock returns. Predictors with MIDAS regressions 

perform fairly well in Singapore output growth forecasting in that contemporary stock returns 

have higher forecasting accuracy than the benchmark model, but for the US output growth, we 

don't see any improvements with our MIDAS regressions. 

Keywords:  Forecasting;  Nowcasting;  MIDAS;  Frequency Domain Filter;  Diebold-Mariano 

Test 
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1 Introduction

Forecasting macroeconomic variables is an important task for central banks, financial

firms, and any other entities whose outcome depend on business cycle conditions. Unfortu-

nately, many important macroeconomic indicators are not sampled at the same frequency.

The availability of data sampled at different frequencies always presents a dilemma for re-

searchers. On the one hand, the variables that are available at high-frequencies contain

potentially valuable information. On the other hand, the standard time series models can-

not use this high-frequency information directly if some of the variables are available at a

lower frequency, because they are designed for use with data sampled at the same interval.

The common solution in such cases is to aggregate the high frequency data so that the

left-hand and right-hand variables are available at the same frequency. In the process, a lot

of potentially useful information might be discarded, thus rendering the relation between

the variables difficult to detect. As an alternative, Ghysels et.al.(2004, 2005, 2006), have

proposed regressions that directly accommodate variables sampled at different frequencies.

Their Mixed Data Sampling (MIDAS) regressions represent a simple, parsimonious, and

flexible class of time series models that allow the left-hand and right-hand variables of time

series regressions to be sampled at different frequencies. Although high-frequency data con-

tains potentially useful information, it may also contain noises as well as high frequency

components that may not be useful for forecasting the lower frequency macroeconomic vari-

ables. Therefore, we propose to filter the high-frequency data first and figure out exactly

which cycle is most useful for forecasting the output growth.

Besides, using standard time series regression models where the regressors are aggre-

gated to some low frequency, such as financial aggregates (that are available at higher
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frequencies), can also yield estimation problems. Andreou, Ghysels, and Kourtellos (2010)

show that the estimated slope coefficient of a regression model that imposes a standard

equal weighting aggregation scheme (and ignores the fact that processes are generated from

a mixed data environment) yields asymptotically inefficient (at best) and in many cases

inconsistent estimates. As is well known, both inefficiencies and inconsistencies can have

adverse effects on forecasting.

The gains of real-time forecast updating, sometimes called nowcasting when it applies

to current quarter assessments, have also been of particular interest to policy makers. The

simplicity of the MIDAS approach allows us to produce nowcasts with potentially a large

set of real-time high frequency data feeds. More importantly, the MIDAS regressions can

be extended beyond nowcasting the current quarter to produce direct forecasts multiple

quarters ahead.

Before we proceed, it is useful to introduce a simple MIDAS regression here. Suppose

that a variable yt is available once between t−1 and t (say, quarterly), another variable x
(m)
t

is observed m times in the same period (say, daily or m = 66), and that we are interested

in the dynamic relation between yt and x
(m)
t . In other words, we want to project the left-

hand variable yt onto a history of lagged observations of x
(m)
t−j/m. The superscript on x

(m)
t−j/m

denotes the higher sampling frequency, and its exact timing lag is expressed as a fraction

of the unit interval between t− 1 and t. A simple MIDAS model is:

Yt = β0 + β1B(L1/m; θ)x
(m)
t + ε

(m)
t (1)

for t = 1, . . . , T , where B(L1/m; θ) =
∑K

k=0B(k; θ)Lk/m and L1/m is a lag operator such

that L1/mx
(m)
t = x

(m)
t−1/m; the lag coefficients in B(k; θ) of the corresponding lag operator

Lk/m are parameterized as a function of a small-dimensional vector of parameters θ.
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In the mixed-frequency framework (1), the number of lags of x
(m)
t is likely to be sig-

nificant. For instance, if quarterly observations of yt is affected by six months’ worth of

lagged x
(m)
t ’s, we would need 132 lags (K = 132) of high-frequency lagged variables. If

the parameters of the lagged polynomial are left unrestricted (or B(k) does not depend on

θ), then there would be a lot of parameters to estimate. As a way of addressing parameter

proliferation, in a MIDAS regression the coefficients of the polynomial in L1/m are captured

by a known function B(k; θ) of a few parameters summarized in a vector θ. We will discuss

two alternative specifications of B(k; θ) in this thesis. Finally, the parameter β1 captures

the overall impact of lagged x
(m)
t ’s on yt .

The rest of the thesis is organized as follows: A literature review is presented in Section

2. The MIDAS methodology is introduced and discussed in detail in Section 3. Section

4 describes the data we apply for forecasting, with particular emphasis on parameter esti-

mation of the MIDAS regressions and the Ouliaris and Corbae (2005)’s frequency domain

filter. Section 5 presents our forecasting results for both the unfiltered and filtered daily

stock returns, we also introduce the Diebold-Mariano test and its application to compare

the predictive accuracy of different predictors. Section 6 concludes.

2 Literature Review

The MIDAS regression models were introduced by Ghysels et.al. (2004). They examine

the asymptotic properties of MIDAS regression estimation and compare it with traditional

distributed lag models. They show that MIDAS regressions will always lead to more efficient

estimation than the typical approach of aggregating all series to the least frequent sampling,

and in some cases MIDAS regressions are also as efficient as distributed lag regressions with

3



all series available at the highest frequency.

Since then, a large literature has focused on applying MIDAS in volatility forecasting.

For instance, Ghysels et.al.(2005) uses monthly and daily market returns data from 1928

to 2000 and with MIDAS as a model of the conditional variance, they show that there

is a significantly positive relation between market volatility and return ( expected returns

are proxied using monthly averages, while the variance is estimated using daily squared

returns over the last year). They also include business cycle variables together with both

the symmetric and asymmetric MIDAS estimators of conditional variance in the ICAPM

(Intertemporal Capital Asset Pricing Model) equation and find that the trade-off between

risk and return is virtually unchanged, and the explanatory power of the conditional variance

for expected returns is not affected by the inclusion of other predictive variables.

Ghysels et.al.(2006) studies the predictability of return volatility with MIDAS regres-

sions, the MIDAS regression framework allows them to investigate whether the use of high-

frequency data necessarily leads to better volatility forecasts at various horizons and allows

for a great degree of flexibility. They find that daily realized power is the best predictor of

future increments in quadratic variation, followed by the daily range. The prediction equa-

tions involve about 50 daily lags and find that there is no real benefit of using intra-daily

data directly. The MIDAS regressions outperform other linear forecast models involving

daily realized volatility. Ghysels et.al.(2007) presents various extensions of MIDAS models,

such as a generalized MIDAS regression, nonlinear MIDAS regressions, tick-by-tick MIDAS

regressions, and multivariate MIDAS regressions. They apply some of the generalizations

to estimate the relation between conditional expected return and risk using ten years of

daily Dow Jones index return data.
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Alper et.al.(2008) explores the relative weekly stock market volatility forecasting per-

formance of the linear univariate MIDAS regression model based on squared daily returns

vis--vis the benchmark model of GARCH(1,1) for a set of four developed and ten emerging

market economies. Their findings show that the MIDAS squared daily return regression

model outperforms the GARCH model significantly in four of the emerging markets. More-

over, the GARCH model fails to outperform the MIDAS regression model in any of the

emerging markets significantly, while the results are slightly less conclusive for the devel-

oped economies.

Alper et.al.(2011) evaluates weekly out-of-sample volatility forecast performance of uni-

variate MIDAS model compared to the benchmark model of GARCH(1,1) for ten emerging

stock markets. The results show that the MIDAS model offers statistically better forecast-

ing precision during the recent financially turbulent era, based on the test suggested by

West(2006). For the tranquil period, however, the MIDAS model can not produce statisti-

cally better weekly volatility forecast.

A few other authors also apply the MIDAS approach to forecast output growth by

using high frequency data. For instance, Tay (2006) considers augmenting the quarterly

AR(1) model for real output growth with daily returns using MIDAS methods and aug-

menting the quarterly AR(1) model with the most recent r-day returns as an additional

predictor, and finds that for the early 2000s, his MIDAS model outperforms his benchmark

model by 20 to 30 percent, while his AR model using stock returns over a specified period

performs even better. Clements and Galvao (2008) extends the distributed-lag MIDAS

specification to include an AR term (MIDAS-AR) and finds that the use of monthly data

on the current quarter leads to significant improvement in forecasting current and next
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quarter output growth. The use of real-time vintage data serves to strengthen their find-

ing that within-quarter monthly indicator information can result in marked improvements

in forecast performance. MIDAS fares well relative to the other models that use monthly

information. Coupled with its flexibility and ease of use relative to methods that involve

generation of forecasts of explanatory variables offline, the MIDAS-AR would appear to be

a useful addition to the sets of models and methods that exploit monthly indicators for

the short-term forecasting of macroaggregates. Kuzin, Marcellino, and Schumacher(2011)

use monthly series to forecast euro-area quarterly GDP. They compared the performance

of the AR-MIDAS model of Clement and Galvao (2008) to a vector autoregression (VAR)

and find that the AR-MIDAS model performs better near one-quarter horizons, while the

VAR model performs better near three-quarter horizon. Galvao (2011)include a MIDAS

framework in a smooth-transition autoregression to allow for changes in a higher-frequency

variable’s forecasts of quarterly GDP when using weekly short-term interest rate and stock

returns data along with term spread data, sometimes up to horizon of two or three years.

Clements and Galvao (2009) considers the MIDAS regression model as a way of com-

bining the information in multiple leading indicators to predict output growth up to 1 year

ahead. They find that: (a) MIDAS is a useful vehicle for combining a small group of indi-

cators for forecasting; (b) the use of information on the current quarter improves forecasts

and (c) combination in modeling with MIDAS is better than combination of forecast when

predicting the direction of change of output growth.

As for the inflation forecasting, Ghysels et.al.(2009) offers some insights about using

MIDAS methods. They show that for forecasting CPI inflation the univariate MIDAS

model yields forecasting gains for one quarter ahead of about 85%, 53%, and 19% over the
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RW, AR and FAR, respectively. Interestingly, for longer forecasting horizons of 8 quarters

ahead they find that the best MSFE given by the parsimonious univariate MIDAS model

yields 28% forecasting gains over the RW and AR and around 50% gains over the traditional

Factor models.

Compared to the previous research, our study makes three new contributions. First, we

filter the daily stock returns using a newly proposed frequency domain filter, which enables

us to figure out which cycles of the data contains potential useful information for predicting

output growth and inflation; Second, our finding shows that the MIDAS methodology is

more effective in forecasting inflation than in output growth; Last but not the least, we

compare the predictive accuracy of different forecasts by applying Diebold-Mariano test

and dig out some new insights about the predictors.

3 MIDAS

The MIDAS approach models the response of the dependent variable to the higher-

frequency explanatory variables as a highly parsimonious distributed lag, as a way of pre-

venting the proliferation of parameters that might otherwise result. Modeling the coeffi-

cients on the lagged explanatory variables as a distributed lag function allows for long lags

with only a small number of parameters needing to be estimated. They allow us to study,

in a unified framework, the forecasting performance of a large class of models which in-

volve: (i) data sampled at different frequencies; (ii) various past data window lengths; and

(iii) different regressors. The specification of the regressions combine recent developments

regarding estimation of volatility and a not so recent literature on distributed lag models.

In this section, we focus on the specification of (1), we deal with finite one-sided poly-
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nomials applied to a single regressor. This is one of the simplest MIDAS specifications and

it allows us to focus on the parametrization of B(k; θ). We focus on two parameterizations

of B(k; θ). The first is

B(k; θ) =
exp(θ1k + · · ·+ θTk

T )∑K
k=1 exp(θ1k + · · ·+ θTkT )

(2)

which we refer to as the exponential Almon lag. The function B(k; θ) is known to be

quite flexible and can take various shapes with only a few parameters. Ghysels et.al.(2005)

use the functional form (2) with two parameters, or θ = [θ1; θ2] . Figure 1 illustrates the

flexibility of the exponential Almon lag even in this simple two-parameter case. First, it is

easy to see that for θ1 = θ2 = 0, we have equal weights (this case is not plotted). Second,

the exponential function (2) can produce hump shapes as shown in the upper left panel

of Figure 1(θ1 = 3 ∗ 10−2 and θ2 = −9 ∗ 10−4). Third, the weights can decline fast(upper

right panel, with θ1 = 7 ∗ 10−4 and θ2 = −1 ∗ 10−3) and slowly(bottom left panel, with

θ1 = 7 ∗ 10−3 and θ2 = −1 ∗ 10−4) with the lag. Finally, it can also produce bell shapes like

normal distribution as shown in the bottom right panel(θ1 = 3 ∗ 10−1 and θ2 = −9 ∗ 10−4)).

A declining weight is guaranteed as long as θ2 ≤ 0. It is important to point out that the rate

of decline determines how many lags are included in regression (1). Since the parameters

are estimated from the data, once the functional form of B(k; θ) is specified, the lag length

selection is purely data driven.

The second parametrization has also only two parameters, or θ = [θ1; θ2] :

B(k; θ1, θ2) =
f(k/K, θ1; θ2)∑K
k=1 f(k/K, θ1; θ2)

(3)

where:

f(i, θ1, θ2) =
iθ1−1(1− i)θ2−1Γ(θ1 + θ2)

Γ(θ1)Γ(θ2)
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Figure 1: Exponential Almon polynomial MIDAS weights. The figure shows various shapes of the

exponential Almon specification (2). We plot the weights on the first 252 lags (which correspond to

one year’s worth of daily lags).

Figure 2: Beta polynomial MIDAS weights. The figure shows various shapes of the beta specification

(3). We plot the weights on the first 252 lags (which correspond to one year’s worth of daily lags).
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Γ(θ) =

∫ ∞
0

e−xxθ−1dx

Figure 2 displays various shapes of (3) for several values of θ1 and θ2 . The function can

also take many shapes not displayed in the figure. For instance, it is easy to show that for

θ1 = θ2 = 1 we have equal weights (this case is not shown). Second, the upper left panel in

Figure 2 shows the case of slowly declining weight that corresponds to θ1 = 1 and θ2 = 5.

As θ2 increases, we obtain faster declining weights, as shown in the upper right panel of the

figure(θ1 = 1 and θ2 = 25). Third, the bottom left panel illustrates a hump-shaped pattern

which emerges for θ1 = 2 and θ2 = 8. Finally, the Beta polynomial function (3) can also

produce bell shapes as shown in the bottom right panel(θ1 = 16 and θ2 = 8). The flexibility

of the beta function is well known. As pointed out in the exponential Almon lag case, the

rate of weight decline determines how many lags are included in the MIDAS regression.

4 Data

We use a dataset of mixed frequencies (daily and quarterly). Our purpose here is to use

daily stock returns to forecast quarterly GDP growth and inflation. For instance, we apply

unfiltered and filtered daily returns of Dow Jones Industrial Average(DJI) from January 1,

1951 to December 31, 2010, to forecast the US GDP growth and inflation. Three pairs of in-

sample regression and out of sample forecasting periods are chosen: 1951Q1 to 2008Q4 Vs

2009Q1 to 2010Q4; 1951Q1 to 2006Q4 Vs 2007Q1 to 2010Q4; 1951Q1 to 2004Q4 Vs 2005Q1

to 2010Q4, mean square forecasting error (MSFE) are calculated for each forecasting period.

Similarly, we apply the same methodology to forecast Singapore GDP growth and inflation

with the daily returns of Strait Times Index (STI) from January 1, 1986 to December 31,
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20101, three forecasting periods are chosen: 2009Q1 to 2010Q4, 2007Q1 to 2010Q4 and

2005Q1 to 2010Q4.

4.1 Frequency Domain Filter

Ouliaris and Corbae (2005) proposes a new frequency domain filter for extracting the

cyclical component of a time series from the level of a time series that easily handles stochas-

tic and deterministic trends (and obviously, works for stationary series). Their approach

yields a statistically consistent estimator of the ideal band pass filter. Using a series of monte

carlo experiments, the authors show that their approach has much lower mean squared error

than popular time domain filters (e.g. HP filter and BK filter) for a data generation process

such as the growth rate of U.S. real output. Moreover, the proposed frequency domain filter

has an important advantage over the Baxter and King (1999) and Hodrick-Prescott (1980)

filters in that it does not require the investigator to set any parameters except the business

cycle range. In our application, we extract components of GDP with range between 6 and

32 quarters (1.5 year to 8 years), or equivalently, 395 to 2088.5 days for the daily stock

returns. The following figures show the results for filtered GDP, inflation and stock returns

by applying the proposed frequency domain filter.

In the next section we shall apply the MIDAS methodology to aggregate both the

filtered and unfiltered daily stock returns into the same frequency with GDP growth and

inflation, implement forecasting and compare the predictive accuracy of different forecasting

predictors.

1All the data in this thesis are downloaded from CEIC.
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(a) US GDP (b) Filtered US GDP

(c) Singapore GDP (d) Filtered Singapore GDP

Figure 3: US(Singapore) GDP with filtered cycles from 1.5 years to 8 years

(a) US Inflation (b) Filtered US Inflation

(c) Singapore Inflation (d) Filtered Singapore Inflation

Figure 4: US(Singapore) Inflation with filtered cycles from 1.5 years to 8 years
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(a) Dow Jones Index (b) Filtered Dow Jones Index

(c) Strait Times Index (d) Filtered Strait Times Index

Figure 5: DJI(STI) with filtered cycles from 395 days to 2088.5 days

4.2 Parameter Estimation

A crucial step in our MIDAS methodology is the specification of the parameters ( θ1,θ2)

in the weighted aggregation functions (2) and (3). They not only determine the shapes of

these two aggregation functions, but also how many lags should be included in regression

(1). We intend to estimate (θ1,θ2) both in forecasting and nowcasting contexts. We propose

the following regression with an exponential Almon MIDAS weights (For the Beta MIDAS

weights, similar procedures apply):

Yt = β0 + β1Yt−1 + β2

K∑
k=0

B(k; θ)Lk/mx
(m)
t + εt (4)

Where,

B(k; θ) =
exp(θ1k + θ2k

2)∑K
k=1 exp(θ1k + θ2k2)
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Our objective here is to specify parameters β0, β1, β2 and estimate θ1,θ2, by non-linear

least square method. We first set reasonable initial values for θ1 and θ2, and aggregate

the daily stock returns (unfiltered and filtered) into quarterly data by the Almon-weighted

aggregation function. In the nowcasting context, regression (4) becomes like

Yt = β0 + β1Yt−1 + β2Xt + εt (5)

whereXt represents the contemporary aggregated stock returns. We first estimate the values

of β0,β1,β2 in regression (5). Then by iterative calculations, we come out with the estimated

values for all the five parameters (β0, β1, β2) and (θ1,θ2). The results are presented in the

following tables. 2

Table 1. Parameter Estimation Using Filtered Daily

Stock Returns:Nowcasting

US GDP US Inflation SG GDP SG Inflation

β̂0 1.1456 -0.0272 251.3367 0.030

β̂1 0.8167 0.3000 1.0086 0.4519

β̂2 0.0409 0.0001 1.1851 0.0011

θ̂1 4.1002 4.1035 0.1291 28.7821

θ̂2 -33.5486 -30.1574 -27.5759 -0.2923

Initial values: θ1 = 0.01, θ2 = −0.001.

2Ghysels et al. (2005) reported the estimated parameters of the Almon MIDAS weight function in ICAPM

(Intertemporal Capital Asset Pricing Model): Et[Rt+1] = µ+γV art[Rt+1]. They showed that (θ1 = −5.141,

θ2 = −10.580) for the full sample, and (θ1 = −0.909, θ2 = −10.807) and (θ1 = −6.336, θ2 = −18.586) for

two subsamples respectively. They found that, in all three cases, the weights are a slowly declining function

of the lag length. Please refer to the paper for details.
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Table 2. Parameter Estimation Using Unfiltered Daily

Stock Returns:Nowcasting

US GDP US Inflation SG GDP SG Inflation

β̂0 1.5728 -0.00286 254.2632 0.0562

β̂1 0.9349 0.3211 1.0107 0.5108

β̂2 -1.2026 -0.0073 32.4763 -0.0206

θ̂1 0.1304 3.1700 24.3923 14.7105

θ̂2 -0.0017 -0.0939 -0.2100 -0.1508

Initial values: θ1 = 0.01, θ2 = −0.001.

Figure (6) and (7) show the relationship between the Almon weights and number of

lagged days in the context of nowcasting, after inserting the estimated values(θ̂1 and θ̂2)

into the Almon weighted function.

As is shown in figure (6), with filtered stock returns, our results tell that only current

day’s stock returns information provides useful information for predicting US (Singapore)

GDP growth and US inflation, with exception for Singapore inflation, which puts greatest

weights around the 50th lagged day, and decline gradually both before and after that day,

eventually die out before the 45th day or after 55th days. The former phenomenon,to some

extent, coincides with the classical Efficient-Market Hypothesis, which states that current

prices on traded assets (e.g., stocks, bonds, or property) already reflect all past publicly

available information.

Figure (7) shows the Almon weights with estimated values of(θ̂1 and θ̂2)from unfiltered

stock returns. The Almon function shows good hump shape for US GDP growth, with

highest portion of weight around the 50th lagged days, and decline gradually until the 100th

days. For US inflation, the estimated Almon function reaches its highest point around the

20th lagged days, with the maximum value about 0.17, and becomes zero before the 10th
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Figure 6: Almon Weights for Filtered Stock Returns-Nowcasting

lagged day or after 25 lagged days. Moreover, the estimated Almon function reaches its

maximum value around the 60th lagged day for Singapore GDP growth (with a maximum

value of 0.25), and the 50th lagged day for Singapore inflation (with a maximum value of

0.225).

In the context of forecasting, regression (4) becomes like

Yt = β0 + β1Yt−1 + β2Xt−1 + εt (6)

where Xt−1 represents the lagged aggregated stock returns. We apply the same procedure

as in the context of nowcasting, and present the estimated values both for the filtered and

unfiltered stock returns in table 3 and table 4 respectively.

Figure (8) shows similar results in the context of forecasting for the US (Singapore) GDP

growth and US inflation, but shows something odd for the Singapore inflation: Contrary to
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Figure 7: Almon Weights for Unfiltered Stock Returns-Nowcasting

a declining or hump-shaped Almon function, it is ever increasing with the number of lagged

days, always putting the highest values on the farthest lagged days. However, we only show

the situation with 30 lagged days here.

Table (4) shows the result with unfiltered stock returns, and figure (9) presents the

corresponding Almon functions for each pair of estimated values. For US GDP growth, its

Almon aggregated function reaches its maximum value (slightly below 0.025) between the

lagged 50 and 100 days, and dies out gradually after that. For US inflation, the Almon

function reaches its highest value between the lagged 50 and 60 days, and turns out to be

zero either before the lagged 45th day or after the lagged 62th day. Similarly, the estimated

Almon function for the Singapore GDP growth reaches its highest value 0.033 around the

40th lagged day, and becomes zero after 100 lagged days. For Singapore inflation, its Almon

weights has the highest value of 0.1 around the 50th lagged day, and turns out to be zero
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before the lagged 40th day or after the lagged 60th day.

Table 3. Parameter Estimation Using Filtered Daily

Stock Returns:Forecasting

US GDP US Inflation SG GDP SG Inflation

β̂0 0.0049 0.1233 0.0155 0.2387

β̂1 0.3608 0.9593 0.0715 0.8754

β̂2 -0.0000 -0.0000 0.0000 0.0015

θ̂1 6.3313 35.3327 2.2267 0.4938

θ̂2 -29.8455 -57.9604 -31.2831 -0.0000

Initial values: θ1 = 0.01, θ2 = −0.001.

Table 4. Parameter Estimation Using Unfiltered Daily

Stock Returns:Forecasting

US GDP US Inflation SG GDP SG Inflation

β̂0 0.0047 0.1006 0.0140 0.2756

β̂1 0.3680 0.9621 0.1343 0.8716

β̂2 0.2880 30.7183 2.7934 -57.2243

θ̂1 9.7701 0.2450 0.2556 2.9783

θ̂2 -0.0896 -0.0019 -0.0034 -0.0315

Initial values: θ1 = 0.01, θ2 = −0.001.
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Figure 8: Almon Weights for Filtered Stock Returns-Forecasting

Figure 9: Almon Weights for Unfiltered Stock Returns-Forecasting
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5 Forecasting Analysis

We consider the following forecasting models:

Yt = β0 + β1Yt−1 + β2S
q
t + εt (7)

Yt = β0 + β1Yt−1 + β2S
q
t−1 + εt (8)

Yt = β0 + β1Yt−1 + β2s
ud
t + εt (9)

Yt = β0 + β1Yt−1 + β2s
ud
t−1 + εt (10)

Yt = β0 + β1Yt−1 + β2s
fd
t + εt (11)

Yt = β0 + β1Yt−1 + β2s
fd
t−1 + εt (12)

where Yt represents the log-differenced unfiltered GDP (or inflation) for US and Singapore,

Sqt (Sqt−1) represents log-differenced unfiltered quarterly stock returns, sudt (sudt−1) represents

the aggregated log-differenced unfiltered daily stock returns, and sfdt (sfdt−1) refers to the

aggregated filtered daily stock returns. We do our forecasting both in the nowcasting and

forecasting contexts, and in each context we choose the quarterly unfiltered stock returns as

our benchmark models (e.g., (7) for nowcasting and (8) for forecasting, respectively). The

purpose for doing this is because the quarterly stock returns data is at the same frequency

with the GDP growth and inflation data, hence we can do forecasting straightforwardly, and

by comparing the daily stock returns with the quarterly stock returns, we can figure out

whether the high frequency stock returns data contain any useful information for forecasting

GDP growth and inflation that the quarterly data don’t grasp, it can also test the validity

of our proposed MIDAS methodology in that whether it keeps as much useful information

as possible while aggregating the data in a parsimonious way. Furthermore, we also want to

figure out that, after filtering out the super-high frequency noise and possible trends from

20



the daily stock returns, whether our filtered daily stock returns would forecast better than

the original data, or not.

We present our forecasting evaluation results for both the GDP growth and inflation in

the following two tables. Mean Square Forecasting Errors (MSFE) for each predictor are

calculated both in the nowcasting and forecasting contexts, and divided by the MSFEs of

the benchmark models in each context respectively.

5.1 Forecasting Evaluation-GDP Growth

Table 5 US and Singapore GDP Growth Nowcasting & Forecasting

US GDP Growth Nowcasting SG GDP Growth Nowcasting

Forecasting Period sudt sfdt sudt sfdt

2009Q1 to 2010Q4 2.787695731 1.113035133 0.569613448 0.934890251

2007Q1 to 2010Q4 1.270814403 1.336780972 0.857746753 0.917515765

2005Q1 to 2010Q4 1.237694582 1.177303433 0.866401599 0.917596546

US GDP Growth Forecasting SG GDP Growth Forecasting

Forecasting Period sudt−1 sfdt−1 sudt−1 sfdt−1

2009Q1 to 2010Q4 1.0678214 1.2072552 1.034018762 1.088790549

2007Q1 to 2010Q4 1.1483504 1.1146641 1.046224830 1.085246168

2005Q1 to 2010Q4 1.1002330 1.1049947 1.037264585 1.074520526

As is shown in table 5, the high frequency daily stock returns (both the filtered and

unfiltered stock returns) help us little for forecasting US GDP growth, with calculated

MSFEs (Mean Squared Forecasting Error) strictly higher than 1 compared to the benchmark

models, and we can not easily distinguish the superiority of these two predictors both in the

nowcasting and forecasting contexts. For instance, for the forecasting period: 2009Q1 to

2010Q4, the relative MSFE of the unfiltered stock returns is much larger than the filtered
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stock returns, however, during the forecasting period from 2007Q1 to 2010Q4, the relative

MSFE of the filtered stock returns is greater than the unfiltered stock returns. Finally,

for the forecasting period from 2005Q1 to 2010Q4, the relative MSFE of the unfiltered

stock returns is, again, greater than the filtered stock returns. In the forecasting context,

on the other hand, the situation is reversed. For example, during the forecasting period

from 2009Q1 to 2010Q4, the relative MSFE of the filtered stock returns is greater than the

unfiltered stock returns, while during the period for 2007Q1 to 2010Q4, the unfiltered stock

returns forecast than the filtered stock returns. Finally, during the forecasting period from

2005Q1 to 2010Q4, the relative MSFE of the unfiltered stock returns is sightly greater than

the unfiltered stock returns.3

For the Singapore GDP growth, we see some positive signs with our MIDAS methodology

in the nowcasting context, in that both the filtered and unfiltered stock returns improve our

predictions. Particularly for the unfiltered stock returns, which improves the relative MSFE

by 43% for the forecasting periods of 2009Q1 to 2010Q4 and 15% for both the forecasting

periods of 2007Q1 to 2010Q4 and 2005Q1 to 2010Q4. As for the filtered stock returns,

moderate improvements also have been made, from roughly 6.5% for the forecasting period

2009Q1 to 2010Q4 to 8% for the both the forecasting periods of 2007Q1 to 2010Q4 and

2005Q1 to 2010Q4. In the forecasting context, on the other hand, we see little improvement

with our filtered and unfiltered high frequency stock returns data. One possible explanation

is that our filtering process may discard much useful information contained in the noise or

3Clements and Galvao (2008) also applied the MIDAS approach to forecast the US output growth, but

their method was different from ours in that they included an autoregressive term in the regression. They

showed that the MIDAS approach with an AR term reduces RMSE sizeably compared to AR model when

monthly data on industrial production and capacity utilization are available on the current quarter.
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trend that are important for predicting Singapore GDP growth. Moreover, as is easily seen

from the table, the unfiltered stock returns forecast better than the filtered stock returns

during all the three forecasting periods. For this reason, we can safely conclude that the

unfiltered stock returns forecast consistently better than the filtered stock returns with

respect to the Singapore GDP growth forecasting.

5.2 Forecasting Evaluation-Inflation

Similarly, Yt represents the quarterly inflation level (US and Singapore), sudt (sudt−1) rep-

resents the log-differenced unfiltered daily stock returns, and sfdt (sfdt−1) refers to the filtered

daily stock returns. We present our forecasting evaluation results in the following tables.

Table 6 US and Singapore Inflation Nowcasting & Forecasting

US Inflation Nowcasting SG Inflation Nowcasting

Forecasting Period sudt sfdt sudt sfdt

2009Q1 to 2010Q4 0.777846704 0.79398270 0.82592301 0.701006919

2007Q1 to 2010Q4 0.863307462 1.044959807 0.92565959 0.762610611

2005Q1 to 2010Q4 0.883402504 0.977297263 0.92127627 0.772437858

US Inflation Forecasting SG Inflation Forecasting

Forecasting Period sudt−1 sfdt−1 sudt−1 sfdt−1

2009Q1 to 2010Q4 0.986398286 1.012689699 0.832908211 0.520009528

2007Q1 to 2010Q4 0.953388667 0.946305596 0.913009788 0.593589869

2005Q1 to 2010Q4 0.951391058 0.953525680 0.908407553 0.619014245

Table 6 contains the main findings of this thesis, therefore we will discuss them in more

detail here. Our results show that the high frequency stock returns data (both the filtered

and unfiltered stock returns) do contain more useful information than the quarterly data
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in forecasting inflation. In the context of nowcasting, the unfiltered stock returns forecast

better than the filtered stock returns for US inflation. For instance, for the forecasting

period from 2009Q1 to 2010Q4, the relative MSFE of the unfiltered stock returns is slightly

lower than the filtered stock returns; for the period of 2007Q1 to 2010Q4, the filtered stock

returns forecast worse than the benchmark, while the unfiltered stock returns improve the

MSFE by roughly 15%; for the forecasting period of 2005Q1 to 2010Q4, the filtered stock

returns improve the MSFE by mere 2%, while the the unfiltered stock returns improve the

MSFE by roughly 12%.

However, for Singapore inflation, the filtered daily stock returns forecast better than

unfiltered stock returns for the all the three forecasting periods. The unfiltered stock returns

improves the MSFE by 17%, while the filtered stock returns improves the MSFE by 30%

during the forecasting period from 2009Q1 to 2010Q4; for the forecasting period of 2007Q1

to 2010Q4, the unfiltered stock returns reduce the MSFE (compared to the benchmark

model) by 7%, while the filtered stock returns reduce the MSFE by 24%. Finally, during

the forecasting period from 2005Q1 to 2010Q4, the unfiltered stock returns reduce the

relative MSFE by 8%, while the filtered stock returns reduce the relative MSFE by 23%.

Furthermore, for US inflation, predictors in the nowcasting context perform better than

in the forecasting context, this is easily to understand as in the nowcasting context, pre-

dictors contain more information than in the forecasting context. However, it is hard to

tell which forecaster perform better in the forecasting context, as the relative MSFEs vary.

During the period of 2009Q4 to 2010Q4, the relative MSFE of the filtered stock returns is

greater than the unfiltered stock returns. However, for the period of 2007Q1 to 2010Q4,

the relative MSFE of the unfiltered stock returns is greater than the filtered stock returns.
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Finally, for the period of 2005Q1 to 2010Q4, the relative MSFE of the filtered stock returns

is greater than the unfiltered stock returns.

Lastly, our forecasting result for the Singapore inflation seems some kind of abnormal, as

we observe from the table 6 that both the unfiltered and filtered daily stock returns perform

better in the forecasting context than in the nowcasting context, specially for the filtered

daily stock returns data, with average 40% improvements compared to the benchmark

model for all the three chosen forecasting periods in the forecasting context from rough

25% improvements in the nowcasting context. And it is easily observed that the filtered

stock returns forecast straightly better than the unfiltered stock returns. Which affirms

that, after filtering out the high frequency noise and low frequency trend, the remaining

cycles do improve the predictive accuracy of our prediction for inflation.

5.3 Diebold-Mariano Test

Diebold and Mariano(1995) considers model-free tests of forecast accuracy that are di-

rectly applicable to quadratic loss functions, multi-period forecasts, and forecast error. The

basic ideas are presented as follows.

Let yt be a covariance stationary are ergodic process, e.g. an ARMA(p,q) process with

Wold representation

yt = µ+
∞∑
j=0

ψjεt−j , εt ∼WN(0, σ2)

= µ+ εt + ψ1εt−1 + ψ2εt−2 + · · ·

and let It = {yt, yt−1, · · ·} denote the information set available at time t. y1t+h|tand y2t+h|t

denote two competing forecasting of yt+h based on It. For example, y1t+h|t could be computed

from an AR(p) model and y2t+h|t could be computed from an ARMA(p,q) model. The
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forecast errors from the two models are

ε1t+h|t = yt+h − y1t+h|t, ε
2
t+h|t = yt+h − y2t+h|t

The h-step forecasts are assumed to be computed for t = t0, . . . , T for the total of T0

forecasts giving

{ε1t+h|t}
T
t0 , {ε

2
t+h|t}

T
t0

Because the h-step forecasts use overlapping data the forecast errors in ε1t+h|t
T

t0
and

ε2t+h|t
T

t0
will be serially correlated. The accuracy of each forecast is measured by a particular

loss function

L(yt+h, y
i
t+h|t) = L(εit+h|t), i = 1, 2

Some popular loss functions are

• Squared error loss: L(εit+h|t) = (εit+h|t)
2

• Absolute error loss: L(εit+h|t) = |εit+h|t|

To determine if one model predicts better than another we may test null hypotheses

H0 : E[L(ε1t+h|t)] = E[L(ε2t+h|t)]

against the alternative

H1 : E[L(ε1t+h|t)] 6= E[L(ε2t+h|t)]

The Diebold-Mariano test is based on the loss differential

dt = L(ε1t+h|t)− L(ε2t+h|t)

The null of equal predictive accuracy is then

H0 : E[dt] = 0
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this can be done by regressing dt on a constant and any ARMA terms that may be suitable,

and testing whether the constant term is significantly different from zero.

Herein we apply the Diebold-Mariano test to compare the predictive accuracy of various

forecasters both in the nowcasting and forecasting contexts. We select the squared error loss

as our loss function in our application. Moreover, we also do a cross comparison between

predictors in the nowcasting and forecasting context. The results are shown in the following

table.

Table 7 Diebold-Mariano Test

US GDP Growth US Inflation SG GDP Growth SG Inflation

Nowcasting d
(gdp)
t d

(inf)
t d

(gdp)
t d

(inf)
t

sudt /Sq
t 0.0000116∗∗ −0.188370∗ -0.000113 −0.135341∗

sfdt /Sq
t 0.00000866 -0.036678 -0.0000698 −0.391223∗

sfdt /sudt -0.00000295 0.151693∗ 0.0000435 −0.255882∗

Forecasting d
(gdp)
t−1 d

(inf)
t−1 d

(gdp)
t−1 d

(inf)
t−1

sudt−1/S
q
t−1 0.00000680 -0.049238 0.000147∗ -0.014677

sfdt−1/S
q
t−1 0.00000676 -0.022845 0.0000583 −0.473673∗∗

sfdt−1/s
ud
t−1 -0.000000035 0.026393 -0.0000891 −0.458996∗∗

Cross Comparison d
(gdp)
t/t−1 d

(inf)
t/t−1 d

(gdp)
t/t−1 d

(inf)
t/t−1

sudt /sudt−1 0.00000280 -0.063619 −0.000194∗∗∗ -0.072758

sfdt /sfdt−1 0.00000572 0.061681 -0.0000618 0.130356∗∗

Sq
t /S

q
t−1 −0.00000761∗ 0.075513 0.0000663 0.047906

∗,∗∗ and ∗ ∗ ∗: level of significance at 10%, 5% and 1% respectively.

As is shown in the upper panel of table 7. In the nowcasting context, the forecasting

power of the aggregated unfiltered daily stock returns is weaker than the benchmark model

for the US GDP growth(with the quarterly stock returns as regressor) at a significant
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level of 5%, while there are no significant differences between aggregated filtered daily

stock returns and aggregated unfiltered daily stock returns. For US inflation, however, the

aggregated unfiltered daily stock returns works better than both the aggregated filtered daily

stock returns and our benchmark predictor at a significant level of 10%, while there is no

significant difference between the aggregated the filtered daily stock returns and quarterly

stock returns. Moreover, there are no significant predictive power differences among all

our three forecasters for the Singapore GDP growth. Finally, our results for the Singapore

inflation show something new: The application of the MIDAS methodology greatly improves

forecasting accuracy compared to the benchmark predictor. Particularly, the aggregated

filtered daily stock returns forecast better than aggregated unfiltered daily stock returns,

which illustrates that, after filtering out the trends and high frequency noise, the remaining

stock returns data still contain a lot of useful information.

In the forecasting context, the result shows there are no significant predictive differences

among all the three forecasters both for the US GDP growth and US inflation, e.g.,with dt

very close to zero and p-value greater than 10%. For Singapore GDP growth, the test shows

that the unfiltered daily stock returns forecast slightly worse than the benchmark predictor,

while there are no significant predictive difference between filtered stock returns and the

benchmark predictor, or between the unfiltered and filtered stock returns. For Singapore

inflation, the filtered stock returns forecast better than both the benchmark predictor and

the unfiltered stock returns at a significance level of 5%. Meanwhile, there are no significant

difference between the unfiltered stock returns and the benchmark predictor.

The cross comparison between predictors in the nowcasting context and forecasting con-

text is shown in the bottom panel of table 7, our test shows that, for US GDP growth, there
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are no significant differences between the contemporary unfiltered daily stock returns and

its lagged counterpart, or between the contemporary filtered daily stock returns and its

lagged counterpart, which tells new information gained in current quarter does not improve

the predictive accuracy of these two forecasters. However, for the benchmark predictors, the

inclusion of new information in current quarter indeed helps improve our prediction, though

at a very weak level. Secondly, there are no significant predictive differences among all the

three contemporary predictors and their lagged counterparts for the US inflation forecast-

ing. As for Singapore GDP growth, the contemporary unfiltered daily stock returns works

better than its lagged counterpart at a significance level of 1%, but there are no significant

differences for the other two predictors. Finally, for Singapore inflation, the contemporary

filtered daily stock returns forecast even worse than its lagged counterpart, which means

that, the inclusion of the new information makes the prediction for inflation even worse. It

is contrary to reality and probably due to some errors made in the process of data interpre-

tation and our forecasting methodology. As for the two other predictors, we again see little

differences between the contemporary predictors and their lagged counterparts.

6 Conclusion

In this thesis we study the predictive power of daily stock returns on GDP growth and

inflation. We filter the daily stock returns with a newly proposed frequency domain filter,

and aggregate the daily data with MIDAS functions using estimated parameter values. We

find that predictors with MIDAS regressions generally perform better in inflation forecast-

ing than in GDP growth forecasting. Specifically, our forecasting with MIDAS regressions

improve greatly for Singapore inflation compared to the the benchmark model, both with
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unfiltered stock returns and filtered stock returns. Moreover, the predictors with filtered

stock returns performs better than the predictors with unfiltered stock returns, and pre-

dictor with lagged filtered stock returns perform better than contemporary filtered stock

returns(with an average improvement of 45% versus 25% in relative MSFE with respect to

the benchmark model). For US inflation, however, predictors with unfiltered stock returns

perform better with filtered stock returns, and predictor with contemporary stock returns

works better than with lagged stock returns. For Singapore GDP growth, we find that only

contemporary stock returns have more forecasting power than the benchmark model, and

like US inflation, unfiltered daily stock returns forecast better than filtered daily stock re-

turns. For US GDP growth, on the other hand, we see little improvement with our MIDAS

regressions.
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