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Abstract

Three Essays on Bayesian Hypothesis Testing and Model Selection

Tao Zeng

My dissertation consists of three essays which contribute new theoretical results to

Bayesian hypothesis and model selection.

Chapter 2 shows that the data augmentation technique undermines the theoreti-

cal underpinnings of the deviance information criterion (DIC), a widely used infor-

mation criterion for Bayesian model comparison, although it facilitates parameter

estimation for latent variable models via Markov chain Monte Carlo (MCMC) sim-

ulation. Data augmentation makes the likelihood function non-regular and hence

invalidates the standard asymptotic arguments. A robust form of DIC, denoted as

RDIC, is advocated for Bayesian comparison of latent variable models. RDIC is

shown to be a good approximation to DIC without data augmentation. While the

later quantity is difficult to compute, the expectation – maximization (EM) algo-

rithm facilitates the computation of RDIC when the MCMC output is available.

Moreover, RDIC is robust to nonlinear transformations of latent variables and dis-

tributional representations of model specification. The proposed approach is applied

to several popular models in economics and finance. While DIC is very sensitive to

the nonlinear transformations of latent variables in these models, RDIC is robust to

these transformations. As a result, substantial discrepancy has been found between

DIC and RDIC.

Chapter 3 proposes a new Bayesian approach to test a point null hypothesis

based on the deviance in a decision-theoretical framework. The proposed test statis-

tic may be regarded as the Bayesian version of likelihood ratio test and appeals in



practical applications with three desirable properties. First, it is immune to Bartlett’s

paradox. Second, it avoids Jeffreys-Lindley’s paradox, Third, it is easy to compute

and its threshold value is easily derived, facilitating the implementation in practice.

The method is applied to three real examples in economics and finance. Empirical

results confirm the strength of the test over the Bayes factor and reject the well-

known three factor Fama-French model.

Chapter 4 proposes a Bayesian method for assess the model specification of an

econometric model after it is estimated by Bayesian MCMC methods. The proposed

approach does not required an alternative model be specified and is applicable to a

variety of models, including latent variable models for which frequentist’s methods

are more difficult to use. It is shown that the proposed statistic and its threshold

values are easy to compute. The method is illustrated using the Fama-French asset

price model and dynamic stochastic general equilibrium (DSGE) model.
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Chapter 1 Introduction

One of the most important developments in the Bayesian literature in recent years

is the deviance information criterion (DIC) of Spiegelhalter et al. (2002). DIC is a

Bayesian version of the well known Akaike Information Criterion (AIC) (Akaike

(1973)). Like AIC, it trades off a measure of model adequacy against a measure

of complexity and is concerned about how replicate data predict the observed data.

DIC is constructed based on the posterior distribution of the log-likelihood or the

deviance, and has several desirable features. First, DIC is simple to calculate when

the likelihood function is available in closed-form and the posterior distributions

of the models are obtained by Markov chain Monte Carlo (MCMC) simulation.

Second, it is applicable to a wide range of statistical models. Third, unlike Bayes

factors (BFs), it can be implemented under noninformative priors.

For latent variable models, Bayesian methods via MCMC simulation have proven

to be a powerful alternative to frequentist methods for estimating model parame-

ters. In particular, the data augmentation strategy proposed by Tanner and Wong

(1987), which expands the parameter space by treating the latent variables as ad-

ditional model parameters, has been found very useful for simplifying the MCMC

computation of posterior distributions. This simplification is achieved because data

augmentation leads to a closed-form expression for the likelihood function.

In Chapter 2, we argue that DIC has to be used with care in the context of latent

variable models. In particular, we believe DIC, as the way it is commonly imple-

mented in practice, has some conceptual and practical problems. we advocate the

use of a robust versio of DIC, denoted by RDIC, to make Bayesian comparison of

latent variable models. It is shown that RDIC is a good approximation to DIC with-
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out data augmentation and hence is theoretically justified. We then show that the

expectation – maximization (EM) algorithm facilitates the computation of RDIC

for latent variable models when the MCMC output is available. Moreover, RDIC

is robust to nonlinear transformations of latent variables and to distributional rep-

resentations of model specification. The advantages of the proposed approach are

illustrated using three popular models in economics and finance, including a class

of asset pricing models, a class of dynamic factor models and a class of stochastic

volatility models.

Hypothesis testing plays a fundamental role in making statistical inference about

the model specification. After models are estimated, empirical researchers would

often like to test a relevant hypothesis to look for evidence to support or to be against

a particular theory. An important class of hypotheses involve a single parameter

value in the null.

In Chapter 3, we develop a new Bayesian hypothesis testing approach for the

point null hypothesis testing. The test statistic is based on the Bayesian deviance and

constructed in a decision theoretical framework. It can be regarded as the Bayesian

version of the likelihood ratio test. We show that the statistic appeals in four as-

pects. First, it does not suffer from Bartlett’s paradox and, hence, can be used under

improper priors. Second, it does not suffer from Jeffreys-Lindley’s paradox and,

hence, can be used under vague priors. Third, it is easy to compute. Finally, the

threshold values can be easily determined and are dependent on the data as well as

the candidate models. To show the strength of the proposed method, we apply the

test to three real examples in economics and finance. In the first example, we com-

pare the performance of the proposed test with that of the BF in the context of CEO

salary determination. It is shown that the new test is much more robust than the BF

with respect to the prior. In the second example, we test the validity of the three

factor Fama-French model and the new test rejects the well-known specification.

Finally, we test the absence of the leverage effect in a stochastic volatility model

for exchange rates and the new test suggests that there is no leverage effect in the

3



exchange rate series.

Economic theory has long been used to justify a particular choice of economet-

ric models. It almost always does do by using a set of economic assumptions. When

some of these assumptions are invalid, the corresponding econometric models may

be misspecified. In a worse scenario, economic theory may not be available and

the choice of econometric model can then be more arbitrary and, hence, the model

is more vulnerable to the specification errors. Given the popularity of Bayesian

MCMC methods for estimating latent variable models, it is therefore natural to in-

troduce a Bayesian test to assess the goodness-of-fit of the model.

In Chapter 4, we introduce a Bayesian approach to testing model specification

without specifying an alternative model. The proposed Bayesian test statistic is the

Bayesian version of a m-type test. We show how to compute the test statistic from

MCMC output in the context of latent variable models. To implement our method,

threshold values are needed. We then show that the threshold values can be obtained

using Monte Carlo simulations.
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Chapter 2 Robust Deviance Information Cri-

terion for Latent Variable Mod-

els

2.1 Introduction

One of the most important developments in the Bayesian literature in recent years

is the deviance information criterion (DIC) of Spiegelhalter et al. (2002). DIC is a

Bayesian version of the well known Akaike Information Criterion (AIC) (Akaike

(1973)). Like AIC, it trades off a measure of model adequacy against a measure

of complexity and is concerned about how replicate data predict the observed data.

DIC is constructed based on the posterior distribution of the log-likelihood or the

deviance, and has several desirable features. First, DIC is simple to calculate when

the likelihood function is available in closed-form and the posterior distributions

of the models are obtained by Markov chain Monte Carlo (MCMC) simulation.

Second, it is applicable to a wide range of statistical models. Third, unlike Bayes

factors (BFs), it can be implemented under noninformative priors.

An important class of models in economics and finance involves latent variables.

Latent variables have figured prominently in stories about consumption decision, in-

vestment decision, labor force participation, conducts of monetary policy, indices

of economic activity, inflation dynamics and other economic, business and financial

activities and decisions. For example, one important class of latent variable mod-

els, the state space model, in which the state variable is latent, provides a unified
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methodology for treating a wide range of problems in time series analysis. Another

example can be found in the values of stocks, bonds, options, futures, and deriva-

tives which are often determined by a small number of factors. Sometimes these

factors, such as the level, the slope and the curvature in the term structure of inter-

est rates, are not observed. In microeconometrics, discrete choices can depend on

unobserved variables or there may be unobserved individual heterogeneity across

economic entities.

For latent variable models, Bayesian methods via MCMC simulation have proven

to be a powerful alternative to frequentist methods for estimating model parame-

ters. In particular, the data augmentation strategy proposed by Tanner and Wong

(1987), which expands the parameter space by treating the latent variables as ad-

ditional model parameters, has been found very useful for simplifying the MCMC

computation of posterior distributions. This simplification is achieved because data

augmentation leads to a closed-form expression for the likelihood function.

Comparing alternative latent variable models in the Bayesian paradigm is a

daunting and yet important task. The gold standard to carry out Bayesian model

comparison is to compute BFs, which basically compare marginal likelihood of al-

ternative models (Kass and Raftery (1995)). Several interesting developments have

been made in recent years for computing marginal likelihood from the MCMC out-

put; see for example, Chib (1995), Chib and Jeliazkov (2001). While these methods

are very general and widely applicable, for latent variable models, they are difficult

to use because the marginal likelihood may be hard to calculate. In addition, BFs

cannot be used under improper priors and are subject to the Jeffrey-Lindley para-

dox. Given that DIC is simple to calculate from the MCMC output with the data

augmentation technique and also that data augmentation is often used for Bayesian

parameter estimation, DIC has been used widely for comparing alternative latent

variable models; see for example, Berg et al. (2004), Huang and Yu (2010).

The first contribution of this paper is that we argue DIC has to be used with care

in the context of latent variable models. In particular, we believe DIC, as the way

6



it is commonly implemented in practice, has some conceptual and practical prob-

lems. Firstly, DIC requires a concrete “focus” which is often not easily identified in

practice. If the “focus” cannot be identified, using DIC violates the likelihood prin-

ciple; see Gelfand and Trevisani (2002). Secondly, DIC is not robust to apparently

innocuous transformations and distributional representations. This problem is made

worse by the data augmentation technique for latent variable models. Data augmen-

tation greatly inflates the number of parameters and hence the “effective” number

of parameter used in DIC is very sensitive to transformations and distributional rep-

resentations. The detail will be explained in Section 3. Finally, DIC requires that

the likelihood function has a closed form expression for it to be computationally

operational. For latent variable models, this is achieved by data augmentation and,

as a consequence, DIC opens up to possible variations. It is unclear which varia-

tion should be used in practice; see Celeux et al. (2006) for further discussion of

this problem. In this paper we argue that although data augmentation leads to a

likelihood function in closed-form and greatly facilitates parameter estimation, DIC

should NOT be used in connection to data augmentation. The reason is that data

augmentation makes the likelihood function non-regular and hence invalidates the

standard asymptotic arguments. Consequently, it undermines the theoretical under-

pinnings of DIC.

The source of the problem is data augmentation. With data augmentation, a

closed-form expression for likelihood is ensured and it is easy to compute DIC, but

the asymptotic justification of DIC is invalidated. Without data augmentation, the

likelihood function does not have a closed form expression and hence DIC is much

harder to compute for latent variable models, although it is asymptotically justified.

The second contribution of this paper is that we advocate the use of a robust

versio of DIC, denoted by RDIC, to make Bayesian comparison of latent variable

models. It is shown that RDIC is a good approximation to DIC without data aug-

mentation and hence is theoretically justified. We then show that the expectation –

maximization (EM) algorithm facilitates the computation of RDIC for latent vari-

7



able models when the MCMC output is available. Moreover, RDIC is robust to

nonlinear transformations of latent variables and to distributional representations of

model specification.

The advantages of the proposed approach are illustrated using three popular

models in economics and finance, including a class of asset pricing models, a class

of dynamic factor models and a class of stochastic volatility models. It is shown that

DIC is very sensitive to the nonlinear transformations of latent variables in these

models, whereas RDIC is robust to these transformations. As a result, substantial

discrepancy is found between DIC and RDIC.

The paper is organized as follows. In Section 2, the latent variable models are

introduced. The Bayesian estimation method with data augmentation and the EM

algorithm are also reviewed. Section 3 reviews DIC, introduces and justifies RDIC

for latent variable models, and discusses how to compute RDIC from the MCMC

output. Section 4 illustrates the method using models from economics and finance.

Section 5 concludes the paper. The Appendix collects the proof of the theoretical

results in the paper.

2.2 Latent Variable Models, EM Algorithm and MCMC

Let y = (y1,y2, · · · ,yn)
′ denote observed variables and z = (z1,z2, · · · ,zn)

′ the la-

tent variables. The latent variable model is indexed by the a set of P parameters,

θ = (θ1, . . . ,θP)
′. Let p(y|θ) be the likelihood function of the observed data (de-

noted the observed-data likelihood), and p(y,z|θ) be the complete-data likelihood

function. The relationship between the two functions is:

p(y|θ) =
∫

p(y,z|θ)dz. (2.2.1)

In many cases, the integral does not have a closed-form solution. Consequently, sta-

tistical inferences, such as estimation and model comparison, are difficult to make.

In the literature, maximum likelihood (ML) analysis using the EM algorithm and

8



Bayesian analysis using MCMC are two popular approaches for carrying out statis-

tical inference of the latent variable models.

2.2.1 Maximum likelihood via the EM algorithm

The EM algorithm is an iterative numerical method for finding the ML estimates

of θ in the latent variable models. It has been widely used in applications since

Dempster et al. (1977) gave its name and did the convergence analysis. In this

subsection, we briefly review the main idea of the EM algorithm. For more details,

one can refer to McLachlan and Krishnan (2008).

Let x = (y,z) be the complete data with a density p(x|θ) parameterized by

a P-dimension parameter vector θ ∈ Θ ⊆ RP. The observed-data log-likelihood

Lo(y|θ)= ln p(y|θ) often involves some intractable integral, preventing researchers

from directly optimizing Lo(y|θ) with respect to θ . In many cases, however, the

complete-data log-likelihood Lc(x|θ) = ln p(x|θ) has a closed-form expression.

Instead of maximizing Lo(y|θ) directly, the EM algorithm maximizes Q(θ |θ (r)),

the conditional expectation of the complete-data log-likelihood function Lc(x|θ)

given the observed data y and a current fit θ
(r) of the parameter.

Generally, a standard EM algorithm has two steps: the expectation (E) step and

the maximization (M) step. The E-step evaluates

Q(θ |θ (r)) = Ez{Lc(x|θ)|y,θ (r)}, (2.2.2)

where the expectation is taken with respect to the conditional distribution p(z|y,θ (r)).

The M-step determines a θ
(r+1) that maximizes Q(θ |θ (r)). Under some mild regu-

larity conditions, the sequence {θ (r)} obtained from the EM iterations converges to

the ML estimate θ̂ ; see Dempster et al. (1977) and Wu (1983) for details about the

convergence properties of {θ (r)}.

9



2.2.2 Bayesian analysis using MCMC

Although the EM algorithm is a reasonable statistical approach for analyzing latent

variable models, the numerical optimization in the M-step is often unstable. This

numerical problem worsens as the dimension of θ increases. It is well recognized

that Bayesian methods using MCMC provide a powerful tool to analyze the latent

variables models. However, if the posterior analysis is conducted from the observed-

data likelihood, p(y|θ), one would end up with the same problem as in the ML

method as p(y|θ) does not have a closed-form expression.

The novelty in the Bayesian methods is to treat the latent variable model as a

hierarchical structure of conditional distributions, namely, p(y|z,θ), p(z|θ), and

p(θ). In other words, one can use the data augmentation strategy of Tanner and

Wong (1987) to expand the parameter space from θ to (θ ,z). The advantage of

data augmentation is that the Bayesian analysis is now based on the new likelihood

function, p(y|θ ,z) which often has a closed-form expression. Then the Gibbs sam-

pler and other MCMC samplers can be used to generate random samples from the

joint posterior distribution p(θ ,z|y). After a sufficiently long period for a burning-

in phase, the simulated random samples can be regarded as random observations

from the joint distribution. The statistical analysis can be established on the basis

of these simulated posterior random observations. As a by-product to the Bayesian

analysis, one also obtains Markov chains for the latent variables z and hence statis-

tical inference can be made about z. For further details about Bayesian analysis of

latent variable models via MCMC, including algorithms, examples and references,

see Geweke et al. (2011). From the above discussion, it can be seen that data aug-

mentation is the key technique for Bayesian estimation of latent variable models.

Two observations are in order. First, with data augmentation, the parameter

space is much bigger. More than often, the dimension of the space increases as

the number of observations increases and is larger than the number of observations.

In the latter case, the new likelihood function becomes non-regular. Second, it
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is difficult to argue that the latent variables can be always treated as the model

parameters. Models parameters are typically fixed but the latent variables are often

time varying. Consequently, the same treatment of these two types of variables does

not seem to be justifiable from the perspective of model selection.

2.3 Bayesian Comparison of Latent Variable Models

2.3.1 DIC

Spiegelhalter et al. (2002) proposed DIC for Bayesian model comparison. The cri-

terion is based on the deviance given by:

D(θ) =−2ln p(y|θ)+2ln f (y),

where f (y) is some fully specified standardizing term that is a function of the data

alone. Based on the deviance, DIC takes the form of:

DIC = D(θ)+PD. (2.3.1)

The first term, used as a Bayesian measure of model fit, is defined as the posterior

expectation of the deviance, that is,

D(θ) = Eθ |y[D(θ)] = Eθ |y[−2ln p(y|θ)].

The better the model fits the data, the larger the log-likelihood value and hence the

smaller the value for D(θ). The second term, used to measure the model complexity

and also known as “effective number of parameters”, is defined as the difference be-

tween the posterior mean of the deviance and the deviance evaluated at the posterior

mean of the parameters:

PD = D(θ)−D(θ̄) =−2
∫
[ln p(y|θ)− ln p(y|θ̄)]p(θ |y)dθ , (2.3.2)
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where θ̄ is the Bayesian estimator, and more precisely the posterior mean, of the

parameter θ . Here, PD can be explained as the expected excess of the true over

the estimated residual information conditional on data y. In other words, PD can be

interpreted as the expected reduction in uncertainty due to estimation.

Note that DIC can be rewritten by two equivalent forms:

DIC = D(θ̄)+2PD, (2.3.3)

and

DIC = 2D(θ)−D(θ̄) =−4Eθ |y[ln p(y|θ)]+2ln p(y|θ̄). (2.3.4)

DIC defined in Equation (2.3.3) bears similarity to AIC of Akaike (1973) and

can be interpreted as a classical “plug-in” measure of fit plus a measure of com-

plexity. In Equation (2.3.1) the Bayesian measure, D(θ), is the same as D(θ̄)+PD

which already includes a penalty term for model complexity and thus could be better

thought of as a measure of model adequacy rather than pure goodness of fit.

Remark 2.3.1 The asymptotic justification of DIC requires that the candidate mod-

els nest the true model and that the posterior distribution is approximately normal.

These two requirements parallel to those in AIC where the candidate models nest

the true model and the ML estimator is asymptotically normally distributed. To see

the importance of the asymptotic normality, Spiegelhalter et al. (2002) show that,

when the prior is noninformative, PD is approximately the same as P. In this case

DIC is explained as Bayesian version of AIC. However, if the asymptotic normality

does not hold true, PD cannot be approximated by P and DIC is not the Bayesian

version of AIC. Furthermore, the decision-theoretical explanation of DIC requires

the asymptotic normality of the Bayesian posterior be held true.

Remark 2.3.2 If p(y|θ) has a closed-form expression, DIC is trivially computable

from the MCMC output. This is in sharp contrast to BFs and some other model

selection criteria within the classical framework. The computational tractability,
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together with the versatility of MCMC and the fact that DIC is incorporated into a

Bayesian software, WinBUGS, allows DIC to enjoy a very wide range of applica-

tions.1 However, if p(y|θ) is not available in closed form, such as in random effects

models and state space models, computing DIC may become infeasible, or at least,

very time consuming.

Remark 2.3.3 When an information criterion is used for model selection, the de-

grees of freedom are typically used to measure the model complexity. In the Bayesian

framework, the prior information almost always imposes additional restrictions on

the parameter space and hence the degrees of freedom may be reduced by the prior

information. A useful contribution of DIC is to provide a way to measure the model

complexity when the prior information is incorporated; see Brooks (2002).

Remark 2.3.4 Unlike BFs that address how observed data are predicted by the

priors, DIC “addresses how well the posterior might predict future data generated

by the same mechanism that gave rise to the observed data” (Spiegelhalter et al.

(2002)). This predictive perspective for selecting a good model is important in

many practical business, economic, and financial decisions.

Remark 2.3.5 As acknowledged in Spiegelhalter et al. (2002), DIC requires a con-

crete specification of a “focus”. In the context of random effects models, Vaida and

Blanchard (2005) pointed out that the likelihood function used for information cri-

terion depends on the “focus”. A different “focus” leads to a different AIC and DIC.

In practice, however, the choice of a “focus” is not always easy. Unfortunately, it

is well known that Bayesian decisions may depend on the choice of the “focus”.

For example, in Section 8.2 of Spiegelhalter et al. (2002), where Models 4 and 5

are predictively identical but their DIC values are quite different. In this example,

it is unclear what should be the right “focus”. The same difficulty also shows up

in Model 8 of Berg et al. (2004). If the “focus” is not identified, DIC suffers from

1As of July 8, 2012, Spiegelhalter et al. (2002) has been cited 3396 times according to Google
Scholar and 1,984 time according to Science Citation Index.
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an incoherent inference problem. That is, when one model is a distributional rep-

resentation of another model and the same prior is used in the two models, they

have different DIC values. For further illustrations of the problem, see Gelfand and

Trevisani (2002) and Daniels and Hogan (2008).

For latent variable models, there are alternative ways to define DIC, as discussed

in Celeux et al. (2006) (see also, DeIorio and Robert (2002)), two of which are es-

pecially important. First, DIC is based on the observed-data likelihood and denoted

by DIC1 in Celeux et al. (2006) as,

DIC1 =−4Eθ |y[ln p(y|θ)]+2ln p(y|θ̄). (2.3.5)

For certain mixture models, such as scale mixtures of normals of Andrews and

Mallows (1974) , the observed-data likelihood p(y|θ) is available in closed form.

In this case, DIC1 is trivially obtained, although its value depends on the choice of

the “focus”, namely, the hierarchical structure here.

However, for state-space models, including linear Gaussian state space models,

the observed-data likelihood p(y|θ) is not available in closed form.2 In this case,

computing DIC1 from the MCMC output is time consuming or even infeasible since

p(y|θ) has to be computed at each draw from the Markov chain.

Second, DIC is defined based on the data augmentation technique, treating z as

the additional parameters, and denoted by DIC7 in Celeux et al. (2006) as,

DIC7 =−4Eθ ,z|y[ln p(y|z,θ)]+2ln p(y|z̄, θ̄)]. (2.3.6)

The corresponding PD is

PD =−2
∫
[ln p(y|z,θ)− ln p(y|z̄, θ̄)]p(z,θ |y)dzdθ . (2.3.7)

2For linear Gaussian state space models, to do ML, the Kalman filter can be used to obtain the
likelihood function numerically. Numeircally more efficient algorithms have been developed in the
recent literature; see for example, Chan and Jeliazkov (2009).
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For most state space models, including the nonlinear non-Gaussian state space mod-

els, p(y|z,θ) is available in closed form and hence computing DIC7 is straightfor-

ward.

Remark 2.3.6 For all random effects models and state space models, applied re-

searchers always calculate DIC based on DIC7 in (2.3.6) which is also implemented

in WinBUGS. Examples that use DIC7 in applications include Berg et al. (2004) and

Wang et al. (2011). Clearly this choice of defining DIC is simple for computational

convenience.

Remark 2.3.7 From a theoretical viewpoint, DIC7 has a couple of serious prob-

lems. First, due to the data augmentation, the number of the latent variables often

increases with the sample size in latent variable models, causing the problem of a

non-regular likelihood-based statistical inference; see Gelman (2003). This inval-

idates the asymptotic justification of DIC because the standard asymptotic theory

derived from regular likelihood is not applicable to non-regular likelihood. Sec-

ond, due to the data augmentation, the dimension of the parameter space becomes

larger and hence we expect that DIC7 is more sensitive to transformations of latent

variables than DIC1.

To illustrate the second problem, we consider a simple transformation of latent

variables in the well-known Clark model (Clark (1973)) which is given by,

Model 1 : yt ∼ N(µ,exp(ht)),ht ∼ N(0,σ2), t = 1, · · · ,n. (2.3.8)

An equivalent representation of the model is

Model 2 : yt ∼ N(µ,σ2
t ),σ

2
t ∼ LN(0,σ2), t = 1, · · · ,n, (2.3.9)

where LN denotes the log-normal distribution. In Model 2 the latent variable is

the volatility σ2
t , while the latent variable is the logarithmic volatility ht = lnσ2

t in
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Model 1. Suppose the parameters of interest are µ and σ2. With the same “fo-

cus”, the two models are identical and hence are expected to have the same DIC and

PD. To calculate the PD component in DIC7, we simulate 1000 observations from

the model with µ = 0,σ2 = 0.5. Vague priors are selected for the two parameters,

namely, µ ∼ N(0,100), σ−2 ∼ Γ(0.001,0.001). We run Gibbs sampler to make

240,000 simulated draws from the posterior distributions. The first 40,000 are dis-

carded as burn-in samples. The remaining observations with every 10th observation

are collected as effective observations for statistical inference. With the data aug-

mentation, the latent variables, ht and σ2
t are regarded as parameters, and we find

that PD = 89.806 for Model 1 but PD = 59.366 for Model 2. The difference is very

significant. Given that we have the identical models and priors, and use the same

dataset, the vast difference suggests that DIC7 and the corresponding PD are very

sensitive to transformations of latent variables.

For latent variable models, DIC1 does not suffer from the same theoretical

problem as DIC7. However, computing DIC1 from the MCMC output is much

harder, if not infeasible, since p(y|θ) is not available in closed-form and computing

Eθ |y[ln p(y|θ)] necessitates numerical calculation of p(y|θ) at each draw from the

Markov chain.

To summarize the problems with DIC in the context of latent variable models,

while DIC7 is trivial to calculate but cannot be theoretically justified, DIC1 is theo-

retically justified but infeasible to compute.

2.3.2 RDIC

In this section we introduce a robust version of DIC, denoted as RDIC, as follows

RDIC = D(θ̄)+2tr
{

I(θ̄)V (θ̄)
}
= D(θ̄)+2P∗D, (2.3.10)

where

P∗D = tr
{

I(θ̄)V (θ̄)
}
, (2.3.11)
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with tr denoting the trace of a matrix,

I(θ) =−∂ 2 ln p(y|θ)
∂θ∂θ

′ ,V (θ̄) = E
[(

θ − θ̄
)(

θ − θ̄
)′ |y] .

Interestingly, in Equation (15) on Page 590 Spiegelhalter et al. (2002) obtained

the expression for P∗D and claimed that P∗D approximates the PD component in DIC1.

Unfortunately, to the best of our knowledge, P∗D has never been implemented in

practice and WinBUGS does not report P∗D. Moreover, the proof of P∗D ≈ PD was not

given in Spiegelhalter et al. (2002). The conditions under which P∗D ≈ PD holds true

were not specified. The order of the approximation remains unknown.

To justify the choice of RDIC, we will have to establish conditions under which

we can show that RDIC approximates DIC1 and P∗D approximates PD that corre-

sponds to DIC1 with a known order of magnitude. We then show that how the EM

algorithm facilitates the computation of RDIC from the MCMC output for latent

variable models.

Let Ln(θ) = ln p(θ |y), L(1)
n (θ) = ∂ ln p(θ |y)/∂θ , L(2)

n (θ) = ∂ 2 ln p(θ |y)/∂θθ
′.

In this paper, we impose the following regularity conditions.

Assumption 1: There exists a finite sample size n∗, for n > n∗, there is a local

maximum at θ̂ m so that L(1)
n
(
θ̂ m
)
= 0 and L(2)

n
(
θ̂ m
)

is a negative definite matrix.

Obviously, θ̂ m is the posterior mode.

Assumption 2: The largest eigenvalue of
[
−L(2)

n (θ̂ m)
]−1

, σ2
n , goes to zero

when n→ ∞.

Assumption 3: For any ε > 0, there exists an integer n∗∗ and some δ > 0 such

that for any n > max{n∗,n∗∗} and θ ∈ H
(
θ̂ m,δ

)
=
{

θ : ||θ − θ̂ m|| ≤ δ
}

, L(2)
n (θ)

exists and satisfies

−A(ε)≤ L(2)
n (θ)L−(2)n

(
θ̂ m
)
− IP ≤ A(ε),

where IP is a P×P identity matrix, A(ε) a P×P semi-definite symmetric matrix

whose largest eigenvalue goes to zero as ε → 0.

17



Assumption 4: For any δ > 0, as n→ ∞,

∫
Θ−H(θ̂ m,δ )

p(θ |y)dθ → 0,

where Θ is the support of θ .

Assumption 5: For any δ > 0, as n→ ∞, when θ ∈ H
(
θ̂ m,δ

)
, conditional on

the observed data y, L(2)
n (θ)/n = O(1).

Assumption 6: The likelihood information dominates the prior information,

that is, when the sample size goes to infinity, the prior information can be ignored.

Assumption 7: Under the true model, for any δ > 0, as n→ ∞, when θ ∈

H
(
θ̂ m,δ

)
, then, 1

n
∂ 3 p(y|θ)
∂θ∂θ∂θ

= Op(1)

Lemma 2.3.1 Under Assumptions 1-5, conditional on the observed data y, we have

θ̄ = E [θ |y] = θ̂m +o(n−1/2),

V
(
θ̂ m
)
= E

[(
θ − θ̂ m

)(
θ − θ̂ m

)′
|y
]
=−L−(2)n

(
θ̂ m
)
+o(n−1).

Remark 2.3.8 Lemma 2.3.1 establishes Bayesian large sample theory. The reg-

ularity conditions 1-4 have been used in the literature to develop Bayesian large

sample theory for stationary and nonstationary dynamic models and nondynamic

models; see, for example, Chen (1985), Kim (1994), Kim (1998), Geweke (2005).

The Bayesian large sample theory was also developed from different sets of regular-

ity conditions in different contexts. For example, Ghosh and Ramamoorthi (2003)

developed the asymptotic posterior normality and Lemma 2.3.1 in the iid case.

Theorem 2.3.1 Under Assumptions 1-6, it can be shown that, conditional on the

observed data y,

PD = P∗D +o(1), DIC1 = RDIC+o(1),

where PD is defined in (2.3.2).

Remark 2.3.9 Theorem 4.3.1 improves Equation (15) Spiegelhalter et al. (2002) in
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two ways. First, it gives the order of the approximation errors. Second, it specifies

the conditions under which PD approximates P∗D and DIC1 approximates RDIC.

Remark 2.3.10 As DIC1 is theoretically justified for the latent variable models,

Theorem 4.3.1 justifies RDIC asymptotically since RDIC and DIC1 are asymptoti-

cally equivalent.

Remark 2.3.11 RDIC maintains all the good features of DIC1. For example, RDIC

incorporates the prior information when measuring the model complexity. As shown

in Spiegelhalter et al. (2002),

I
(
θ̂ m
)
=−

{
∂ 2 ln p(θ |y)

∂θ∂θ
′ − ∂ 2 ln p(θ)

∂θ∂θ
′

}
|
θ=θ̂ m

=−L(2)
n (θ̂ m)−

{
−∂ 2 ln p(θ)

∂θ∂θ
′

}
|
θ=θ̂ m

.

Under Assumption 1-5, following Lemma 2.3.1 and the proof of Theorem 4.3.1, we

get

P∗D = tr
{

I(θ̂ m)V (θ̄)
}
+o(1)

= tr
{[
−L(2)

n (θ̂ m)−
{
−∂ 2 ln p(θ)

∂θ∂θ
′

}
|
θ=θ̂ m

]
V (θ̄)

}
+o(1)

= tr
{
−L(2)

n (θ̂ m)V (θ̄)
}
− tr

{[
−∂ 2 ln p(θ)

∂θ∂θ
′ |θ=θ̂ m

]
V (θ̄)

}
+o(1)

= P− tr
{[
−∂ 2 ln p(θ)

∂θ∂θ
′ |θ=θ̂ m

]
V (θ̄)

}
+o(1). (2.3.12)

From (2.3.12), it can be seen clearly that the prior information can reduce the model

complexity.

Remark 2.3.12 Conditional on the observed data y, when the likelihood informa-

tion dominates the prior information (say, for example, if−∂ 2 ln p(θ)/∂θθ
′|

θ=θ̂ m
=

O(1)), from (2.3.12) it can be shown that PD = P∗D +o(1) = P+o(1). In addition,

as n→ ∞ the posterior mode θ̂ m is reduced to the ML estimator θ̂ . Hence,

ln p(y|θ̄) = ln p(y|θ̂)− 1
2
(θ̄ − θ̂)′I(θ̃)(θ̄ − θ̂),
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where θ̃ lies in the segment between θ̄ and θ̂ . Using Assumption 5 and Lemma

2.3.1, we can show that ln p(y|θ̄) = ln p(y|θ̂)+o(1). Consequently,

DIC1 = RDIC+o(1) =−2ln p(y|θ̂)+2P+o(1) = AIC+o(1).

Namely, both RDIC and DIC1 can be regarded as the Bayesian version of AIC.

Remark 2.3.13 Like DIC1, RDIC is justified by the standard Bayesian large sam-

ple theory. When the Bayesian large sample theory is not available, RDIC is not

justified. These include models in which the number of the parameters increases

with the sample size, under-identified models, models with an unbounded likeli-

hood, and models with improper posterior distributions. For more details about

the standard Bayesian large sample theory, see Gelman (2003) and Geweke (2005).

For the latent variable models, since the number of the latent variables increases

with sample size, the standard Bayesian large sample theory is not applicable if

the data augmentation technique is used. As a result, when calculating RDIC, data

augmentation should NOT be used.

Remark 2.3.14 Since RDIC is defined from the observed-data likelihood p(y|θ),

there is no need to specify a “focus”, and hence, RDIC does not suffer from the

incoherent inference problem.

Remark 2.3.15 For the latent variable models, while the number of the model pa-

rameters (P) is fixed and usually not so big, the number of the latent variables

increases as the sample size increases. In the definition of RDIC, the latent vari-

ables are not regarded as the parameters. Consequently, the problem of parameter

transformation is less serious. For example, in the Clark model, with the same set-

ting as before, we get P∗D = 1.75 for Model 1 and P∗D = 1.80 for Model 2. There is

no significant difference between them. Moreover, these two values are close to 2,

that is the actual number of parameters. This is what we expected given that the

vague priors are used and hence P∗D ≈ P = 2.
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Remark 2.3.16 An obvious computational advantage in RDIC is that P∗D does not

involve inverting a matrix. This advantage is not so important when the latent vari-

able model only has a small number of parameters. However, for high dimensional

latent variable models where there are many parameters, this computational advan-

tage may be important.

Suppose a loss function, when using the observed data y to predict a future repli-

cate dataset, yrep, in a model, is given by L (yrep,y). From the decision-theoretic

viewpoint, a desirable model selection criterion should choose a model to minimize

the risk function, EyEyrepL (yrep,y). The following theorem provides the justifica-

tion of RDIC from the decision-theoretic viewpoint.

Theorem 2.3.2 Let yrep = (y1,rep,y2,rep, · · · ,yn,rep) be the future data generated by

the same mechanism that gives rise to the observed data y, i.e, p(yrep) = p(y).

The predictive distribution is p(yrep|y) =
∫

p(yrep|θ)p(θ |y)dθ . If L (yrep,y) =

−2ln p(yrep|y), it can be shown that, conditional on the observed data y and under

Assumptions 1-7,

EyEyrepL (yrep,y) = EyDIC1 +o(1) = EyRDIC+o(1).

Remark 2.3.17 Spiegelhalter et al. (2002) gave a heuristic explanation to why DIC

is an approximate estimator of a loss function. In Theorem 3.3.2, we complement

Spiegelhalter et al. (2002) by providing a formal decision-theoretical justification

to DIC1 and RDIC.

Remark 2.3.18 RDIC and DIC1 are both an unbiased estimator of the risk function

asymptotically.

Remark 2.3.19 Like DIC1, RDIC addresses how well the posterior may predict

future data generated by the same mechanism that gives rise to the observed data.

This posterior predictive feature could be appealing in many applications.

21



Remark 2.3.20 Like AIC, both DIC1 and RDIC require the candidate models nest

the true model. This is of course a strong assumption. Under the iid case, Ando and

Tsay (2010) relaxed this assumption and obtained a predictive likelihood informa-

tion criterion (BPIC) that minimizes the loss function η = EyEyrep [− log p(yrep|y)].

The estimator of η is given by

η̂ =− log p(yrep|y)|yrep=y +
1
2

tr
[
I−1(θ̂)J(θ̂)

]
,

where I(θ) and J(θ) are the Hessian matrix and the Fisher information matrix. In

Ando (2007), another BPIC was given as

BPIC =− log p(y|θ̂)+ tr[I−1(θ̂)J(θ̂)]+P/2.

Ando (2007) showed that BPIC is an estimator of the loss function

EyEyrep

[
−
∫

log p(yrep|θ)p(θ |y)dθ

]
.

Like TIC of Takeuchi (1976), these two information criteria involve the inverse of

Hessian matrix which is numerically changing when the dimension of the parameter

space is large. This is one of the reasons why TIC has not been widely used in prac-

tice. Furthermore, the derivation of these two information criteria requires the data

be iid. For data in economic and finance, this requirement is often too restrictive.

In addition, for many latent variable models, the maximum likelihood estimator, the

Hessian matrix and the Fisher information matrix are difficult to obtain. How to

develop a good information criterion for comparing latent variable models, with-

out assuming the candidate models nest the true model, will be pursued in future

research.

Remark 2.3.21 It is easy to verify that Assumptions 1-7 hold true for nondynamic

models or stationary dynamic models. Hence, Lemma 2.3.1 and Theorem 4.3.1

are applicable to these models. For unit root models, Kim (1994) and Kim (1998)
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showed that the asymptotic normality of posterior distribution can be established.

Hence, Lemma 2.3.1 is applicable to models with a unit root. Unfortunately, it is

critical for developing Theorem 3.3.2 to require that yrep and y have the same data

generating process. Hence, it does not hold true for models with a unit or explosive

root due to the initial condition. Consequently, Theorem 3.3.2 is not applicable

to models with unit or explosive roots. This topic on comparing non-stationary

statistical models will be pursued in future studies. Within the classical framework,

Phillips and Ploberger (1996) and Phillips (1996) have proposed model selection

criteria for models without latent variables.

Remark 2.3.22 If the observed-data likelihood function, p(y|θ), does not have

a closed-from expression, its second derivative, ∂ 2 log p(y|θ)/∂θ∂θ
′ and hence

RDIC will be difficult to compute. In the following section, we show how the EM

algorithm may be used to compute the second derivative and RDIC.

2.3.3 Computing RDIC by the EM algorithm

The definition of RDIC clearly requires the evaluation of observed-data likelihood

at the posterior mean, p(y|θ̄), as well as the information matrix and the second

derivative of the observed-data likelihood function. For most latent variable models,

the observed-data likelihood function does not have a closed-from expression. In

this section we show how the EM algorithm may be used to evaluate p(y|θ̄), the

second derivative of the observed-data likelihood function, and hence RDIC for the

latent variable models. It is important to point out that we do not need to numerically

optimize any function here as in the EM algorithm. Consequently, our method is

not subject to the instability problem found in the M-step.

Lemma 2.3.2 For any θ and θ
∗
in Θ, let H (θ |θ ∗) =

∫
ln p(z|y,θ)p(z|y,θ ∗)dz, the

so-called H function in the EM algorithm. It was shown in Dempster et al. (1977)

that

Lo(y,θ) = Q
(

θ |θ
∗
)
−H

(
θ |θ

∗
)
,
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where the Q function is defined in Equation (2.2.2).

Following Lemma 4.3.1, the Bayesian plug-in model fit, ln p(y|θ̄), may be ob-

tained as

ln p(y|θ̄) = Q(θ̄ |θ̄)−H (θ̄ |θ̄). (2.3.13)

It can be seen that even when Q(θ̄ |θ̄) is not available in closed form, it is easy to

evaluate from the MCMC output because

Q(θ̄ |θ̄) =
∫

ln p(y,z|θ̄)p(z|y, θ̄)dz≈ 1
M

M

∑
m=1

ln p
(

y,z(m)|θ̄
)
.

where {z(m),m = 1,2, · · · ,M} are random observations drawn from the posterior

distribution p(z|y, θ̄).

For the second term in (2.3.13), if p(z|y, θ̄) is a standard distribution, H (θ̄ |θ̄)

can be easily evaluated from the MCMC output as

H (θ̄ |θ̄) =
∫

ln p(z|y, θ̄)p(z|y, θ̄)dz≈ 1
M

M

∑
m=1

ln p
(

z(m)|y, θ̄
)
.

However, if p(z|y, θ̄) is not a standard distribution, an alternative approach has to

be used, depending on the specific model in consideration. We now consider two

situations.

First, if the complete-data (yi,zi) are independent with i 6= j, and zi is of low-

dimension, say≤ 5, then a nonparametric approach may be used to approximate the

posterior distribution p(z|y,θ). Note that

H (θ |θ) =
∫

ln p(z|y,θ)π(z|y,θ)dz =
n

∑
i=1

∫
ln p(zi|yi,θ)π(zi|y,θ)dzi =

n

∑
i=1

Hi(θ |θ).

The computation of Hi(θ |θ) requires an analytic approximation to p(zi|yi,θ) which

can be constructed using a nonparametric method. In particular, MCMC allows one

to draw some effective samples from p(zi|yi,θ). Using these random samples, one

can then use nonparametric techniques such as the kernel-based methods to approxi-
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mate p(zi|yi,θ). In a recent study, Ibrahim et al. (2008) suggested using a truncated

Hermite expansion to approximate p(zi|yi,θ).

As a simple illustration, we apply this method to the Clark model. When the

Gaussian kernel method is used, we get ln p(y|θ̄) = −1448.97, RDIC= 2901.46

for Model 1 and ln p(y|θ̄) = −1449.41, RDIC= 2902.42 for Model 2. These two

sets of numbers are nearly identical. However, if the latent variable models are

regarded as parameters, we get DIC7 = 2884.37 for Model 1 and DIC7 = 2852.85

for Model 2. The highly distinctive difference between them suggests that DIC7 is

not a reliable model selection criterion for the model. Note that DIC1 is not really

feasible to compute in this case.

Second, for some latent variable models, the latent variables z follow a multi-

variate normal distribution and the observed variables y are independent conditional

on z. This class of models is referred to as the Gaussian latent variable models in

the literature. In economics and finance, many latent variable models belong to this

class of models, including dynamic linear models, dynamic factor models, various

forms of stochastic volatility models and credit risk models. In these models, the

observed-data likelihood is non-Gaussian but has a Gaussian flavor in the sense that

the posterior distribution, p(z|y,θ), may be expressed as,

p(z|y,θ) ∝ exp

(
−1

2
z′V (θ)z+

n

∑
i=1

ln p(yi|zi,θ)

)
.

Rue et al. (2004) and Rue et al. (2009) showed that this type of posterior distribution

can be well approximated by a Gaussian distribution that matches the mode and

the curvature at the mode. The resulting approximation is known as the Laplace

approximation and can be expressed as,

p(z|y,θ) ∝ exp
(
−1

2
z′(V (θ)+diag(c))z

)
,

where c comes from the second order term in the Taylor expansion of ∑
n
i=1 ln p(yi|zi)

at the mode of p(z|y,θ). The Laplace approximation may be employed to compute
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H (θ̄ |θ̄). After p(y|θ̄) is obtained, it is easy to obtain D(θ̄). It is important to point

out that the numerical evaluation of p(y|θ̄) is needed only once, i.e., at the posterior

mean.

To compute P∗D, we have to calculate the second derivative of the observed-data

likelihood function in (2.3.12). The following two lemmas show how to compute

the second derivatives.

Lemma 2.3.3 Under the mild regularity conditions, the observed-data information

matrix may be expressed as:

I(θ) =−∂ 2Lo(y|θ)
∂θ∂θ

′ =

{
−∂ 2Q(θ |θ ∗)

∂θ∂θ
′ −

∂ 2Q(θ |θ ∗)
∂θ∂θ

∗′

}
θ
∗
=θ

. (2.3.14)

Lemma 2.3.4 Let S(x|θ) = ∂Lc(x|θ)/∂θ . Under the mild regularity condition,

the observed-data information matrix has an equivalent form:

I(θ) =−∂ 2Lo(y|θ)
∂θ∂θ

′ = Ez|y,θ

{
−∂ 2Lc(x|θ)

∂θ∂θ
′

}
−Varz|y,θ {S(x|θ)} (2.3.15)

= Ez|y,θ

{
−∂ 2Lc(x|θ)

∂θ∂θ
′ −S(x|θ)S(x|θ)

′
}
+Ez|y,θ {S(x|θ)}Ez|y,θ {S(x|θ)}

′,

where all the expectations are taken with respect to the conditional distribution of z

given y and θ .

Remark 2.3.23 Lemma 2.3.3 and Lemma 2.3.4 were developed in Oakes (1999)

and Louis (1982), respectively, for finding the standard error in the EM algorithm.

If the Q function is available, we can use Lemma 2.3.3 to evaluate the second

derivatives. If the Q function does not have an analytic form, we may use Lemma

2.3.4 to evaluate the second derivatives as follows,

Ez|y,θ

{
−∂ 2Lc(x|θ)

∂θ∂θ
′ −S(x|θ)S(x|θ)

′
}
,

≈ − 1
M

M

∑
m=1

{
∂ 2Lc(y,z(m)|θ)

∂θ∂θ
′ +S(y,z(m)|θ)S(y,z(m)|θ)

′

}
,

Ez|y,θ {S(x|θ)} ≈
1
M

M

∑
m=1

S(y,z(m)|θ),
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where {z(m),m = 1,2, · · · ,M} are random observations drawn from the posterior

distribution p(z|y,θ).

2.4 Examples

We now illustrate the proposed method in three applications, covering some popular

models in economics and finance. In the first example, both Q(θ |θ) and H (θ |θ)

are available in closed-form and hence RDIC is trivial to compute. In this exam-

ple, we pay attention to implications of different distributional representations. In

the second example, while p(y|θ̄) is not available in closed-form, Kalman filter

provides a recursive algorithm to evaluate it. Hence, Q(θ |θ) and H (θ |θ) can be

calculated in the same manner, facilitating the computation of RDIC. In the third ex-

ample, p(y|θ̄) is not available in closed-form and Kalman filter cannot be applied.

To compute RDIC, we use the Laplace approximation and the technique suggested

in Lemma 2.3.4.

2.4.1 Comparing asset pricing models

Asset pricing theory is fundamentally important in modern finance. A basic assump-

tion required by much asset pricing theory is that the return distribution is normal.

Unfortunately, there has been overwhelming empirical evidence against normality

for asset returns, which have led researchers to investigate asset pricing models with

heavy-tailed distributions, including the family of elliptical distributions discussed

in Zhou (1993). Kan and Zhou (2003) suggested to use the multivariate t distribu-

tion to replace the multivariate normal distribution. In addition, under the mean-

variance efficiency, the asset excess premium should not be statistically different
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from zero. In this section, we compare the following six asset pricing models:

Model 1 : Rt = β
′F t + εt ,εt ∼ N[0,Σ];

Model 2 : Rt = α +β
′F t + εt ,εt ∼ N[0,Σ];

Model 3 : Rt = β
′F t + εt ,εt ∼ t[0,Σ,ν ];

Model 4 : Rt = β
′F t + ε t ,ε t ∼ N(0,Σ/ωt),ωt ∼ Γ

(
ν

2
,
ν

2

)
;

Model 5 : Rt = α +β
′F t + εt ,εt ∼ t[0,Σ,ν ];

Model 6 : Rt = α +β
′F t + εt ,ε t ∼ N(0,Σ/ωt),ωt ∼ Γ

(
ν

2
,
ν

2

)
,

where Rt is the excess return of portfolio at period t with N×1 dimension, F t a K×1

vector of factor portfolio excess returns, α a N×1 vector of intercepts, β a N×K

vector of scaled covariances, εt the random error, t = 1,2, · · · ,n. For convenience,

we restrict Σ to be a diagonal matrix and ν to be a known constant. Note that Model

4 is the distributional representation of Model 3, and Model 5 is the distributional

representation of Model 6. This is especially true if ωt is not the quantity of interest.

Monthly returns of 25 portfolios, constructed at the end of each June, are the

intersections of 5 portfolios formed on size (market equity, ME) and 5 portfolios

formed on the ratio of book equity to market equity (BE/ME). The Fama/French’s

three factors, market excess return, SMB (Small Minus Big), HML (High Minus

Low) are used as the explanatory factors (Fama and French (1993)). The sample

period is from July 1926 to July 2011, so that N = 25, n = 1021. The data are freely

available from the data library of Kenneth French.3

Bayesian analysis of the asset pricing models has attracted a considerable amount

of attentions in the empirical asset pricing literature.4 Here we apply DIC7 and

RDIC to compare Models 1-6. Based on the result of Li and Yu (2012), in the em-

pirical study, we simply set ν = 3. Some vague conjugate prior distributions are

3http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
4Avramov and Zhou (2010) provided an excellent review of the literature on Bayesian portfolio

analysis.
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used to represent the prior ignorance, namely,

αi ∼ N[0,100],βi j ∼ N[0,100],φ−1
ii ∼ Γ[0.001,0.001].

The use of uninformative priors implies that P∗D should be close to the actual number

of the parameters, P, if the posterior distribution is well approximated by the normal

distribution.

Under these prior specifications, we use WinBUGS to implement Bayesian anal-

ysis and to calculate DIC7. An introduction to WinBUGS can be found in Spiegel-

halter et al. (2003). To calculate RDIC, we use R2WinBUGS, a R package that calls

WinBUGS and exports the results into R (Sturtz et al. (2005)).5 Since both Q(θ |θ)

and H (θ |θ) are available in closed-form, RDIC is trivial to compute.

We sample 100,000 random observations from the posterior distributions in each

model, the first 40,000 of which form the burn-in period. The convergence of the

next 60,000 iterations is checked using the Raftery-Lewis diagnostic test statistic

(Raftery and Lewis (1992)) with every 3th observation collected. Hence, 20,000

effective observations are used for computing the information criteria. The value

of DIC7 is automatically calculated by WinBUGS. Based on the observed log-

likelihood given in formula (.3.1) in Appendix D, we can compute DIC and RDIC

for Model 3 and 5. Table I reports DIC7, RDIC, PD, and P∗D for all six models. Note

that when there is no latent variable DIC7 is reduced into DIC1.

From Table I, we see that PD is almost identical to P∗D in each of Models 1, 2, 3

and 5. Not surprisingly, DIC7 and RDIC are almost the same in each of these mod-

els. As expected, DIC7 in Model 3 is quite different from that in Model 4 although

these two models are the same. The main reason for this distinctive difference is

that in Model 4, the scale-mixture specification is used and, hence, a sequence of

latent variables, {ωt}, is introduced artificially. In DIC7 the latent variables, {ωt},

are treated as parameters. There is no latent variable for Model 3, however. For the

same reason, DIC7 in Model 5 is quite different from that in Model 6. As argued

5R code may be requested from the authors of the present paper.
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Table 2.1: Model selection results for Fama-French three factor models

Model M1 M2 M3 M4 M5 M6
Number of Parameters 100 125 100 100 125 125

PD 100 125 100 1021 125 1046
DIC7 -119842 -119880 -133088 -134777 -133202 -134897

P∗D 100 125 100 100 126 126
RDIC -119842 -119880 -133087 -133087 -133201 -133201

earlier, this conceptual difficulty is due to the lack of the likelihood principle and

is consistent with what has been documented in the literature (Spiegelhalter et al.,

2002 and Berg et al., 2004). The most important finding from Table I is that RDIC

does not suffer from the same difficulty as DIC7. RDIC and P∗D for Model 3 (and

Model 5) are nearly identical to those for Model 4 (and Model 6). In terms of the

computational cost, for Model 3, after the effective random observations are col-

lected, RDIC takes about 3 minutes in a laptop with Inter Core i5-540M (2.53GHz).

On the other hand, DIC1 involves
∫

ln p(y|θ)p(θ |y)dθ when computing PD, which

is approximated by 1
J ∑

J
j=1 ln p

(
y|θ ( j)

)
. This quantity is much more expensive to

compute because it requires numerical evaluation of ln p
(

y|θ ( j)
)

for J times. For

Model 3, based on the 20,000 posterior random observations, one has to evaluate

ln p
(

y|θ ( j)
)

20,000 times. It requires 11 hours and 4 minutes to compute DIC1

using the same laptop. The computational relative efficiency of RDIC over DIC1 is

obvious and increases as the number of effective observations increases.

It is important to emphasize that, although our method is motivated from the case

of objective priors, informative priors can be also used in our method. In a recent

study, Tu and Zhou (2010) explored a general approach to forming informative

priors based on economic objectives and found that the proposed informative priors

outperform significantly the objective priors in terms of investment performance.

RDIC can be used in conjunction with the informative prior specifications. In this

case, P∗D can be quite different from P.
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2.4.2 Comparing high dimensional dynamic factor models

For many countries, there exists a rich array of macroeconomic time series and

financial time series. To reduce the dimensionality and to extract the information

from the large number of time series, factor analysis has been widely used in the em-

pirical macroeconomic literature and in the empirical finance literature. For exam-

ple, by extending the static factor models previously developed for cross-sectional

data, Geweke (1977) proposed the dynamic factor model for time series data. Many

empirical studies, such as Sargent and Sims (1977), Giannone et al. (2004), have re-

ported evidence that a large fraction of the variance of many macroeconomic series

can be explained by a small number of dynamic factors. Stock and Watson (1999)

and Stock and Watson (2002) showed that dynamic factors extracted from a large

number of predictors can be used to lead to improvement in predicting macroeco-

nomic variables. Not surprisingly, high dimensional dynamic factor models have

become a popular tool under a data rich environment for macroeconomists and pol-

icy makers. An excellent review on the dynamic factor models is given by Stock

and Watson (2010).

Following Bernanke et al. (2005) (BBE hereafter), the present paper considers

the following fundamental dynamic factor model:

Yt = FtL′+ ε
′
t ,

Ft = Ft−1Φ
′+ηt ,

where Yt is a 1×N vector of time series variables, Ft a 1×K vector of unobserved la-

tent factors which contains the information extracted from all the N time series vari-

ables, L an N×K factor loading matrix, Φ the K×K autoregressive parameter ma-

trix of unobserved latent factors. It is assumed that εt ∼ N (0,Σ) and ηt ∼ N (0,Q).

For the purpose of identification, Σ is assume to be diagonal and εt and ηt are as-

sumed to be independent with each other. Following BBE (2005), we set the first

K×K block in the loading matrix L to be the identity matrix.
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In this dynamic factor model, the observed variable Yt consists of a balanced

panel of 120 monthly macroeconomic time series. These series are initially trans-

formed to induce stationarity. The description of the series and the transformation is

provided in BBE (2005). The sample period is from January 1959 to August 2001.

Because the data are of high dimension, the analysis of the dynamic factor mod-

els via a frequentist method is not trivial; see the discussion in Stock and Watson

(2011). In the literature, Bayesian inference via the MCMC techniques has been

popular for analyzing the dynamic factor models; see Otrok and Whiteman (1998),

Kose et al. (2003), Kose et al. (2008), BBE (2005).

Following BBE (2005), we specify the following prior distribution:

Σii ∼ Inverse−Γ(3,0.001) ,Li ∼ N
(
0,ΣiiM−1

0
)
,

vec(Φ) |Q ∼ N (0,Q⊗Ω0) , Q∼ Inverse−Γ(Q0,K +2) ,

where M0 is a K×K identity matrix, Li the ith (i > K) column of L. The diagonal

elements of Q0 are set to be the residual variances of the corresponding one lag

univariate autoregressions, σ̂2
i . The diagonal elements of Ω0 are constructed so that

the prior variance of parameter on the jth variable in the ith equation equals σ̂2
i /σ̂2

j .

In this example, we aim to determine the number of factors in the dynamic

factor models using model selection criteria. In BBE (2005) model comparison is

achieved by graphic methods. Our approach can be regarded as a formal statistical

alternative to the graphic methods. It is well documented that the determination of

number of factors in the setting of the dynamic factor models is important; see Stock

and Watson (1999). As in the previous example, we use DIC7 and RDIC to compare

models with different numbers of factors, namely K = 1, 2 and 3, which are denoted

by M1, M2, M3 respectively. Using the Gibbs sampler, we sample 22,000 random

observations from the corresponding posterior distributions. We discard the first

2,000 observations and keep the following 20,000 as the effective samples from the

posterior distribution of the parameters.
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Table 2.2: Model selection results for dynamic factor models

Model M1 M2 M3
Number of Parameters 752 1385 2019

PD 350 965 1391
DIC7 -135480 -149010 -155060

Number of Parameters 241 363 486
P∗D 87 20 326

RDIC -22452 -34868 -40420

Based on the 20,000 samples, we compute DIC7, RDIC, PD, P∗D for all three

models. The technique in Lemma 4.3.1 is used to approximate the observed-data

likelihood at the posterior mean. Table II reports the simple count of the number of

parameters (including the latent variables), DIC7, the PD component of DIC7, (i.e.

when the data augmentation technique is used), the simple count of the number of

parameters (excluding the latent variables), RDIC, and the P∗D component of RDIC

(i.e. when the data augmentation technique is not used). Several conclusions may be

drawn from Table II. First, both DIC7 and RDIC suggest that M3 is the best model.

Second, since some very informative priors have been used, neither PD nor P∗D is

close to the actual number of parameters. While it is cheap to compute RDIC, it is

much harder to compute DIC1. This is because the observed-data likelihood p(y|θ)

is not available in closed-form and Kalman filter is used to numerically calculate

p(y|θ) which involves the computation of 1
J ∑

J
j=1 ln p(y|θ ( j)), for J = 20,000. We

have to run Kalman filter 20,000 times, which takes more than 4 hours to compute

in Matlab.6 In a sharp contrast, it only took less than 80 seconds to compute RDIC.

Obviously, the discrepancy in CPU time increases with J.

2.4.3 Comparing stochastic volatility models

Stochastic volatility (SV) models have been found very useful for pricing derivative

securities. In the discrete time log-normal SV models, the logarithmic volatility

6Numeircally more efficient algorithms, such as the one proposed by Chan and Jeliazkov (2009),
may be used to evaluate ln p(y|θ ( j)).
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is the state variable which is often assumed to follow an AR(1) model. The basic

log-normal SV model is of the form:

yt = α + exp(ht/2)ut , ut ∼ N(0,1),

ht = µ +φ(ht−1−µ)+ vt , vt ∼ N(0,τ2),

where t = 1,2, · · · ,n, yt is the continuously compounded return, ht the unobserved

log-volatility, h0 = µ , and (ut ,vt) independently normal variables for all t. In this

paper, we denote this model by M1.

To carry out Bayesian analysis of M1, following Meyer and Yu (2000), the prior

distributions are specified as follows:

α ∼ N (0,100) , µ ∼ N (0,100) ,

φ ∼ Beta(1,1) , 1/τ
2 ∼ Γ(0.001,0.001) .

An alternative specification of M1 is given by:

yt = α +σtut , ut ∼ N(0,1),

lnσ
2
t = µ +φ

(
lnσ

2
t−1−µ

)
+νt , vt ∼ N(0,τ2),

which is denoted by M2. Obviously, the only difference between M2 and M1 is

that the latent variable in M2 is the exponential transformation of that in M1. If the

same priors are used for the model parameters, θ = (α,µ,φ ,τ), the two models are

identical to each other. Our goal here is to compare the two models using DIC7 and

RDIC. In both models, p(y|θ) is not available in closed-form. Since the models

are of a nonlinear non-Gaussian form, Kalman filter cannot be applied and DIC1 is

infeasible to compute.

The dataset consists of 1,822 daily returns of the Standard & Poor (S&P) 500

index, covering the period between January 3, 2005 and March 28, 2012. For M1

and M2, after a burn-in period of 10,000 iterations we save the next 20,000 iterations.
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Table 2.3: Model selection results for stochastic volatility models

Model M1 M2
PD 102.94 89.67

DIC7 5200.56 5183.12
P∗D 3.62 3.78

RDIC 5296.20 5296.55

Table III reports DIC7, RDIC, PD, P∗D for both models. To calculate RDIC and

P∗D, since the Q function does not have a closed-form expression, we employ the

technique in Lemma 2.3.3 to compute the second order derivative of the observed-

data likelihood. To compute RDIC, we use the Laplace approximation of Rue,

Martino and Chopin (2009). The technique in Lemma 4.3.1 is used to approximate

the observed-data likelihood at the posterior mean.

The following findings can be obtained from Table III. First, PD in M1 is 13

points more than that in M2. Similarly, DIC7 in M1 is nearly 20 points more than

that in M2. These differences are very large and indicate that M2 is a much better

model than M1 although the two modes are actually the same. Second, P∗D in M1 is

nearly identical to that in M2, which is about the same as P = 4, the actual number

of parameters. Similarly, RDIC in M1 is nearly identical to that in M2. Given that

M1 and M2 are two equivalent representations to each other, the empirical results

from RDIC are more reasonable than those from DIC7.

2.5 Conclusion

This paper introduces a robust deviance information criteria (RDIC) for comparing

models with latent variables. Although latent variable models can be conveniently

estimated in the Bayesian framework via MCMC if the data augmentation technique

is used, we argue that data augmentation cannot be used in connection to DIC.

This is because that the justification of DIC rests on the validity of the standard

Bayesian asymptotic theory. With data augmentation, the number of parameters

increases with the number of observations, making the likelihood nonregular. As a
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consequence, the standard Bayesian asymptotic theory does not hold. In addition,

the use of the data augmentation makes DIC is very sensitive to transformations and

distributional representations.

While in principle one can use the standard DIC (i.e. DIC1) without resorting

to the data augmentation technique, in practice this standard DIC is very difficult to

use because the observed-data likelihood is not available in closed-form for many

latent variable models and because the standard DIC1 has to numerically evaluate

the observed-data likelihood at each MCMC iteration. These two observations make

the implementation of DIC1 practically non-operational.

The problem is overcome by RDIC. RDIC is defined without augmenting the

parameter space and hence can be justified by the standard Bayesian asymptotic

theory. We then show that how the EM algorithm can facilitate the computation of

RDIC in different contexts. Since the latent variables are not counted as parameters

in our approach, RDIC is robust to nonlinear transformations of the latent variables

and distributional representations of the model specification. Asymptotic justifica-

tion, computational tractability and robustness to transformation and specification

are the three main advantages of the proposed approach. These advantages are il-

lustrated using several popular models in economics and finance.
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Chapter 3 A New Approach to Bayesian Hy-

pothesis Testing

3.1 Introduction

Hypothesis testing plays a fundamental role in making statistical inference about the

model specification. After models are estimated, empirical researchers would often

like to test a relevant hypothesis to look for evidence to support or to be against a

particular theory. An important class of hypotheses involve a single parameter value

in the null.

In this paper we are concerned about testing a single point hypothesis under

Bayesian paradigm. So far Bayes factor (BF) is the dominant statistic for Bayesian

hypothesis testing (Kass and Raftery (1995); Geweke (2007)). The wide range of

applicability of BF comes with no surprise. BF computes the posterior odds of

the null hypothesis and hence provides a general and intuitive way to evaluate the

evidence in favor of the null hypothesis.

In the meantime, unfortunately, BF also suffers from several theoretical and

practical difficulties. First, when improper prior distributions are used, BF contains

undefined constants and takes arbitrary values. This is known as Bartlett’s paradox

(Kass and Raftery (1995)). Second, when a proper but vague prior distribution with

a large spread is used to represent prior ignorance, BF tends to favor the null hypoth-

esis. The problem may persist even when the sample size is large. This is known

as Jeffreys-Lindley’s paradox (Kass and Raftery (1995) and Poirier (1995)). Third,

the calculation of BF generally requires the evaluation of marginal likelihoods. In
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many models, the marginal likelihoods may be difficult to compute.

Several approaches have been proposed in the literature to deal with Bartlett’s

paradox and Jeffreys-Lindley’s paradox. One simple approach is to split the data

into two parts, one as a training set, the other for statistical analysis. The non-

informative prior is then updated by the training data, which produces a new proper

informative prior distribution for computing BF. This idea is shared by the fractional

BF (O’Hagan (1995)), and the intrinsic BF (Berger (1985)). In many practical situ-

ations, unfortunately, it is not clear how to split the sample. Moreover, the sample

split may have a major impact on statistical inference. Without a need to split the

sample, several Bayesian hypothesis testing approaches have been proposed based

on the decision theory. Noting that the BF approach to Bayesian hypothesis testing

is a decision problem with a simple zero-one loss function, Bernardo and Rueda

(2002) ( BR hereafter) and Li and Yu (2012) (LY hereafter) suggested extending

the zero-one loss function into continuous loss functions, resulting in Bayesian test

statistics that is well defined under improper priors.

The test statistics of BR and LY relies on threshold values. While in theory

these threshold values may be calibrated from simulated data generated from the

null hypothesis, in practice they are computationally expensive to obtain. Follow-

ing McCulloch (1989), LY proposed to choose the threshold values based on the

Bernoulli distribution. Although this choice makes the determination of thresh-

old values convenient, there are obvious drawbacks. Not only is the choice of the

Bernoulli distribution arbitrary, but also are the threshold values independent of the

data and the candidate models. Moreover, it is not clear if the test statistic of LY

can resolve Jeffreys-Lindley’s paradox.

The main purpose of this paper is to develop a new Bayesian hypothesis testing

approach for the point null hypothesis testing. The test statistic is based on the

Bayesian deviance and constructed in a decision theoretical framework. It can be

regarded as the Bayesian version of the likelihood ratio test. We show that the

statistic appeals in four aspects. First, it does not suffer from Bartlett’s paradox and,
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hence, can be used under improper priors. Second, it does not suffer from Jeffreys-

Lindley’s paradox and, hence, can be used under vague priors. Third, it is easy to

compute. Finally, the threshold values can be easily determined and are dependent

on the data as well as the candidate models.

To show the strength of the proposed method, we apply the test to three real ex-

amples in economics and finance. In the first example, we compare the performance

of the proposed test with that of the BF in the context of CEO salary determination.

It is shown that the new test is much more robust than the BF with respect to the

prior. In the second example, we test the validity of the three factor Fama-French

model and the new test rejects the well-known specification. Finally, we test the

absence of the leverage effect in a stochastic volatility model for exchange rates and

the new test suggests that there is no leverage effect in the exchange rate series.

The paper is organized as follows. Section 2 reviews the Bayesian literature on

testing the point null hypothesis from the viewpoint of decision theory. Section 3

develops the new Bayesian test statistic and establishes its properties. Section 4

illustrates the new method by using three real examples in economics and finance.

Section 5 concludes the paper. Appendix collects the proof of theoretical results.

3.2 Point Null Hypothesis Testing: A Literature Re-

view

3.2.1 The setup

Denote y = (y1,y2, · · · ,yn)
′ the vector of observables. Denote p(y|ϑ) the likelihood

function of the observed data. Denote π(ϑ) the prior distribution and p(ϑ |y) the

posterior. Suppose that researchers may wish to test a hypothesis, the simplest

of which contains only a point which may correspond to the prediction of a theory

(Robert, 2001). θ ∈Θ, whose dimension is p, the parameters of interest, and ψ ∈Ψ,

whose dimension is q, the nuisance parameters. So ϑ = (θ ,ψ)′. Assume that the
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observed data, y ∈ Y, is described a probabilistic model M ≡ {p(y|θ ,ψ)}. The

point null hypothesis is:

 H0 : θ = θ 0

H1 : θ 6= θ 0

. (3.2.1)

From the viewpoint of decision theory, the hypothesis testing may be viewed as

a decision problem where the action space has two elements, i.e., to accept H0 (name

it d0) or to reject H0 (name it d1). Denote the null model M0≡{p(y|θ0,ψ),ψ ∈Ψ},

and M1 ≡ M. Suppose a loss is incurred as a function of the actual value of the

parameters (θ ,ψ) when one accepts H0 or rejects H0. Assume the loss function

is given by {L [di,(θ ,ψ)], i = 0,1}. Naturally, one would like to reject H0 when

the expected posterior loss of accepting H0 is sufficiently larger than the expected

posterior loss of rejecting H0, i.e.,

T(y,θ 0) =
∫

Θ

∫
Ψ

4L [H0,(θ ,ψ)]p(θ ,ψ|y)dθdψ >C,

where C is a threshold value, 4L [H0,(θ ,ψ)] = L [d0,(θ ,ψ)]−L [d1,(θ ,ψ)] is

the net loss function which can be used to measure the evidence against H0 as a

function of (θ ,ψ).

3.2.2 Bayes factors and the discrete loss function

BF employs the zero-one loss function. In particular, if

4L [H0,(θ ,ψ)] =


−1 i f θ = θ 0

1 i f θ 6= θ 0

,

we can get

T(y,θ 0)=
∫

Ψ

(−1)
p(y|θ 0,ψ)p(ψ|θ 0)p(θ 0)

p(y)
dψ+

∫
Θ

∫
Ψ

1
p(y|θ ,ψ)p(ψ|θ)p(θ)

p(y)
dθdψ,
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where p(y) =
∫

p(y,ϑ)dϑ is the marginal likelihood. In general, to represent a

prior ignorance, an equal probability 0.5 is assigned to H0 and to H1. A reasonable

prior for θ with a discrete support at θ 0 is formulated as p(θ) = 0.5 when θ = θ 0

and p(θ) = 0.5π(θ) when θ 6= θ 0, where π(θ) is a prior distribution. Hence, when

C = 0, the decision criterion is given by:

Reject H0 iff −
∫

Ψ

p(y|θ 0,ψ)p(ψ|θ 0)dψ+
∫

Θ

∫
Ψ

p(y|θ ,ψ)p(ψ|θ)π(θ)dθdψ > 0.

which is equivalent to

Reject H0 iff BF01 =

∫
Ψ

p(y|θ 0,ψ)p(ψ|θ 0)dψ∫
Θ

∫
Ψ

p(y|θ ,ψ)p(ψ|θ)π(θ)dθdψ
< 1,

where BF01 is the well-known BF (Kass and Raftery (1995)) and is the ratio of two

marginal likelihood values.

When a subjective prior is not available, an objective prior or default prior may

be used. Often, π(θ) is taken as non-informative priors, such as the Jeffreys or

the reference prior (Jeffreys (1961); Bernardo and Rueda (2002)). These non-

informative priors are generally improper, and it follows that π(θ) =C0 f (θ), where

f (θ) is a nonintegrable function, and C0 is an arbitrary positive constant. In this

case, the BF is

BF01 =

∫
Ψ

p(y|θ 0,ψ)p(ψ|θ 0)dψ

C0
∫

Θ

∫
Ψ

p(y|θ ,ψ)p(ψ|θ) f (θ)dθdψ
.

Clearly, the BF is not well defined since it depends on the arbitrary constant C0,

giving rise to Bartlett’s paradox. In addition, if a proper prior is used but has a large

variance, the likelihood function may take low values under the alterative hypothe-

sis. This often leads to a smaller marginal likelihood value for the alterative model.

Consequently, BF has a tendency to favor H0, giving rise to Jeffreys-Lindley’s para-

dox; see Poirier (1995), Robert (2001).

The formulation of BF generally requires a positive probability for θ = θ 0 to
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be assigned. When θ is continuous, the prior concentrates a positive probability

mass on the single point θ 0. As pointed out by BR, Jeffreys-Lindley’s paradox is

the consequence of using this non-regular prior structure.

3.2.3 BR and the KL loss function

Instead of using a zero-one loss function, BR (2002) advocated using a continuous

function of θ and θ 0 to formulate the loss function. In particular, they suggested

using the KL divergence. For any regular probability functions, p(x) and q(x), the

KL divergence is defined as:

KL[p(x),q(x)] =
∫

p(x) log
p(x)
q(x)

dx. (3.2.2)

It can be shown that KL≥ 0 for any p and q, and equal to 0 iff p(x) = q(x). In this

case, the decision criterion is:

TBR(y,θ 0) =
∫

Θ

∫
Ψ

4L [H0,(θ ,ψ)]p(θ ,ψ|y)dθdψ

=
∫

Θ

∫
Ψ

{∫
log

p(y|θ ,ψ)

p(y|θ 0,ψ)
p(y|θ ,ψ)dy

}
p(θ ,ψ|y)dθdψ >C.(3.2.3)

To ensure the symmetry, BR suggested using the following net loss function:

4L [H0,(θ ,ψ)] = min{KL[p(y|θ ,ψ), p(y|θ 0,ψ)],KL[p(y|θ 0,ψ), p(y|θ ,ψ)]}.

(3.2.4)

Obviously, TBR(y,θ 0) = 0 under the null hypothesis but is positive under the alter-

native hypothesis. According to BR, this loss function can be used under the refer-

ence priors to maintain objectiveness, overcoming Bartlett’s paradox. Although the

statistic of BR is well defined under improper priors and has other desirable prop-

erties, it has certain practical difficulties. First, when the KL loss function is not

available analytically, the test statistic of BR is infeasible to use. Second, threshold

values for C, are needed but difficult to find in general.
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3.2.4 LY and the Q loss function

In the context of latent variable models, the likelihood function and the KL loss are

not available analytically and the test statistic of BR is difficult to use. To solve

this problem, LY developed a Bayesian test statistic based on the Q function used

in the EM algorithm. Denote y = (y1,y2, · · · ,yn)
′ the vector of observables and

z = (z1,z2, · · · ,zn)
′ the vector of latent variables. Let x = (y,z)′. The latent variable

model is dependent on a set of parameters ϑ . Denote p(y|ϑ) and p(x|ϑ) the like-

lihood function of the observed data and the likelihood function of complete data,

respectively. The two functions are related to each other by

p(y|ϑ) =
∫

p(x|ϑ)dz =
∫

p(y,z|ϑ)dz. (3.2.5)

When the above integral at the right hand side does not have a closed-form solution,

instead of using maximum likelihood (ML) method, it is numerically more tractable

to carry out Bayesian analysis based on the MCMC algorithm for estimating the

latent variable models; see, for example Geweke et al. (2011).

For latent variable models, the complete-data log-likelihood, Lc(x|ϑ)= log p(x|ϑ),

is related to the observed data log-likelihood, Lo(y|ϑ) = log p(y|ϑ). While Lc(x|ϑ)

is often simple, but Lo(y|ϑ) = log p(y|ϑ) is often complicated because the integral

Equation (3.2.5) does not have an analytical solution. The EM algorithm is a way

to obtain the ML estimator (Dempster et al. (1977)). A standard EM algorithm

consists of two steps: the expectation (E) step and the maximization (M) step. The

E-step evaluates the Q function which is defined by:

Q
(

ϑ |ϑ (r)
)
= Ez

{
Lc(x|ϑ)|y,ϑ (r)

}
, (3.2.6)

where the expectation is taken with respect to the conditional distribution of latent

variables given y and ϑ
(r), p(z|y,ϑ (r)). The M-step determines a ϑ

(r+1) that maxi-

mizes Q(ϑ |ϑ (r)).
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Let ϑ 0 = (θ 0,ψ). LY (2012) introduced a continuous net loss function as:

4L (ϑ ,ϑ 0) = {Q(ϑ ,ϑ)−Q(ϑ 0,ϑ)}+{Q(ϑ 0,ϑ 0)−Q(ϑ ,ϑ 0)} ,

and proposed a Bayesian test statistic as:

TLY (y,θ 0) = Eϑ |y [4L (ϑ ,ϑ 0)] . (3.2.7)

Like the statistic of BR, the test statistic, TLY (y,θ 0), is well defined under im-

proper priors and hence is immune to Bartlett’s paradox. Also, it is easy to compute

if the MCMC output is available. However, like the statistic of BR, the thresh-

old values are needed in practice. Following McCulloch (1989), LY proposed to

base the threshold values on two Bernoulli distributions. Although the use of the

threshold values is not new in the Bayesian literature (see, for example, Jeffreys’

BF scales), it is awkward that these threshold values are independent of the data

and the candidate models. It was remarked in LY that a more natural approach

is to obtain threshold values from simulated data in repeated sampling, which is

computationally time consuming in general.

3.3 A New Method for Bayesian Hypothesis Testing

3.3.1 The test statistic

BR’s approach requires the KL loss function must have a closed-form expression

and the threshold values for Bayesian hypothesis testing are difficult to obtain. LY’s

approach is easy to compute, but the threshold values are independent of the data

and the candidate models. To avoid these theoretical and computational difficul-

ties, in this section, we introduce a new Bayesian approach for hypothesis testing.

44



Denote the net loss function as:

4L [H0,(θ ,ψ)]=−2log p(y|θ 0,ψ)−(−2log p(y|θ ,ψ))= 2log p(y|θ ,ψ)−2log p(y|θ 0,ψ),

(3.3.1)

where −2log p(y|θ ,ψ) represents the residual information in data y given θ ,ψ in

the alternative model. According to Good (1956), −2log p(y|θ ,ψ) measures the

surprise or uncertainty. Similarly, one can interpret −2log p(y|θ 0,ψ). The net loss

function is the difference of the two Bayesian deviances, if the Bayesian deviance

is defined in the same way as in Spiegelhalter et al. (2002) (Section 2.5). The new

Bayesian test statistic is then defined by:

T(y,θ0) = 2
∫

[log p(y|θ ,ψ)− log p(y|θ 0,ψ)] p(θ ,ψ|y)dθdψ. (3.3.2)

Under the null, T(y,θ0) = 0, whereas under the alternative, T(y,θ0) 6= 0. When the

deviance of the null hypothesis is sufficiently smaller than that of the alternative, it

is reasonable to believe that we should reject the null hypothesis.

BF essentially compares the relative magnitude of

∫
Ψ

p(y|θ 0,ψ)p(ψ|θ 0)dψ

and ∫
Θ

∫
Ψ

p(y|θ ,ψ)p(ψ|θ)π(θ)dθdψ,

whereas our test statistic compares the relative magnitude of

∫
log p(y|θ 0,ψ)p(θ ,ψ|y)dθdψ =

∫
log p(y|θ 0,ψ)p(ψ|y)dψ

and ∫
Θ

∫
Ψ

log p(y|θ ,ψ)p(θ ,ψ|y)dθdψ.

Clearly there are two major differences between the two approaches. First, the

likelihood functions in BF are replaced with the log-likelihood functions in our
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test. Second and more importantly, the (log-)likelihood functions are averaged over

the prior distributions in BF but over the posterior distributions in our method. The

second difference suggests that our statistic is less sensitive to the prior distributions.

The first result in this present paper shows that the Bayes risk of T(y,θ0) is just

two times the test statistic proposed by BR.

Theorem 3.3.1 It can be shown that

Ey [T(y,θ 0)] =
∫

T(y,θ 0)p(y)dy = 2Ey [TBR(y,θ 0)] .

Remark 3.3.1 T(y,θ 0) may be explained as the Bayesian version of the likelihood

ratio test since it is the likelihood ratio averaged over the posterior distribution

under the alternative hypothesis.

Remark 3.3.2 To show how the new statistic is immune to Bartlett’s paradox, con-

sider general improper priors, p(ψ|θ) = A f (ψ|θ), p(θ) = B f (θ), p(ψ|θ 0) =

C0 f (ψ|θ 0) where f (ψ|θ), f (θ) and f (ψ|θ 0) are nonintegrable functions, and

A,B,C0 are arbitrary positive constants. It can be shown that,

p(ψ,θ |y) = p(y,ψ,θ)

p(y)
=

p(y,ψ,θ)∫ ∫
p(y,ψ,θ)dψdθ

=
p(y|ψ,θ)p(ψ,θ)∫ ∫

p(y|ψ,θ)p(ψ,θ)dψdθ

=
p(y|ψ,θ)AB f (ψ,θ)∫ ∫

p(y|ψ,θ)AB f (ψ,θ)dψdθ
=

p(y|ψ,θ) f (ψ,θ)∫ ∫
p(y|ψ,θ) f (ψ,θ)dψdθ

.

Hence, p(ψ,θ |y) is independent of the arbitrary constants. Similarly, we can show

that p(ψ|y) is also independent of C0. Consequently, T(y,θ0) is well defined under

improper priors.

Remark 3.3.3 To see how the new statistic can avoid Jeffreys-Lindley’s paradox,

we consider a well known example in the literature; see, for example, Robert (1993).

Let y∼N(θ ,1). Suppose we want to test the simple point null hypothesis H0 : θ = 0.

The prior distribution of θ can be set as N(µ,τ2) with µ = 0. Then the posterior
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distribution of θ is N(µ(y),ω2) with

µ(y) =
µ + τ2y
1+ τ2 ,ω2 =

τ2

1+ τ2 .

BF is given by:

BF10 =
1

BF01
=

√
1

1+ τ2 exp
[

τ2y2

2(1+ τ2)

]
.

As τ2→+∞, BF10→ 0 which means that the test always supports the null hypothe-

sis regardless whether or not it holds true, giving rise to Jeffreys-Lindley’s paradox.

The reason for the paradox is that BF compares
∫

p(y|θ)p(θ)dθ with p(y|θ = 0).

When p(θ) has a large variance, even if y is far away from 0, there is a fair chance

that p(y|θ = 0) is larger. On the other hand, it is easy to show:

T(y,0) = 2
[∫

log p(y|θ)p(θ |y)dθ − log p(y|θ = 0)
]
= 2yµ(y)−µ

2(y)−ω
2.

As τ2→ +∞, µ(y)→ y, ω2→ 1. In this case, the posterior distribution converges

to N(y,1) and T(y,0)→ y2− 1 which is distributed exactly as χ2(1)− 1 when H0

is true. Consequently, our proposed test statistic avoids Jeffreys-Lindley’s paradox.

Essentially, we compare
∫

log p(y|θ)dN(θ ;y,1) with log p(y|θ = 0). Since the pos-

terior distribution N(θ ;y,1) puts much more weight in the area near y, when y is

far away from zero, the former quantity should take a much larger value than the

latter. To illustrate the point, if y = 3 which is 3 standard deviation away under the

null hypothesis, we expect a reasonable test should reject the null hypothesis. Table

1 reports BF01 and T(y,0) when τ = 1,100,1000. It can be seen that while our

method always rejects the null the BF fails to reject the null when τ = 100,1,000.

Remark 3.3.4 When p(y|θ ,ψ) is available in closed-form and the model under

alternative hypothesis is estimated by MCMC, it is straightforward to calculate
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Table 3.1: Using BF and the new test to test θ = 0 when y = 3.

τ 1 100 1000
BF01 0.15 1.12 11.13

T(y,θ0) 6.25 8.00 8.00

T(y,θ0) by

1
M

M

∑
m=1

(
log p

(
y|θ (m),ψ(m)

)
− log p

(
y|θ 0,ψ

(m)
))

,

where {θ (m),ψ(m)}, m = 1,2, · · · ,M, are the draws, generated by the MCMC tech-

nique, from the posterior distribution under the alternative hypothesis.

3.3.2 Latent variable models

In many cases, p(y|ϑ) does not have a closed-form expression. For example, in

latent variable models, p(y|ϑ) often involves integrals that cannot not be solved

analytically. In this section, we show how to approximate T(y,θ0) with the EM

algorithm and the MCMC output. To do so, we first impose the following set of

regularity conditions.

Assumption 1: The likelihood of the model considered is regular.

Assumption 2: The data generating process is strictly stationary.

Assumption 3: There exists a finite sample size n∗, so that, for n > n∗, there is

a local maximum at ϑ̂ such that L(1)
n (ϑ̂) = 0 and L(2)

n (ϑ̂) is negative definite, where

Ln(ϑ) = log p(ϑ |y), L(1)
n (ϑ) = ∂ log p(ϑ |y)/∂ϑ , L(2)

n (ϑ) = ∂ 2 log p(ϑ |y)/∂ϑ∂ϑ
′.

Assumption 4: The largest eigenvalue λn of
[
−L(2)

n (ϑ̂)
]−1

goes to zero when

n→ ∞.

Assumption 5: For any ε > 0, there exists an integer N and some δ > 0 such

that for any n > max{N,n∗} and ϑ ∈H(ϑ̂ ,δ ) = {ϑ : ||ϑ− ϑ̂ || ≤ δ}, L(2)
n (ϑ) exists

and satisfies

−A(ε)≤ L(2)
n (ϑ)L−(2)n (ϑ̂)− Ip+q ≤ A(ε),
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where Ip+q is an identity matrix and A(ε) is a positive semidefinite symmetric ma-

trix whose largest eigenvalue goes to zero as ε→ 0. When θ = θ 0, this assumption

also holds.

Assumption 6: For any δ > 0, as n→ ∞,

∫
Ω−H(ϑ̂ ,δ )

p(ϑ |y)dϑ → 0,

where Ω is the support space of ϑ .

Assumption 7: For any δ > 0, when ϑ ∈ H(ϑ̂ ,δ ), L(2)
n (ϑ)/n = Op(1).

Remark 3.3.5 These assumptions are mild regularity conditions and have been

used in the literature to develop Bayesian large sample theory; see, for example,

Chen (1985), Kim (1994, 1998), Geweke (2005). Based on these regularity condi-

tions, Li et al. (2012) showed that, conditional on the observed data y,

ϑ̄ = E [ϑ |y,H1] =
∫

ϑ p(ϑ |y)dϑ = ϑ̂ +o(n−1/2),

V (ϑ̂) =−L−(2)n (ϑ̂)+o(n−1),

where

V (ϑ̃) = E
[
(ϑ − ϑ̃)(ϑ − ϑ̃)

′
|y,H1

]
=
∫
(ϑ − ϑ̃)(ϑ − ϑ̃)

′
p(ϑ |y)dϑ .

Theorem 3.3.2 Let ϑ̄ =(θ̄ , ψ̄)′ be the posterior mean of ϑ under H1, ϑ̄ ∗=(θ 0, ψ̄)′,

ϑ̄ b = (1−b)ϑ̄ ∗+bϑ̄ ,b ∈ [0,1], S(x|ϑ) = ∂ log p(x|ϑ)/∂ϑ ,

D =
∫ 1

0

{
(θ̄ −θ 0)

′
[
E

z|y,ϑ̄ b
S1(x|ϑ̄ b)

]}
db, (3.3.3)

where S1(x|ϑ) is the subvector of S(x|ϑ) corresponding to θ . Let

T1(y,θ 0) = 2D+2
[
log p(θ̄ , ψ̄)− log p(ψ̄|θ 0)

]
−2
[∫

log p(θ |ψ)p(ϑ |y)dϑ

]
−
[

p+q− tr[−L(2)
0n (ψ̄)V22(ϑ̄)]

]
. (3.3.4)
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where V22(ϑ̄) = E[(ψ− ψ̄)(ψ− ψ̄)′|y,H1], which is the submatrix of V (ϑ̄) corre-

sponding to ψ and

L(2)
0n (ψ) =

∂ 2 log p(y,ψ|θ 0)

∂ψ∂ψ ′
.

Under Assumptions 1-7, it can be shown that

T1(y,θ 0) = T(y,θ 0)+op(1). (3.3.5)

Remark 3.3.6 According to (3.3.5) we can approximate T(y,θ 0) by T1(y,θ 0).

Remark 3.3.7 In many cases, the analytical form of D is not available. Following

Gelman and Meng (1998), if D does not have a closed form expression, we can

numerically approximate it using the trapezoidal rule. In particular, we can choose

a set of fixed grids {b(s)}S
s=0 such that b0 = 0< b(1) < b(2) < · · ·< b(S) < b(S+1) = 1,

and then approximate D by

D̂=
1
2
(
θ̄ − θ̄ 0

)′ S

∑
s=0

(
b(s+1)−b(s)

)(
E

z|y,ϑ̄ b(s)

[
S1

(
x|ϑ̄ b(s)

)]
+E

z|y,ϑ̄ b(s+1)

[
S1

(
x|ϑ̄ b(s+1)

)])
.

(3.3.6)

To calculate E
z|y,ϑ̄ b(s)

[
S1

(
x|ϑ̄ b(s)

)]
, we use

E
z|y,ϑ̄ b(s)

[
S1

(
x|ϑ̄ b(s)

)]
= E

z|y,ϑ̄ b(s)

[
S1

(
y,z|ϑ̄ b(s)

)]
≈M−1

M

∑
m=1

S1

(
y,z(m)|ϑ̄ b(s)

)
,

where {z(m),m = 1,2, · · · ,M} are efficient random observations simulated from

p
(

z|y, ϑ̄ b(s)

)
with ϑ̄ b(s) = (1−b(s))ϑ̄ +b(s)ϑ̄ ∗ after discarding some burn-in sam-

ples. With D being replaced by D̂ in (3.3.6), we can approximate T1(y,θ 0) by

T̂1(y,θ 0).

Remark 3.3.8 The test statistic clearly requires the evaluation of the observed in-

formation matrix, the second derivative of the observed-data likelihood function.

For most latent variable models, the observed-data likelihood function does not

have a closed-from expression so that the second derivatives are difficult to evalu-
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ate. It is noted that

L(2)
n (ϑ) =

∂ 2Lo(y|ϑ)

∂ϑ∂ϑ
′ +

∂ 2 p(ϑ)

∂ϑ∂ϑ
′ .

In the EM algorithm, under the mild regularity conditions, if Q(·|·) has a closed

form expression, Oakes (1999) showed that the observed information matrix can be

expressed as:

I(ϑ) =−∂ 2Lo(y|ϑ)

∂ϑ∂ϑ
′ =

{
−∂ 2Q(ϑ |ϑ ∗)

∂ϑ∂ϑ
′ − ∂ 2Q(ϑ |ϑ ∗)

∂ϑ∂ϑ
∗′

}
ϑ
∗
=ϑ

. (3.3.7)

When Q(·|·) does not have a closed form expression, Louis (1982) derived the ob-

served information matrix as:

I(ϑ) = E(z|y,ϑ )

{
−∂ 2Lc(x|ϑ)

∂ϑ∂ϑ
′

}
−Var(z|y,ϑ ) {S(x|ϑ)} (3.3.8)

= E(z|y,ϑ )

{
−∂ 2Lc(x|ϑ)

∂ϑ∂ϑ
′ −S(x|ϑ)S(x|ϑ)′

}
+E(z|y,ϑ ){S(x|ϑ)}E(z|y,ϑ ){S(x|ϑ)}′,

where the expectations are taken with respect to the conditional distribution of z

given y and ϑ . Hence, the information matrix can be approximated by:

E(z|y,ϑ )

{
−∂ 2Lc(x|ϑ)

∂ϑ∂ϑ
′ −S(x|ϑ)S(x|ϑ)′

}

≈ − 1
M

M

∑
m=1

∂ 2Lc

(
y,z(m)|ϑ

)
∂ϑ∂ϑ

′ +S
(

y,z(m)|θ
)

S
(

y,z(m)|ϑ
)′ ,

E(z|y,ϑ ){S(x|ϑ)} ≈ 1
M

M

∑
m=1

S
(

y,z(m)|ϑ
)
,

where {z(m),m = 1,2, · · · ,M} are the efficient random draws from the conditional

distribution p(z|y,ϑ).
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3.3.3 Choosing threshold values

To implement the proposed method, we need to specify a threshold value. We shall

use the following decision rule to test the hypothesis:

Accept H0 if T(y,θ 0)≤C; Reject H0 if T(y,θ 0)>C,

where C is the threshold value to be specified. The following theorem gives the

asymptotic distribution of the test statistic. The threshold value can be then set

to be a certain percentile of the asymptotic distribution. This compares favorably

with Jeffreys’ subjective threshold values for BF (Jeffreys (1961)) and the threshold

values used in LY.

Theorem 3.3.3 When the likelihood information dominates the prior information,

under Assumptions 1-7, we have, under the null hypothesis

T(y,θ 0)+
[

p+q− tr[−L(2)
0n (ϑ̄)V22(ϑ̄)]

]
a∼ ε
′
[
IJ1/2

11 (ϑ 0)J11(ϑ 0)IJ1/2
11 (ϑ 0)

]
ε, (3.3.9)

T1(y,θ 0)+
[

p+q− tr[−L(2)
0n (ϑ̄)V22(ϑ̄)]

]
a∼ ε
′
[
IJ1/2

11 (ϑ 0)J11(ϑ 0)IJ1/2
11 (ϑ 0)

]
ε, (3.3.10)

where ε is a standard multivariate normal variate, ϑ0 = (θ0,ψ0) the true value of

ϑ , J(ϑ0) the Fisher information matrix given by

J(ϑ0) =
1
n

∫
−L(2)

n (ϑ 0)p(y|ϑ 0)dy,

IJ(ϑ0) the inverse of J(ϑ0), J11(ϑ0) and IJ11(ϑ0) the submatrices of J(ϑ0) and

IJ(ϑ0), respectively, corresponding to θ .

Remark 3.3.9 In general, the asymptotic distributions of J11(ϑ0) and IJ11(ϑ0) are

not known. Fortunately, when the alternative hypothesis is assumed to be the true

model, J(ϑ0) and IJ(ϑ0) can be consistently estimated by

J(ϑ0)≈−
1
n

L(2)
n (ϑ̄),IJ(ϑ0)≈ nV (ϑ̄).
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This greatly facilitates the calculation of the asymptotic distribution.

Remark 3.3.10 To obtain the asymptotic distribution and the threshold values,

since the middle term in the asymptotic distribution, IJ1/2
11 (ϑ 0)J11(ϑ 0)IJ1/2

11 (ϑ 0),

only depends on the model and the data, one only needs to simulate from the stan-

dard multivariate normal.

In some cases, there is no need to simulate the asymptotic distributions of

T(y,θ 0) and T1(y,θ 0). The following theorem gives such a situation.

Theorem 3.3.4 If θ and ψ are orthogonal, tr [J22(ϑ0)IJ22(ϑ0)]= q, IJ1/2
11 (ϑ 0)J11(ϑ 0)IJ1/2

11 (ϑ 0)=

Ip, T(y,θ0)
a∼ χ2(p)− p, and T1(y,θ0)

a∼ χ2(p)− p, where J22(ϑ0) and IJ22(ϑ0)

are the submatrices of J(ϑ0) and IJ(ϑ0) corresponding to ψ .

Remark 3.3.11 Theorem 3.3.4 can be simply derived from Theorem 3.3.3. While

the likelihood ratio statistic asymptotically follows χ2(p) and is always positive,

the Bayesian version of the likelihood ratio statistic proposed in the present paper

asymptotically follows χ2(p)− p. The mean of the asymptotic distribution is zero

and hence it is possible that our statistic takes a negative value.

3.4 Examples

In this section, we illustrate the proposed theory using three examples in economics

and finance. In the first example, we compare the performance of BF and that of

T(y,θ 0) in the context of simple linear regression model, aiming to explore the

presence of Jeffreys-Lindley’s paradox in BF and the absence of Jeffreys-Lindley’s

paradox in the proposed method. In the second example, we check the quality

of the approximation of T1(y,θ 0) and T̂1(y,θ 0) to T(y,θ 0) in the context of lin-

ear asset pricing model. In this case both the observed-data log-likelihood and the

complete-data log-likelihood have the analytical form. In the third example, we

test the presence of leverage effect in a stochastic volatility (SV) model. Since the

observed-data log-likelihood is not available in closed-form for the SV model, only

T̂1(y,θ 0) is obtained.
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3.4.1 Testing the significance in a simple linear regression model

Consider the following simple linear regression model:

yi = βxi + εi, εi ∼ i.i.d. N
(
0,σ2) , i = 1, ...,n.

Denote y = (y1,y2, ...,yn)
′ and X = (x1,x2, ...,xn)

′. We are interested in knowing

whether or not the explanatory variable xi has an explanatory power for yi, i.e., we

test

H0 : β = 0, H1 : β 6= 0 .

The prior distributions for β and σ2 are set at

β ∼ N
(
µβ ,Vβ

)
,σ2 ∼ IG(a,b) .

In this example, θ = β ,ψ = σ2, and the likelihood function has a closed-form

expression. Thus, T(y,θ0) can be computed. Also note that β is orthogonal to σ2

and, hence, T(y,θ 0)
a∼ χ2(1)−1. The marginal likelihood of data can be expressed,

under H0, as:

p0 (y) =
baΓ

(
a+ n

2

)
(2π)n/2

Γ(a)

[
b+

1
2

y′y
]−(a+n/2)

,

and under H1, as:

p1 (y) =
baΓ

(
a+ n

2

)√
|V ∗|

(2π)n/2
Γ(a)

√∣∣Vβ

∣∣
[

b+
1
2

(
µ
′
β
V−1

β
µβ +y′y−µ

∗′V ∗−1
β

µ
∗
)]−(a+n/2)

,

where

µ
∗ =V ∗

(
V−1

β
µβ +X ′y

)
, V ∗ =

(
V−1

β
+X ′X

)−1
.

Hence, BF01 = p0 (y)/p1 (y) has an analytical expression.

To explore the presence of Jeffreys-Lindley’s paradox in BF and the absence of

Jeffreys-Lindley’s paradox in our proposed test, we consider an example used in

Wooldridge (2009) (Page 45). In this example, a linear relationship between CEO
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salary and firm sales is established. To compute T(y,θ0), we apply Gibbs sampler

to the model corresponding to the alternative hypothesis to carry out the Bayesian

analysis. We set the parameters in the priors at:

µβ = 0, a = 0.001, b = 0.001,

but leave the value of the prior variance Vβ varied for the purpose of examining

how Vβ influences the decision based on BF01 and T(y,θ0), respectively. For the

Bayesian MCMC analysis, 10,000 random draws are sampled from the posterior

distribution after 1,000 burn-in periods.

The results are reported in Table 2. From this table, we see that as Vβ increases,

BF01 also increases. When the prior variance Vβ is moderate, BF is less than 1 and

tends to reject the null hypothesis. However, when Vβ is large enough, the BF tends

to support the null hypothesis. This clearly demonstrates Jeffreys-Lindley’s para-

dox. On the other hand, T(y,θ0) takes nearly identical values with different Vβ .

Consequently, T(y,θ0) is immune to Jeffreys-Lindley’s paradox. To test the hy-

pothesis using the proposed theory, since θ and σ2 are orthogonal to each other, the

asymptotic distribution of T(y,θ0) is χ2(1)− 1. The 99%, 95%, 90% percentiles

of χ2(1)−1 are 5.65, 2.84, 1.71. The test statistic T(y,θ0) is 40.12, suggesting that

the null hypothesis is rejected under the 99%, 95%, 90% probability levels. When

the frequentist’s approach is used, the OLS estimate of β is 0.26 and the standard

error is 0.03. This suggests that the null hypothesis has to be rejected, consistent

with the finding from our method.

Table 3.2: Testing the significance in a simple linear regression model

Vβ 0.1 100 105 1022 1025 1035

BF01 2.95×10−10 2.63×10−9 8.32×10−8 26.3051 831.8407 8.31×107

T(y,θ0) 40.1209 40.1205 40.1205 40.1205 40.1205 40.1205
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3.4.2 Hypothesis tests in asset pricing models with heavy tails

Asset pricing theory is a central focus of modern finance. Many econometric ap-

proaches have been developed to test asset pricing models. Most of the tests were

developed based on the normality assumption, which is often violated in return data

due to the presence of heavy tails. The heavy tails have motivated some researchers

to develop asset pricing models with heavy-tailed distributions, see Zhou (1993), ?,

and Li and Yu (2012). In this subsection, we apply the proposed method to check the

validity of Fama-French three factor asset pricing model (Fama and French (1993))

with a multivariate t distribution.

This asset pricing model with multivariate t distribution can be simply expressed

as:

Rt = α +β1Mt +β2SMBt +β3HMLt + ε t ,ε t ∼ t(0,Σ,ν),

where Rt is the excess return of portfolio at period t with N × 1 dimension, Mt

the excess return of the whole stock market, SMBt and HMLt stands for “small

(market capitalization) minus big” and for “high (book-to-market ratio) minus low”

which measures the historical excess returns of small caps over big caps and of

value stocks over growth stocks, Σ a diagonal matrix, and ν the freedom of degree

of t distribution which is assumed to be known for the illustrative purpose and for

convenience.

Let β = (β1,β2,β3)
′, Ft = (Mt ,SMBt ,HMLt)

′. As noted in Kan and Zhou

(2006), using the scale mixture representation for t distribution, this model can be

equivalently specified as:

Rt = α +βF t + ε t , ε t ∼ N(0×1N ,Σ/ωt), ωt ∼ Γ

(
ν

2
,
ν

2

)
.

The mean-variance efficiency suggests that the excess premium α should be zero.

Hence, the hypothesis to be tested is given by:

H0 : α = 0×1N ,H1 : α 6= 0×1N ,
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where 1N is an N-dimensional vector with unit elements.

As in the previous example, the likelihood function has a closed-form expression

and, hence, both D and T(y,θ0) can be computed. The purpose of this example is to

check the quality of approximation of T1 (y,θ0) and T̂1 (y,θ0) when ωt is regarded

as latent variables.

In this empirical analysis, we consider the monthly returns of 25 portfolios con-

structed at the end of each June on the basis of the intersections of 5 portfolios

formed on size (market equity, ME) and 5 portfolios formed on the ratio of book

equity to market equity (BE/ME). This sample period is ranged from July 1926 to

July 2011 so that N = 25, T = 1002. The data are freely available from the data

library of Kenneth French.1

As noted in Kan and Zhou (2006), it is not easy to make the statistical inference

using optimization-based ML methods. Hence, we consider Bayesian statistical

inference coupled with MCMC techniques. Following Li and Yu (2012), we assign

the vague conjugate prior distributions to represent the prior ignorance as follows:

αi ∼ N[0,100],βi ∼ N[0,100],Σ−1
ii ∼ Γ[0.001,0.001],

and set ν = 3.

In this Bayesian analysis, 100,000 random samples are draw from the posterior

distribution using Gibbs sampler. The convergence of Gibbs sampler is checked

using the Raftery-Lewis diagnostic test statistic (Raftery and Lewis (1992)). The

first 50,000 random samples are discarded as burning-in samples. To check the

quality of approximation of T1(y,θ 0) and T̂1(y,θ 0) to T(y,θ 0), we choose S = 20

and set the equal distance between b(s) and b(s+1) for s = 0,1, · · · ,21.

The results are reported in Table 3. From Table 3, we find that D̂ well approx-

imates D. Not surprisingly, T̂1(y,θ 0), which is based on D̂, well approximates

T1(y,θ 0) which in turn well approximates T(y,θ 0). All three values are around

141. To obtain the threshold values, we estimate IJ1/2
11 (ϑ 0)J11(ϑ 0)IJ1/2

11 (ϑ 0) in

1http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
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Table 3.3: Asset pricing testing for Fama-French three factor models

Statistics D D̂ T1(y,θ 0) T̂1(y,θ 0) T(y,θ 0)
Value 82.5833 82.5826 141.1921 141.1914 140.5004

(3.3.9), simulate 1,000 random vectors from the standard multivariate normal vari-

ate, and then obtain 1,000 random numbers for T̂1(y,θ 0). From these random

numbers, we obtain the following threshold values: C = 20.2657 under 99%, C =

15.5040 under 95% and C = 11.3610 under 90%. Consequently, we reject the null

hypothesis under all the probability levels.

3.4.3 Testing the leverage effect in a stochastic volatility model

Stochastic volatility (SV) models have been widely used for pricing options. An

important and well documented empirical feature in many financial time series is

the financial leverage effect (Black (1976); Christie (1982)). Following Yu (2005),

we define the leverage effects SV model as follows:

yt |ht = exp(ht/2)ut , t = 1, ...,n,

ht+1|ht ,µ,φ ,τ
2,ρ = µ +φ (ht−µ)+ τνt+1, t = 0, ...,n,

with  ut

νt+1

 i.i.d∼ N


 0

0

 ,

 1 ρ

ρ 1


 ,

and h0 = µ , where yt is the return at time t, ht the return volatility at period t, ρ the

leverage effect parameter. The hypothesis that we test is H0 : ρ = 0.

To carry out Bayesian test of the hypothesis, we use the data that consist of

daily returns on Pound/Dollar exchange rates {xt} from 01/10/81 to 28/06/85. The

series {yt} is the daily mean-corrected returns. We first estimate the model using
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the Bayesian MCMC method. The following vague priors are specified:

µ ∼ N[0,100], φ ∼ Beta[1,1], τ
−2 ∼ Γ [0.001,0.001] , ρ ∼U [−1,1] .

The parameter estimates are based on 100,000 iterations after a burn-in of 10,000.

To calculate T̂1 (y,θ0), we take s = 20, set the equal distances between b(s) and

b(s+1) for s = 0,1, ...,20 and find T̂1 (y,θ0) = −1.7244. From simulations, the

threshold values are C = 5.1041 under 99%, C = 2.2291 under 95% and C = 1.0600

under 90%. Hence, the null hypothesis cannot be rejected under all three probability

levels.

3.5 Conclusion

In this paper, we have proposed a new Bayesian statistic to test a point null hypoth-

esis. The main advantages of the new statistic are fourfold. First, it is immune to

Bartlett’s paradox. Second, it avoids Jeffreys-Lindley’s paradox. Third, it can be

easily computed using the MCMC outputs from the posterior distribution. Fourth,

the asymptotic distribution can be derived for calibrating the threshold values. The

proposed method is illustrated using a simple linear regression model, an asset pric-

ing model and a stochastic volatility model.
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Chapter 4 A Bayesian Specification Test for

Latent Variable Models

4.1 Introduction

Economic theory has long been used to justify a particular choice of econometric

models. It almost always does do by using a set of economic assumptions. When

some of these assumptions are invalid, the corresponding econometric models may

be misspecified. In a worse scenario, economic theory may not be available and the

choice of econometric model can then be more arbitrary and, hence, the model is

more vulnerable to the specification errors.

In general misspecification of econometric models can potentially lead to in-

consistent estimation, which in turn may have serious implications for statistical

inferences such as hypothesis testing and out-of-sample forecasting and serious im-

plications for economic decision making such as policy recommendation and invest-

ment decision. Consequently and not surprisingly, considerable amount of efforts

have been devoted in econometrics to detect model misspecification.

One strand of the literature on specification tests unifies under the m-test of

Newey (1985), Tauchen (1985) and White (1987). These tests include as a special

case of the Lagrange multipler (LM) test, the tests of Sargan (1958) and Hansen

(1982) , the tests of Cox (1961, 1962), the Hausman (1978) test, the information

matrix test of White (1982), the conditional moment test of Newey (1985) , the IOS

test of Presnell and Boos (2004). These tests typically require the parameters in

the null hypothesis are estimated by the maximum likelihood (ML) method, or the
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generalized method of moments (GMM).

Another strand of the literature is based on distances between nonparametric and

parameter counterparts. The idea originated from the Kolmogorov-Smirnov test or

the closely related family such as the Cramer-von Mises and Andersen-Darling tests.

Examples in this case include Eubank and Spiegelman (1990), Wooldrige (1992),

Fan and Li (1996), Gozalo (1993), Zheng (2000), Ait-Sahalia (1996), and Hong and

Li (2005). All the tests in this category require either a nonparametric estimate of

a function or a nonparametric estimate of a density (either a marginal density or a

conditional density).

For many widely used latent variable models in economics, such as nonlinear

non-Gaussian state space models, it is not easy to obtain the ML estimate or con-

struct a nonparametric estimate. Not surprisingly, it is difficult to apply the specifi-

cation tests in the above mentioned two strands of the literature. On the other hand,

there has been increasing interest in Bayesian methods to analyze latent variable

models. With the advancement of the Markov chain Monte Carlo (MCMC) algo-

rithms and the rapid growth in computer capability, the estimation of latent variable

models has become increasingly easier and easier.

Given the popularity of Bayesian MCMC methods for estimating latent variable

models, it is therefore natural to introduce a Bayesian test to assess the goodness-

of-fit of the model. Unfortunately, model specification test is a challenge in the

Bayesian paradigm. Perhaps the most obvious way to assess the goodness-of-fit of

the model in the Bayesian paradigm is to compare the posterior model probability

in consideration with the posterior model probability of a competing model. This

can be achieved by using, for example, Bayes factors (BFs), although BFs are not

free of problems. However, it is often not clear how to specify the alternative model

and empirical researchers may simply wish to know if the model she employs is

adequate or not without worrying about any alternative model.

The question we ask in the present paper is, after the model is estimated by a

Bayesian approach, how we can assess the validity of the model specification. The
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main purpose of this paper is to introduce a Bayesian approach to testing model

specification without specifying an alternative model. The proposed Bayesian test

statistic is the Bayesian version of a m-type test. We show how to compute the test

statistic from MCMC output in the context of latent variable models. To implement

our method, threshold values are needed. We then show that the threshold values

can be obtained using Monte Carlo simulations.

The paper is organized as follows. Section 2 briefly reviews the literature on the

misspecification tests. Section 3 proposes the new Bayesian test statistic and show

how to compute the statistic and the threshold values in latent variable models. Sec-

tion 4 illustrates the new method using a real example in finance and a real example

macroeconomics. Section 5 concludes the paper. Appendix collects the proof of

the theoretical results in the paper and the derivation of the quantities needed to

compute the statistic.

4.2 Specification Tests: A Literature Review

To begin, let Y = (y1, ...,yn) denote observations drawn from a probability measure

P0 on the probability space (Ω,F,P0). Let model P be a collection of candidate

models indexed by parameters θ whose dimension is p. Denote P indexed by θ

by Pθ . Following White (1987), if there exists θ , such that P0 ∈ Pθ , we say the

model P is correctly specified. However, if for all θ , P0 /∈ Pθ , we say the model P is

misspecified.

One of the earliest specification test is based on the informative matrix equiva-

lence due to White (1982). Let p(Y|θ) denote the likelihood function of model P

and

s(Y,θ) := ∂ log p(Y|θ)/∂θ ,h(Y,θ) := ∂
2 log p(Y|θ)/∂θ∂θ

′,

H(θ) :=
∫

h(Y,θ)p(Y|θ)dY,J(θ) :=
∫

s(Y,θ)s′(Y,θ)p(Y|θ)dY.
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When the model is correctly specified, note that

∫
p(Y|θ)dY = 1.

Differentiate the above equation twice and use the fact that ∂ f/∂θ = f ∂ log f/∂θ ,

we get

0 =
∫ [

h(Y,θ)+ s(Y,θ)s′(Y,θ)
]

p(Y|θ)dY = H(θ)+J(θ).

Define

d(Y,θ) := vech
[
h(Y,θ)+ s(Y,θ)s′(Y,θ)

]
,

where vech is the column-wise vectorization with the upper portion excluded. Hence,

d(Y,θ) = (dk(Y,θ)) is a q := p(p+1)/2 dimensional vector. Denote

Ĥ(θ̂) :=
1
n

n

∑
i=1

h(yi, θ̂), Ĵ(θ̂) :=
1
n

n

∑
i=1

s(yi, θ̂)s′(yi, θ̂),

where θ̂ is the maximum likelihood (ML) estimator of θ . The corresponding ele-

ments of Ĥ(θ̂)− Ĵ(θ̂) is given by

Dnk(θ̂) =
1
n

n

∑
i=1

dk(yi, θ̂),k = 1, · · · ,q.

White (1982) proposed the following test

IMT = nDn(θ̂)V−1
n (θ̂)Dn(θ̂), (4.2.1)

where Vn(θ̂)=
1
n ∑

n
i=1
[
d(yi, θ̂)+ ḋ(yi, θ̂)Ĥ−1(θ̂)s(yi, θ̂)

][
d(yi, θ̂)+ ḋ(yi, θ̂)Ĥ−1(θ̂)s(yi, θ̂)

]′
,

Dn(θ̂) = (Dnk(θ̂)) is a q-dimensional vector and ḋ(yi, θ̂) = ∂d(yi, θ̂)/∂θ is a q× p

matrix.

When y1, ...,yn are iid, under regularity conditions, White (1982) showed that

IMT a∼ χ2(q) under the null hypothesis. White (1987) extended the method to

63



cover dynamic models. Lancaster (1984) pointed out how the covariance matrix

of the information matrix test can be estimated without computing the third deriva-

tives of the density function analytically. Dhaene and Hoorelbeke (2004) suggested

using the bootstrap method to estimate the covariance matrix. Moreover, it is well

documented that the asymptotic χ2 distribution can be a poor approximation in fi-

nite sample so that the test statistic suffers from a serious size distortion; see Orme

(1990), Chesher and Spady (1991), Davidson and Mackinnon (1992), Horowitz

(1994). To improve the finite sample performance of IMT , Chesher and Spady

(1991) used the high-order Edgeworth expansion to obtain the better critical values

while Horowitz (1994) advocated the use of bootstrap method to get critical values.

To deal with the difficulties associated with the information matrix test, Presnell

and Boos (2004) proposed an “in-and-out” likelihood ratio test. Let θ̂ (i) be the

MLE of θ when the ith observation yi is deleted from the whole sample. In the iid

framework, from the predictive perspective, the single likelihood f (yi, θ̂ i) can be

regarded as the predictive likelihood by the other observations. Presnell and Boos

(2004) defined the “in-and-out” likelihood ratio test as:

IOS = log
∏

n
i=1 p(yi, θ̂)

∏
n
i=1 p(yi, θ̂ (i))

=
n

∑
i=1

[
log p(yi|θ̂)− log p(yi|θ̂ (i))

]
.

and showed that the asymptotic form of IOS is

IOSa = tr
[
−Ĥ−1(θ̂)Ĵ(θ̂)

]
.

Note that IOSa is the penalty term of the well-known information criterion TIC

developed by Takeuchi (1976). As in TIC, to compute IOSa, one has to calculate

the inverse of Ĥ(θ̂) which is generally difficult when the dimension of θ is high.

One does not necessarily need to base the specification test on the ML estima-

tion. Newey (1985) developed a class of specification tests which are based on a

finite set of moment conditions and the GMM estimator. Under some regularity

conditions, like the test of White, the test statistic of Newey follow asymptotically
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a chi-square distribution. It was shown that his test includes as a special case of the

Hausman (1978) test, the Hansen (1982) test, the Hausman and Taylor (1980) test.

Specification of a stationary dynamic model implicitly implies a distributional

assumption for the marginal density and that for the conditional density. Not surpris-

ingly, many specification tests check the validity of these distributional assumptions

based on the Kolmogorov-Smirnov test or the closely related family such as the

Cramer-von Mises and Andersen-Darling tests. Examples include Zheng (2000),

Andrews (1997), Corradi and Swanson (2004), Duan (2004), Ait-Sahalia (1996),

and Hong and Li (2005). For example, Ait-Sahalia (1996) compares the paramet-

ric marginal density implied by the assumed continuous time model to the marginal

density estimated nonparametrically. The nonparametric test of Hong and Li (2005)

is based on the transition density.

4.3 A New Bayesian Approach for Specification Test

4.3.1 Latent variable models

The tests reviewed in Section 2 are based on frequentist’s methods. For many econo-

metric models, such as dynamic latent variable models, frequentist’s methods are

less widely used than Bayesian methods for a number of reasons. First, to use the

ML method, the likelihood function must have a attractable form. For many mod-

els, such as the nonlinear or non-Gaussian state space models, the log-likelihood

function of the observed variables is not analytically tractable. Second, efficiency

of GMM depends on the choice of moment conditions. In practice, unfortunately, it

often lacks of guidelines as to which and how many moment conditions to use and,

hence, the GMM estimator may be inefficient than the likelihood based methods.

See, for example, Jacquier et al. (2004) for the comparison of GMM and the likeli-

hood based methods in the context of stochastic volatility models. Because of these

problems in using the frequentist methods, there has been increasing interest in the

Bayesian methods to analyze latent variable models. Today latent variable models
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has been routinely estimated by MCMC algorithms.

To introduce a latent variable model, let Y = (y1, ...,yn) denote observed vari-

ables and z = (z1, · · · ,zn) denote latent variables. The model is given by

 yt = F(zt ,ut)

zt = G(zt−1,vt)
. (4.3.1)

The first equation relating yt to zt is the observation equation where ut is the error

term whose distribution is given. The second equation determining the dynamic of

the latent variable is the state equation where vt is the error term whose distribution

is also given. When the distribution of ut or vt is non-Gaussian or the functional

form of F or G is nonlinear, the model is often referred to as the nonlinear non-

Gaussian state space model in the literature.

Let p(Y|θ) denote the likelihood function of the observed data, and p(Y,z|θ),

the complete data likelihood function. Obviously these two functions are related to

each other by

p(Y|θ ,ψ) =
∫

p(Y,z|θ ,ψ)dz. (4.3.2)

The complete data likelihood function p(Y,z|θ) can be expressed as p(Y|z,θ)p(z|θ).

Usually analytical expressions for p(Y|z,θ) and p(z|θ) are given by the specifica-

tion of the model. In particular, the observation equation gives the analytical expres-

sion for p(Y|z,θ) while the state equation gives the analytical expression p(z|θ).

However, in general the integral in (4.3.2) does not have an analytical expression.

Consequently, the statistical inferences, such as estimation and hypothesis testing,

are difficult to implement if they are based on the ML approach. For linear Gaus-

sian state space models, the observed data likelihood function, p(Y|θ ,ψ), can be

computed numerically by the Kalman filter.

Fortunately, the latent variables models can be efficiently estimated in the Bayesian

framework by using MCMC techniques. Let p(θ) be the prior distribution of θ , and

p(θ |Y) be the posterior distribution of θ . The goal of the Bayesian inference is to

obtain p(θ |Y). The data augmentation strategy of Tanner and Wong (1987), that
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augments the parameter space with the latent variable z, is a Bayesian method that

uses a MCMC algorithm to generate random samples from the joint posterior dis-

tribution p(θ ,z|y). For further details about Bayesian estimation of latent variable

models via MCMC such as algorithms, examples and references, see Geweke et al.

(2011).

4.3.2 A new Bayesian specification test

The problem concerned in this paper is to assess the goodness-of-fit of the model

given that the model is estimated by MCMC. Before proposing the test, we need to

introduce some notations. Let y1:t := (y1, ...,yn), and

s(y1:t ,θ) :=
∂ log p(y1:t |θ)

∂θ
,h(y1:t ,θ) :=

∂ 2 log p(y1:t |θ)
∂θ∂θ

′ ,

s(yt ,θ) := s(y1:t ,θ)− s(y1:t−1,θ),h(yt ,θ) := h(y1:t ,θ)−h(y1:t−1,θ),

Ĵ(θ) :=
1
n

n

∑
t=1

s(yt ,θ)s′(yt ,θ), Î(θ) :=
1
n

n

∑
t=1

h(yt ,θ),

Ln(θ) := log p(θ |Y),L(k)
n (θ) := ∂

k log p(θ |Y)/∂θ
k.

In this paper, we assume that the following mild regularity conditions are satis-

fied.

Assumption 1: Let θ̂ is the posterior mode such that L(1)
n (θ̂) = 0. For any

ε > 0, there exists an integer N1 and some δ > 0 such that for when n > N1 and

θ ∈ H(θ̂ ,δ ) = {θ : ||θ − θ̂ || ≤ δ}, L(2)
n (θ) is negative definite.

Assumption 2: The largest eigenvalue of [−L(2)
n (θ̂)]−1 tends to zero as n→ ∞.

Assumption 3: For any ε > 0, there exists an integer N2 and some δ > 0 such

that for any n > max{N1,N2} and θ ∈H(θ̂ ,δ ) = {θ : ||θ − θ̂ || ≤ δ}, L(2)
n (θ) satis-

fies the following inequality

−A(ε)≤ L(2)
n (θ)L−(2)n (θ̂)− Ip ≤ A(ε),

where Ip is a p-dimensional identity matrix, A(ε) is a positive semidefinite sym-
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metric matrix whose largest eigenvalue goes to zero as ε → 0.

Assumption 4: For any δ > 0, as n→ ∞,

∫
Ω−H(θ̂ ,δ )

p(θ |y)dθ
p−→ 0,

where Ω is the support space of θ .

Assumption 5: When the model is correctly specified, let θ 0 is the true value of

θ and let

J(θ) =
∫

Ĵ(θ)p(Y|θ 0)dY,I(θ) =
∫

Î(θ)p(Y|θ 0)dY.

It is assumed that

Ĵ(θ 0) =
1
n

n

∑
t=1

s(yt ,θ 0)s′(yt ,θ 0)
p−→
∫

Ĵ(θ 0)p(Y|θ 0)dY = J(θ 0) = O(1),

Î(θ 0) =
1
n

n

∑
t=1

h(yt ,θ 0)
p−→
∫

Î(θ 0)p(Y|θ 0)dY = I(θ 0) = O(1).

Remark 4.3.1 These mild regularity assumptions have been used to develop Bayesian

large sample theory; see, for example, Chen (1985), Kim (1994, 1998), Geweke

(2005) . Based on them, Li et al. (2012) showed that,

ϑ̄ = E [ϑ |Y] =
∫

ϑ p(ϑ |Y)dϑ = ϑ̂ +o(n−1/2),

V (ϑ̂) =−L−(2)n (ϑ̂)+o(n−1),

where

V (ϑ̃) = E
[
(ϑ − ϑ̃)(ϑ − ϑ̃)

′
|Y
]
=
∫
(ϑ − ϑ̃)(ϑ − ϑ̃)

′
p(ϑ |Y)dϑ .

The new Bayesian test statistic is defined as:

BT = n
∫
(θ − θ̄)′Ĵ(θ̄)(θ − θ̄)p(θ |Y)dθ . (4.3.3)

Theorem 4.3.1 Under Assumptions 1-5, when the likelihood information domi-
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nates the prior information and the model is correctly specified, we have

BT = tr
[
−I−1(θ 0)J(θ 0)

]
+op(1) = p+op(1).

Remark 4.3.2 If the observed data likelihood function has a close-form expression,

it is easy to compute the test statistic BT from the MCMC output.

Remark 4.3.3 In the iid case, it can be shown that,

BT = ntr
{

Ĵ(θ̄)E
[
(θ − θ̄)(θ − θ̄)′|y

]}
= ntr

{
Ĵ(θ̄)E

[
(θ − θ̄)(θ − θ̄)′|y

]}
= ntr

{[
Ĵ(θ̂)+op(1)

]
E
[
(θ − θ̄)(θ − θ̄)′|y

]}
= −tr

{[
Ĵ(θ̂)+op(1)

][
Î−1(θ̂)+op(1)

]}
= −tr

[
Ĵ(θ̂)Î−1(θ̂)

]
+ tr

[
Ĵ(θ̂)op(1)

]
+ tr

[
Î−1(θ̂)op(1)

]
+op(1)

= tr
[
−Ĵ(θ̂)Î−1(θ̂)

]
+op(1) = IOSa +op(1).

Hence, our proposed test statistic is asymptotically equivalent to the IOS test of

Presnell and Boos (2004). However, an important advantage of our test statistic

over the IOS test is that there is no need to invert Î(θ̂). Inversion of Î(θ̂) may be

difficult when the dimension of θ̂ is high.

Remark 4.3.4 Our test is not only applicable to the iid case but also to the depen-

dent case. This is another important advantage of our test statistic over the IOS

test.

Remark 4.3.5 When the model is correctly specified, −I(θ 0) = J(θ 0) and hence

BT ≈ p. However, when the model is misspecified, −I(θ 0) 6= J(θ 0), BT will be

away from p. In practice, to implement our test, we need to compare the difference

between BT and p with some threshold values to determine whether the model is

misspecified or not. In the iid case, Presnell and Boos (2004) derived the asymptotic

distribution for IOSa. Similarly. we can also try to derive the asymptotic distribu-

tion for BT. However, as argued in Presnell and Boos (2004), the finite sample
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behavior of the asymptotic approximation is typically not good. Consequently, they

suggested to use the parameter bootstrap to get the critical values for the IOS test.

Although the parameter bootstrap is feasible for the IOS test, running MCMC pos-

terior simulation is computationally demanding for our test in bootstrap. Hence,

we suggest a simple approach to getting the threshold values based on the Monte

Carlo simulation. Note that

BT = ntr
{

Ĵ(θ̄)E
[
(θ − θ̄)(θ − θ̄)′|Y

]}
= tr

{
−Ĵ(θ̄)I−1(θ 0)

}
+op(1).

If I−1(θ 0) is fixed and Ĵ(θ̄) is not difficult to compute, we can conveniently get the

threshold values based on the simulated random observations. The detailed steps

may be summarized as follows:

Step 1: Set θ 0 = θ̄ . Based on the model considered, we generate k×n random

observations and run one MCMC simulation under a noninformative prior to get

the posterior covariance matrix V (θ) which is used to approximate −I−1(θ 0).

Step 2: Set −I−1(θ 0) = nkV (θ). We generate n random observations from the

model considered and compute −tr
{

Ĵ(θ̄)I−1(θ 0)
}

. Let it denote BT1.

Step 3: Repeat Step 2 for n1 times and get a sequence of BT1, · · · ,BTn1 . The

threshold values are obtained from this sequence under desired probability levels.

4.3.3 Bayesian test for latent variable models

The requirement of an analytical expression for the observed data likelihood func-

tion is too strong for many latent variable models. In this section, we show how to

calculate the proposed test and the threshold values for latent variable models with

the aid of the EM algorithm.

The EM algorithm is a powerful tool to deal with latent variable models. Instead

of maximizing the observed data likelihood function, the EM algorithm maximizes
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the so-called Q function given by

Q(θ |θ (r)) = E
θ

(r){Lc(Y,z|θ)|y,θ (r)}, (4.3.4)

where Lc(Y,z|θ) := p(Y,z|θ) is the complete-data likelihood function. The Q-

function is the conditional expectation of Lc(Y,z|θ) with respect to the conditional

distribution p(z|Y,θ (r)) where θ
(r) is a current fit of the parameter. The EM al-

gorithm consists of two steps: the expectation (E) step and the maximization (M)

step. The E-step evaluates Q(θ |θ (r)). The M-step determines a θ
(r) that maximizes

Q(θ |θ (r)). Under some mild regularity conditions, for large enough r, {θ (r)} ob-

tained from the EM algorithm is the MLE θ̂ . For more details about the EM algo-

rithm, see Dempster et al. (1977).

Although the EM algorithm is a good approach to dealing with latent variable

models, the numerical optimization in the M-step is often unstable. Not surprisingly,

in recent years, the EM algorithm has been less popular to analyze latent variables

models compared with the MCMC techniques. However, we will show that, without

using the numerical optimization in the M-step, the theoretical properties of the

EM algorithm can facilitate the computation of the proposed test for latent variable

models.

4.3.4 Computing BT by the EM algorithm

The proposed test statistic BT involves Ĵ(θ̄) which is based on the first derivative of

the observed data log-likelihood function, i.e, s(Y,θ). After Ĵ(θ̄) is obtained, BT

can be computed from the MCMC output following the ergodic theorem. In latent

variable models, since p(Y|θ) and hence s(Y,θ) are not analytically available, we

propose to use the EM algorithm to compute s(Y,θ), as shown in the following

lemma.
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Lemma 4.3.1 For any θ and θ
∗
in Θ, it was shown in Dempster et al. (1977) that

s(Y,θ) =
∂Lo(Y,θ)

∂θ
=

∂Q(θ |θ ∗)
∂θ

|
θ=θ

∗ = E(z|Y,θ )

{
∂Lc(Y,z,θ)

∂θ

}
=

∫
∂Lc(Y,ω,θ)

∂θ
p(z|Y,θ)dz,

where Lo(Y,θ) := p(Y|θ) the observed data likelihood.

Remark 4.3.6 If the analytical form of the Q-function is available, we can replace

the first derivative of the likelihood function log p(Y|θ) with the first derivative of

the Q-function.

Remark 4.3.7 In Gaussian (perhaps nonlinear) latent variable models, the latent

variable z is assumed to follow a multivariate normal distribution and the observed

variable Y are independent conditional on z.1 Rue et al. (2004), Rue et al. (2009)

showed that the posterior distribution p(z|Y,θ) can be well approximated by a

Gaussian distribution that matches the mode and the curvature at the mode, i.e.,

p(z|Y,θ) ∝ exp

(
−1

2
z>V (θ)z+

n

∑
i=1

log p(yi|zi,θ)

)
.

Hence, the Laplace approximation for this posterior distribution is

p(z|Y,θ) ∝ exp
(
−1

2
z>(V (θ)+diag(c))z

)
,

where µ is the mode of p(z|Y,θ) and c comes from the second order term in the

Taylor expansion of ∑
T
t=1 log p(yi|zi) at the mode. When the analytical form of the

Q-function is not available, Ĵ(θ̄) may be computed based on the Laplace approxi-

mation.

Remark 4.3.8 A more general approach to evaluating the Q-function is to use the

1Many popular latent variable models in economics and finance belong to this class of models.
Examples include dynamic linear models, dynamic factor models, some stochastic volatility models.
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following formula based on the MCMC output:

s(Y,θ)≈ 1
M

M

∑
m=1

{
∂ log p(Y,z(m)|θ)

∂θ

}
,

where {z(m),m = 1,2, · · · ,M} is a random sample simulated from the posterior dis-

tribution p(z|y,θ). However, this approach is computationally more demanding.

4.4 Empirical Examples

We now illustrate the test using two real examples. The first example is the well-

known Fama-French model widely used in empirical finance. In this example, the

Q-function has an analytical expression and, hence, the test statistic is relative

straightforward to compute. The second example is the stochastic general equi-

librium (DSGE) model that has been widely used in empirical macroeconomics. In

this example, the Q-function does not have an analytical expression and, hence,

computing the test statistic is more involved.

4.4.1 Specification test in asset pricing models

In the first example, we assess the validity of an asset pricing model. It is known

in the asset pricing literature that when an asset price model is misspecified, the

specification error may lead to a serious loss in investment see Kan and Zhou (2006)

and Gospodinov et al. (2012a,b). The particular model we test is the Fama-French

asset pricing model with the error term following a multivariate t distribution. The

Fama-French model has enjoyed a great deal of attention in the empirical asset

pricing literature. Given that heavy tails are commonly found in return distributions,

following Zhou (1993) and Kan and Zhou (2006), we generalize the classical Fama-

French asset pricing model to

Rt = α +β
′F t + εt ,ε t ∼ N(0,Σ/ωt),ωt ∼ Γ

(
ν

2
,
ν

2

)
, (4.4.1)
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where Rt is the excess return of portfolio at period t with N× 1 dimension, F t a

K× 1 vector of factor portfolio excess returns, α a N× 1 vector of intercepts, β a

N×K vector of scaled covariances, εt the random error, t = 1,2, · · · ,n, Σ a diagonal

matrix. For the purpose of illustration, we restrict ν to be a known constant.

The dataset we use is from the data library of Kenneth French.2 We consider the

intersections of 5 portfolios formed on size (market equity, ME) and 5 portfolios

formed on the ratio of book equity to market equity (BE/ME), constructed at the

end of each June ranged from July 1926 to July 2011. The data comprise monthly

returns of 25 portfolios, i.e., N = 25 and the sample size n = 1021. Following Fama

and French (1993), we use Fama/French’s three factors, market excess return, SMB

(Small Minus Big), HML (High Minus Low) as the explanatory risk factors.

In the empirical study, on the basis of the analysis of Li and Yu (2012), we

simply set ν = 3. To represent the prior ignorance, we use the following vague

conjugate priors,

αi ∼ N[0,100],βi j ∼ N[0,100],Σ−1
ii ∼ Γ[0.001,0.001].

Using the Gibbs sampler, 70,000 random observations are draw from the posterior

distributions with the first 20,000 discarded. The convergence is checked using

the Raftery-Lewis diagnostic test statistic (Raftery and Lewis (1992)). Appendix

2 derives all the derivatives of the Q-function that are needed for computing BT.

Based on the 50,000 random observations, we get BT = 135.1290.

To detect whether this model is misspecified or not, we need to obtain some

threshold values. Since the sample size is large, we choose k = 1, n1 = 1000. Using

the Monte Carlo method, we can obtain the threshold interval [113.7810,126.0118]

at the 90% probability level, [112.8312,126.9880] at the 95% probability level, and

[110.1464,129.0262] at the 99% probability level. Obviously this model is mis-

specified at all three probability levels.

Further, in order to check the test effect of the statistic BT and the correspond-

2The data is download from http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
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Table 4.1: Misspecification testing results for Fama-French three factor models

ν 10 25 50 100 +∞

BT 127.6588 128.6581 129.0959 129.2091 129.5321
90% 95 100 100 100 100
95% 81 98 100 100 100
99% 8 32 59 66 78

ing threshold values, we run a simulation study with 100 replications. The same

Fama-French three factors with empirical data are used for explanatory risk factors.

This estimated values of the parameter is adopted as true value. Then, the data is

generated from the model whose specification is the same with the model consid-

ered in this paper, except different freedom ν . The numbers of rejecting the heavy

tail asset pricing model with ν = 3 under different probability level are shown in

Table 1. The first line is the averaging value of BT under 100 replications. The sec-

ond, third and fourth lines are used to show the number of correct decisions under

different probability level. From this table, we can find that when the model is mis-

specified more seriously, i.e., the true ν becomes away from three3, BT becomes

larger and away from p = 125 to provide stronger evidence against the model used.

In addition, the number of correct decisions are also increased. Hence, the statistic

BT and the threshold values under different probability levels can be used to serve

for testing the misspecification well.

4.4.2 Specification test in DSGE models

DSGE models are microfounded and optimization-based. They have become very

popular in macroeconomics over the last 30 years. Estimation and evaluation of the

DSGE models require one to solve them and then to construct a linear or nonlinear

state-space approximation. Bayesian time series methods have been widely applied

to estimate the DSGE models. For a linear Gaussian approximation, the Kalman

filter can be used to compute the likelihood function numerically; see Schorfheide

3ν =+∞ means that the t distribution is reduced as normal distribution
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(2001), Lubik and Schorfheide (2006), An and Schorfheide (2007). For a non-linear

non-Gaussian approximation, Fernández-Villaverde and Rubio-Ramı́rez (2005) and

Rubio-Ramirez (2005) used the particle filter to calculate the likelihood numeri-

cally.

In this example, following An and Schorfheide (2007), we adopt a linear Gaus-

sian approximation. We estimate and test three DSGE models after the log-linearization

ŷt = Et [ŷt+1]+ ĝt−Et [ĝt+1]−
1
τ

(
R̂t−Et [π̂t+1]−Et [ẑt+1]

)
,

π̂t = βEt [π̂t+1]+κ (ŷt− ĝt) ,

ŷt = ĉt + ĝt ,

where ŷt , π̂t , R̂t , ĉt , ĝt , ẑt are the percentage deviations from the steady state for the

output, the inflation, the interest rate, the consumption, the government expenditure,

and the technology growth rate, respectively.

Monetary policy is described by an interest rate feedback rule of the form

R̂t = ρRR̂t−1 +(1−ρR)ψ1π̂t +(1−ρR)ψ2 (ŷt− ĝt)+ εR,t .

The specification allows that the central bank reacts to the inflation and the devia-

tions of the output from the potential output. The exogenous process is as follows

ĝt = ρgĝt−1 + εg,t ,

ẑt = ρzẑt−1 + εz,t ,

where the monetary policy shock εR,t , the government spending shock εg,t , the tech-

nology shock εz,t are assumed to be serially uncorrelated. The three shocks are

independent of each other at all leads and lags and are normally distributed with

mean zeros and standard deviations σz, σg and σg. Since ŷt , π̂t , R̂t , ĉt , ĝt , ẑt are not

observed, the above six equations are all state equations.
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We define a set of measurement equations to relate the state variables to a set of

observed variables:

Y GRt = γ
(Q)+100(ŷt− ŷt−1 + ẑt) ,

INFLt = π
(A)+400π̂t ,

INTt = π
(A)+ r(A)+4γ

(Q)+400R̂t ,

where Y GRt is the quarter-to-quarter per capita GDP growth rates, INFLt and INTt

are the annualized quarter-to-quarter inflation rates and the annualized quarter-to-

quarter nominal interest rates, respectively. The parameters γ(Q), π(A) and r(A) are

γ = 1+
γ(Q)

100
,β =

1
1+ r(A)/400

,π = 1+
π(A)

400
,

where γ/β and π are the steady states of R̂t and π̂t , respectively.

The six state equations and the three measurement equations constitute a New

Keynesian DSGE model, which we denote Model 1. We set Model 2 the same as

Model 1, except that we restrict κ = 5. Model 3 is a restricted version of Model 1

where we set ψ2 = 0. In Model 3, the central bank does not respond to the output

gap.

The data are from Lubik and Schorfheide (2006). They include quarterly U.S.

series on the GDP growth rates, the inflation rates, and the nominal interest rates.

The other two series are annualized. The sample range is from the first quarter of

1983 to the last quarter of 2002. The priors are the same as in An and Schorfheide

(2007).

Following Schorfheide (2001), we estimate Model 1 by using the Random Walk

Metropolis-Hasting algorithm in the MATLAB-based DYNARE package (Adjemian

et al. (2011) ). 1,000,000 draws from the posterior are generated with the first

100,000 draws being discarded. All the quantities needed to compute BT are de-

rived in Appendix 3.

To compute the threshold values we set K = 6, n1 = 480. Using the Monte
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Carlo method, we obtain the threshold interval [9.4777,18.3866] at the 90% prob-

ability level, [8.888,19.9232] at the 95% probability level, and [7.0366,22.7872] at

the 99% probability level. Based on these threshold values, we cannot reject the

hypothesis that Model 1 is correctly specified.

Table 4.2: Misspecification testing results for DSGE models

Model 2 Model 3
BT 7.8809 8.5018
90% 99 84
95% 92 69
99% 14 5

As in the previous example, we run a simulation with 100 replications to check

the test effect and threshold values. The same empirical data is used for Model 2

and Model 3 respectively. The estimated values of the parameter are adopted as

true value. And the data is generated from Model 2 and Model 3. The numbers of

rejecting the Model 1 under different probability level are shown in Table 2. The

first line is the averaging value of BT under 100 replications. The second to four

lines show the numbers of correct decisions under different probability level. From

the results, we can see that Model 2 is misspecified more seriously than Model 3.

As pointed out by An and Schorfheide (2007), the DSGE model implies that when

actual output is closed to the target flexible price output, inflation will also be close

to its target value, hence, deviations of output from target coincide with deviations

of inflation from its target value, which makes it difficult to identify the policy rule

coefficients and imposing an incorrect value for ψ2 is not particularly costly in terms

of fit.

4.5 Conclusion

In this paper, we have proposed a new Bayesian test statistic to assess the adequacy

of specification of a model after the model is estimated by Bayesian MCMC meth-

ods. The main advantages of the new statistic can be summarized as follows: (1)
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The proposed Bayesian test approach is quite general and can be applied into a vari-

ety of models, such as, time series, panel data models, latent variable models (2) The

test statistic can be easy to compute and its threshold values are also easily obtained

using Monte Carlo simulation technique. At last, we illustrate the newly developed

approach using asset pricing models and dynamic stochastic general equilibrium

models.
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Chapter 5 Summary of Conclusions

In Chapter 2, we introduce a robust deviance information criteria (RDIC) for com-

paring models with latent variables. Although latent variable models can be conve-

niently estimated in the Bayesian framework via MCMC if the data augmentation

technique is used, we argue that data augmentation cannot be used in connection to

DIC. This is because that the justification of DIC rests on the validity of the standard

Bayesian asymptotic theory. With data augmentation, the number of parameters in-

creases with the number of observations, making the likelihood nonregular. As a

consequence, the standard Bayesian asymptotic theory does not hold. In addition,

the use of the data augmentation makes DIC is very sensitive to transformations and

distributional representations.

While in principle one can use the standard DIC (i.e. DIC1) without resorting

to the data augmentation technique, in practice this standard DIC is very difficult to

use because the observed-data likelihood is not available in closed-form for many

latent variable models and because the standard DIC1 has to numerically evaluate

the observed-data likelihood at each MCMC iteration. These two observations make

the implementation of DIC1 practically non-operational.

The problem is overcome by RDIC. RDIC is defined without augmenting the

parameter space and hence can be justified by the standard Bayesian asymptotic

theory. We then show that how the EM algorithm can facilitate the computation of

RDIC in different contexts. Since the latent variables are not counted as parameters

in our approach, RDIC is robust to nonlinear transformations of the latent variables

and distributional representations of the model specification. Asymptotic justifica-

tion, computational tractability and robustness to transformation and specification
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are the three main advantages of the proposed approach. These advantages are il-

lustrated using several popular models in economics and finance.

In Chapter 3, we propose a new Bayesian statistic to test a point null hypoth-

esis. The main advantages of the new statistic are fourfold. First, it is immune to

Bartlett’s paradox. Second, it avoids Jeffreys-Lindley’s paradox. Third, it can be

easily computed using the MCMC outputs from the posterior distribution. Fourth,

the asymptotic distribution can be derived for calibrating the threshold values. The

proposed method is illustrated using a simple linear regression model, an asset pric-

ing model and a stochastic volatility model.

In Chapter 4, we propose a new Bayesian test statistic to assess the adequacy of

specification of a model after the model is estimated by Bayesian MCMC methods.

The main advantages of the new statistic can be summarized as follows: (1) The

proposed Bayesian test approach is quite general and can be applied into a variety

of models, such as, time series, panel data models, latent variable models (2) The

test statistic can be easy to compute and its threshold values are also easily obtained

using Monte Carlo simulation technique. At last, we illustrate the newly developed

approach using asset pricing models and dynamic stochastic general equilibrium

models.
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Appendix

.1 Proofs in Chapter 2

.1.1 Proof of Lemma 2.3.1

Using the Taylor-expansion on the log-posterior probability density function, we

can show that

ln p(θ |y) = ln p(θ̂ m|y)+L(1)
n (θ̂ m)

′(θ − θ̂ m)+
1
2
(θ − θ̂ m)

′
L(2)

n (θ̃)(θ − θ̂ m)

= ln p(θ̂ m|y)+
1
2
(θ − θ̂ m)

′
L(2)

n (θ̃)(θ − θ̂ m),

where θ̃ lies on the segment between θ and θ̂ m. It follows that

p(θ |y) = p(θ̂ m|y)exp
[

1
2
(θ − θ̂ m)

′
L(2)

n (θ̃)(θ − θ̂ m)

]
.

Let ω =
√

n(θ − θ̂ m), J(θ) =−1
nL(2)

n (θ), c∗n =
∫

exp[−1
2ω

′
J(θ̃)ω]dω ,

cn =
∫

exp[−1
2ω

′
J(θ̂ m)ω]dω . It can be shown that

p(ω|y)∝ exp
[

1
2
(θ − θ̂ m)

′
L(2)

n (θ̃)(θ − θ̂ m)

]
= exp

{
−1

2
ω
′
J(θ̃)ω

}
.
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Then, we have

Pn =
∫ ∣∣∣∣p(ω|y)− 1

cn
exp
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2
ω
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By Assumption 3, for any ε > 0, there exists some δ > 0 such that when Ω = {ω :

||ω||<
√

nδ} we have θ ∈H(θ̂ m,δ ) and −A(ε)≤ [J(θ̃)J−1(θ̂ m)− IP]≤ A(ε). By

Hölder inequality, we have
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where

D1 = lim
n→∞

∫
Ω

exp
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2
ω
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dω,
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It can be shown that D1 = (2π)P/2|J(θ̂ m)|−1/2. Following the proof of the posterior

normality in Lemma 2.1 and Theorem 2.1 of Chen (1985), we have D−2 ≤ D2 ≤

D+
2 ,D

−
3 ≤ D2 ≤ D+

3 and

D+
2 =

∣∣J(θ̂ m)
∣∣1/2 |IP−A(ε)|−1/2
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exp
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where sn = δ (1−e∗(ε))1/2/σ∗n and tn = δ (1+e(ε))1/2/σn, σ2
n and σ∗2n is the largest

and smallest eigenvalue of {nJ(θ̂ m)}−1, e(ε) and e∗(ε) is the largest and smallest

eigenvalue of A(ε). Under the regularity conditions, when n→ ∞, sn → ∞ and

tn→ ∞, if ε → 0, we get

lim
n→∞
|IP±A(ε)|= 1, lim

n→∞
|IP±2A(ε)|= 1,

lim
n→∞

∫
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exp
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2
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dZ = (2π)P/2,

lim
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∫
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exp
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−1

2
Z′Z
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dZ = (2π)P/2.

Then, we can show that D1 = D2 = D3 = (2π)P/2|J(θ̂ m)|−1/2 which implies

that limn→∞ Qn = 0 and that limn→∞ Pn = 0.
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For i, j = 1,2, · · · ,P, it can be shown that

∫
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ω
′
J(θ̂ m)ω

]
dω,

V D2 = lim
n→∞

∫
Ω

ω
2
i ω

2
j exp

{
−1

2
ω
′ [

J(θ̃)J−1(θ̂ m)− IP
]

J(θ̂ m)ω

}
exp
[
−1

2
ω
′
J(θ̂ m)ω

]
dω,

= lim
n→∞

∫
Ω

ω
2
i ω

2
j exp

[
−1

2
ω
′
J(θ̃)ω

]
dω,

V D3 = lim
n→∞

∫
Ω

ω
2
i ω

2
j exp

{
−ω

′ [
J(θ̃)J−1(θ̂ m)− IP

]
J(θ̂ m)ω

}
exp
[
−1

2
ω
′
J(θ̂ m)ω

]
dω.
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For the same argument, we can prove that ED1 = ED2 = ED3 and V D1 = V D2 =

V D3. Hence, we have

∫
ωi

{
p(ω|y)− 1

cn
exp
[
−1

2
ω
′
J(θ̂ m)ω

]}
dω

≤
∫
|ωi|

∣∣∣∣p(ω|y)− 1
cn

exp
[
−1

2
ω
′
J(θ̂ m)ω

]∣∣∣∣dω → 0,∫
ωiω j

{
p(ω|y)− 1

cn
exp
[
−1

2
ω
′
J(θ̂ m)ω

]}
dω

≤
∫
|ωiω j|

∣∣∣∣p(ω|y)− 1
cn

exp
[
−1

2
ω
′
J(θ̂ m)ω

]∣∣∣∣dω → 0.

Note that

∫
ωi

{
1
cn

exp
[
−1

2
ω
′
J(θ̂ m)ω

]}
dω = 0,∫

ωiω j

{
1
cn

exp
[
−1

2
ω
′
J(θ̂ m)ω

]}
dω = J−1

i j (θ̂ m),

where J−1
i j (θ̂ m) is the (i, j)th element of J−1(θ̂ m). Hence, we have E(ω|y) = 0+

o(1) and E(ωω
′|y) = J−1(θ̂ m)+o(1) which imply that

E[(θ − θ̂ m)|y] = o(n−1/2),E[(θ − θ̂ m)(θ − θ̂ m)
′
|y] =−L−(2)n (θ̂ m)+o(n−1).

.1.2 Proof of Theorem 2.3.1

Under Assumption 6, when n→ ∞, we have

∂ ln p(y|θ)
∂θ

= L(1)
n (θ),−I(θ) =

∂ 2 ln p(y|θ)
∂θθ

′ = L(2)
n (θ),

and the ML estimator θ̂ is asymptotically equivalent to the posterior mode θ̂ m.

According to Lemma 2.3.1, we can show that θ̄ = E(θ |y) = θ̂ m+o(n−1/2). Hence,

there exists an integer N, when n > N, θ̄ ∈H(θ̂ ,δ ). We can then find some δ1 with

0 < δ1 < ||θ̂ − θ̄ || so that H(θ̄ ,δ1)⊂ H(θ̂ ,δ ).
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Applying the Taylor expansion to the log-likelihood function, we get

ln p(y|θ) = ln p(y|θ̄)+L(1)
n (θ̄)(θ − θ̄)+

1
2
(θ − θ̄)

′
L(2)

n (θ̃)(θ − θ̄),

where θ̃ is some θ lying on the segment between θ and θ̄ . When n→∞, H(θ̄ ,δ1)⊂

H(θ̂ ,δ ) and θ̃ ∈ H(θ̄ ,δ1)⊂ H(θ̂ ,δ ). Hence, for any ε > 0, there exists an integer

N such that for any n > N, L(2)
n (θ̃) satisfies

[IP−A(ε)] [−L(2)
n (θ̂)]≤−L(2)

n (θ̃)=
[
L(2)

n (θ̃)L−(2)n (θ̂)
][
−L(2)

n (θ̂)
]
≤ [IP +A(ε)]

[
−L(2)

n (θ̂)
]
.

That is,

[IP−A(ε)] I(θ̂)≤ I(θ̃) =
[
I(θ̃)I−1(θ̂)

]
I(θ̂)≤ [IP +A(ε)] I(θ̂).

Hence, under the regularity conditions, when n→ ∞, we have

PD =−2
∫

Θ

[
ln p(y|θ)− ln p(y|θ̄)

]
p(θ |y)dθ

= −2
∫

Θ

[
L(1)

n (θ̄)(θ − θ̄)+
1
2
(θ − θ̄)

′
L(2)

n (θ̃)(θ − θ̄)

]
p(θ |y)dθ

=
∫

Θ

−(θ − θ̄)
′
L(2)

n (θ̃)(θ − θ̄)p(θ |y)dθ

=
∫

H(θ̂ ,δ )
(θ − θ̄)

′
I(θ̃)(θ − θ̄)p(θ |y)dθ

=
∫

H(θ̂ ,δ )
(θ − θ̄)

′
I(θ̃)I−1(θ̂)I(θ̂)(θ − θ̄)p(θ |y)dθ ,

which is bounded above by

P+
D =

∫
H(θ̂ ,δ )

(θ− θ̄)
′
[IP +A(ε)] I(θ̂)(θ− θ̄)p(θ |y)dθ = tr

{
[IP +A(ε)] I(θ̂)V (θ̄)

}
,

and below by

P−D =
∫

H(θ̂ ,δ )
(θ− θ̄)

′
[IP−A(ε)] I(θ̂)(θ− θ̄)p(θ |y)dθ = tr

{
[IP−A(ε)] I(θ̂)V (θ̄)

}
.
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Under the regularity conditions, for ε→ 0, we have limn→∞ PD = tr{−L(2)
n (θ̂)V (θ̄)}

or PD = tr{I(θ̂)V (θ̄)}+o(1).

Conditional on the observed data y, note that L(2)
n (θ̄)/n = O(1), L(2)

n (θ̂)/n =

O(1), we get L(2)
n (θ̄)/n = L(2)

n (θ̂)/n+ o(1). According to Lemma 2.3.1, we have

nV (θ̂)= n[V (θ̄)+(θ̂− θ̄)(θ̂− θ̄)
′
] = nV (θ̄)+no(n−1)= nV (θ̄)+o(1) and nV (θ̂)=

[−L(2)
n (θ̂)/n]−1 +o(1) = O(1) so that nV (θ̄) = O(1). Thus, we have

PD = tr
{

I(θ̂)V (θ̄)
}
+o(1) = tr

{
[I(θ̂)/n][nV (θ̄)]

}
+o(1)

= tr
{
[I(θ̄)/n][nV (θ̄)]

}
+o(1)O(1)+o(1)

= tr
{
[I(θ̄)/n][nV (θ̄)]

}
+o(1) = tr

{
I(θ̄)V (θ̄)

}
+o(1) = P∗D +o(1).

Similarly, DIC1 =RDIC+o(1) and the theorem is proved.

.1.3 Proof of Theorem 2.3.2

When n→ ∞, there exists δ1 such that H(θ̄ ,δ1) ⊂ H(θ̂ ,δ ). Under Assumption 7,

we have

p(yrep|θ)= p(yrep|θ̄)+
∂ p(yrep|θ̄)

∂θ
(θ− θ̄)+

1
2
(θ− θ̄)

′ ∂ 2 p(yrep|θ̄)
∂θ∂θ

′ (θ− θ̄)+op(1),

and

p(yrep|y) =
∫

p(yrep|θ)p(θ |y)dθ

= p(yrep|θ̄)+
∂ p(yrep|θ̄)

∂θ

∫
(θ − θ̄)dθ ++

1
2

∫ [
(θ − θ̄)

′ ∂ 2 p(yrep|θ̄)
∂θ∂θ

′ (θ − θ̄)

]
dθ +op(1)

= p(yrep|θ̄)+
1
2

∫ [
(θ − θ̄)

′ ∂ 2 p(yrep|θ̄)
∂θ∂θ

′ (θ − θ̄)

]
dθ +op(1)

= p(yrep|θ̄)
{

1+
1
2

∫ [
(θ − θ̄)

′
[

1
p(yrep|θ̄)

∂ 2 p(yrep|θ̄)
∂θ∂θ

′

]
(θ − θ̄)

]
dθ

}
+op(1)

= p(yrep|θ̄)
{

1+
1
2

[
1

p(yrep|θ̄)
∂ 2 p(yrep|θ̄)

∂θ∂θ
′

]
V (θ̄)

}
+op(1).
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Noting that
∫

p(yrep|θ)dyrep = 1, we get

∫ [
∂ 2 log p(yrep|θ)

∂θ∂θ
′ +

∂ log p(yrep|θ)
∂θ

∂ log p(yrep|θ)
∂θ
′

]
p(yrep|θ)dyrep = 0.

When θ is set at the true value θ 0, using the central limit theorem, we get

1
n

[
∂ 2 log p(yrep|θ 0)

∂θ∂θ
′ +

∂ log p(yrep|θ 0)

∂θ

∂ log p(yrep|θ 0)

∂θ
′

]
= op(1).

Using Lemma 3.1 and the asymptotic theory for maximum likelihood, we have

θ̄ = θ̂ +op(n−1/2) and θ̂ = θ 0 +Op(n−1/2). Hence,

1
n

[
∂ 2 log p(yrep|θ 0)

∂θ∂θ
′ +

∂ log p(yrep|θ 0)

∂θ

∂ log p(yrep|θ 0)

∂θ
′

]
=

1
n

[
∂ 2 log p(yrep|θ̄)

∂θ∂θ
′ +

∂ log p(yrep|θ̄)
∂θ

∂ log p(yrep|θ̄)
∂θ
′

]
+op(1)

=
1
n

1
p(yrep|θ̄)

∂ 2 p(yrep|θ̄)
∂θ∂θ

′ +op(1).

Based on Lemma 3.1, we get V (θ̄) = Op(n−1) and

[
1

p(yrep|θ̄)
∂ 2 p(yrep|θ̄)

∂θ∂θ
′

]
V (θ̄) = op(n)Op(n−1) = op(1).

Therefore, we have

−2log p(yrep|y) =−2log p(yrep|θ̄)−2log
{

1+
1
2

[
1

p(yrep|θ̄)
∂ 2 p(yrep|θ̄)

∂θ∂θ
′

]
V (θ̄)

}
+op(1)

= −2log p(yrep|θ̄)−
{[

1
p(yrep|θ̄)

∂ 2 p(yrep|θ̄)
∂θ∂θ

′

]
V (θ̄)

}
+op(1)

= −2log p(yrep|θ̄)+op(1).

Using the Taylor expansion, we have

log p(yrep|θ̄)= log p(yrep|θ̂)+
∂ log p(yrep|θ̂)

∂θ
(θ̄− θ̂)+

1
2
(θ̄− θ̂)′

∂ 2 log p(yrep|θ̃)
∂θ∂θ

′ (θ̄− θ̂)
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where θ̃1 lies on the segment between θ̄ and θ̂ . Noting that θ̄ = θ̂ +op(n−1/2) and

θ̂ = θ 0 +Op(n−1/2), we get θ̃1 = θ 0 +Op(n−1/2) and

1
n

[
∂ 2 log p(yrep|θ̃1)

∂θ∂θ
′

]
=

1
n

[
∂ 2 log p(yrep|θ 0)

∂θ∂θ
′

]
+op(1)

=
∫ 1

n

[
∂ 2 log p(yrep|θ 0)

∂θ∂θ
′

]
p(yrep)dyrep +op(1)

=
∫ 1

n

[
∂ 2 log p(y|θ 0)

∂θ∂θ
′

]
p(y)dy+op(1)

=
1
n

[
∂ 2 log p(y|θ̂)

∂θ∂θ
′

]
+op(1) = Op(1).

Furthermore, we get

∂ log p(yrep|θ̂)
∂θ

=
∂ log p(yrep|θ 0)

∂θ
+

∂ 2 log p(yrep|θ̃ 2)

∂θ∂θ
′ (θ̄ −θ 0),

where θ̃2 lies on the segment between θ̂ and θ 0. It is also noted that θ̃2 = θ 0 +

Op(n−1/2) and, hence,

∂ log p(yrep|θ̂)
∂θ

=
∂ log p(yrep|θ 0)

∂θ
+Op(n)Op(n−1/2)=

∂ log p(yrep|θ 0)

∂θ
+Op(n1/2)

Furthermore,

Eyrep

[
∂ log p(yrep|θ 0)

∂θ

]
=
∫

∂ log p(yrep|θ 0)

∂θ
p(yrep)dyrep

=
∫

∂ log p(yrep|θ 0)

∂θ
p(yrep|θ 0)dyrep

=
∫

∂ p(yrep|θ 0)

∂θ
dyrep =

∂
∫

p(yrep|θ 0)dyrep

∂θ
= 0
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Based on the derivation of AIC shown in Burnham and Anderson (2002) and given

the observable data y, we have

EyEyrep [L (yrep,y)] = EyEyrep [−2log p(yrep|y)]

= EyEyrep

[
−2log p(yrep|θ̄)

]
+o(1)

= −2EyEyrep

[
log p(yrep|θ̂)+

∂ log p(yrep|θ̄)
∂θ

(θ̄ − θ̂)+
1
2
(θ̄ − θ̂)′

∂ 2 log p(yrep|θ̃)
∂θ∂θ

′ (θ̄ − θ̂)

]
+o(1)

= −2EyEyrep

[
log p(yrep|θ̂)+

∂ log p(yrep|θ̄)
∂θ

(θ̄ − θ̂)+o(n−1/2)O(n)o(n−1/2)

]
+o(1)

= −2EyEyrep

[
log p(yrep|θ̂)+

∂ log p(yrep|θ̄)
∂θ

(θ̄ − θ̂)

]
+o(1)

= −2EyEyrep

[
log p(yrep|θ̂)+

∂ log p(yrep|θ 0)

∂θ
(θ̄ − θ̂)+O(n1/2)o(n−1/2)

]
+o(1)

= −2EyEyrep

[
log p(yrep|θ̂)+

∂ log p(yrep|θ 0)

∂θ
(θ̄ − θ̂)

]
+o(1)

= −2EyEyrep

[
log p(yrep|θ̂)

]
−2EyEyrep

[
∂ log p(yrep|θ 0)

∂θ
(θ̄ − θ̂)

]
+o(1).

= −2EyEyrep

[
log p(yrep|θ̂)

]
−2
[

Eyrep

∂ log p(yrep|θ 0)

∂θ

][
Ey(θ̄ − θ̂)

]
+o(1)

= −2EyEyrep

[
log p(yrep|θ̂)

]
+0+o(1)

= Ey(AIC)+o(1) == Ey(AIC)+o(1) = Ey(RDIC)+o(1)

.1.4 The derivation of RDIC for the asset pricing models

It has been noted in Kan and Zhou (2003) that under the multivariate t specification,

a direct numerical optimization of the observed data likelihood function is very

difficult. By using normal-gamma scale-mixture distribution to replace the t dis-

tribution, the powerful EM algorithm can be used to obtain the Q function. Since

Models 1-5 are nested by Model 6, we only need to derive the first and second

derivatives for Model 6.

Let R = {R1,R2, · · · ,Rn}, F = {F1,F2, · · · ,Fn}, ω = {ω1,ω2, · · · ,ωn}, θ =

(α,β ,Σ). The density function of the multivariate t is given by

f (ε t) =
Γ(ν+N

2 )

(πν)
2
N Γ(ν

2 )|Σ|
1
2

{
1+

ε
′

tΣ
−1

ε t

ν

}− ν+N
2

.
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Hence, the observed data log-likelihood function, Lo(R|θ), is:

Lo(R|θ) =C(ν)− n
2

ln |Σ|− ν +N
2

n

∑
t=1

log [ν +ϕ (Rt ,F t ,θ)] , (.1.1)

where

C(ν) =−nN
2

log(πν)+n
[

lnΓ

(
ν +N

2

)
− lnΓ

(
ν

2

)]
+

n(ν +N) lnν

2
,

ϕ (Rt ,F t ,θ) = (Rt−α−βF t)
′
Σ
−1 (Rt−α−βF t) .

Based on the normal-gamma mixture representation for the multivariate t distri-

bution, the complete log-likelihood, Lc(R,ω|θ), can be expressed as

−1
2

nN ln(2π)+
N
2

n

∑
t=1

lnωt−
n
2

ln |Σ|− 1
2

n

∑
t=1

ωtϕ (Rt ,F t ,θ)

−n lnΓ

(
ν

2

)
+

nν

2
ln
(

ν

2

)
+

ν

2

n

∑
t=1

(lnωt−ωt)−
n

∑
t=1

lnωt .

Thus, the posterior expectation of ωt is

ωt |y∼ Γ

[
ν +N

2
,
ν +ϕ (Rt ,Ftθ)

2

]
.

According to McLachlan and Krishnan (2008), it can be shown that

E (ω t |θ ,Rt) =
ν +N

ν +ϕ (Rt ,F t ,θ)
,

E (lnω t |θ ,Rt) = lnE (ω t |θ ,Rt)+ψ

(
ν +N

2

)
− ln

(
ν +N

2

)
,

where ψ(x) is the Digamma function, ∂Γ(x)/∂x/Γ(x). Hence, we get

Q(θ |θ ∗) =
∫

Lc(R,ω|θ)p(ω|R,θ ∗)dω

= −1
2

nK ln(2π)+
N
2

n

∑
t=1

E(lnωt |Rt ,θ
∗)− n

2
ln |Σ|− 1

2

n

∑
t=1

E(ωt |Rt ,θ
∗)ϕ(Rt ,F t ,θ)

−n lnΓ

(
ν

2

)
+

nν

2
ln
(

ν

2

)
+

ν

2

n

∑
t=1

E(lnωt−ωt |Rt ,θ
∗)−

n

∑
t=1

E(lnωt |Rt ,θ
∗).
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For the asset price models considered in this paper, we obtain the second deriva-

tives:

∂Q(θ |θ ∗)
∂θ∂θ

′ =
∂ 2(−n

2 ln |Σ|)

∂θ∂θ
′ − 1

2

n

∑
t=1

E(ωt |Rt ,θ
∗)

∂ 2ϕ(Rt ,F t ,θ)

∂θ∂θ
′

∂Q(θ |θ ∗)
∂θ∂θ

∗′
=−1

2

n

∑
t=1

∂ϕ(Rt ,F t ,θ)

∂θ

∂E(ωt |Rt ,θ
∗)

∂θ ∗
′

=
1
2

n

∑
t=1

1
ν +ϕ(Rt ,F t ,θ

∗)
E(ωt |Rt ,θ

∗)
∂ϕ(Rt ,F t ,θ)

∂θ

∂ϕ(Rt ,F t ,θ
∗)

∂θ ∗
′

For i, j = 1,2, · · · ,N, letting φi = σ
−1
ii , we get

∂ 2(−n
2 ln |Σ|)

∂α∂α
′ = 0,

∂ 2(−n
2 ln |Σ|)

∂α∂β
′ = 0,

∂ 2(−n
2 ln |Σ|)

∂α∂φi
= 0,

∂ 2(−n
2 ln |Σ|)

∂β∂β
′ = 0,

∂ 2(−n
2 ln |Σ|)

∂β∂φi
= 0,

∂ 2(−n
2 ln |Σ|)

∂φ 2
i

=− n
2φ 2

i
,

∂ϕ(Rt ,F t ,θ)

∂αi
=−2φi(Rit−αi−β

′

iFt),

∂ϕ(Rt ,F t ,θ)

∂β i
=−2φi(Rit−αi−β

′

iFt)Ft ,

∂ϕ(Rt ,F t ,θ)

∂φi
= (Rit−αi−β

′

iFt)
2,

∂ 2ϕ(Rt ,F t ,θ)

∂α2
i

= 2φi,
∂ϕ2(Rt ,F t ,θ)

∂αi∂α j
= 0, i 6= j,

∂ 2ϕ(Rt ,F t ,θ)

∂αi∂β i
= 2φiF t ,

∂ϕ2(Rt ,F t ,θ)

∂αi∂β j
= 0, i 6= j,

∂ 2ϕ(Rt ,F t ,θ)

∂αi∂φi
=−2(Rit−αi−β

′

iF t),
∂ϕ2(Rt ,F t ,θ)

∂αi∂φ j
= 0, i 6= j,

∂ 2ϕ(Rt ,F t ,θ)

∂β i∂β
′

i

= 2φiF tF
′

t ,
∂ϕ2(Rt ,F t ,θ)

∂β i∂β j
= 0, i 6= j,

∂ 2ϕ(Rt ,F t ,θ)

∂β i∂φi
=−2(Rit−αi−β

′

iF t)F t ,
∂ 2ϕ(Rt ,F t ,θ)

∂β i∂φ j
= 0, i 6= j,

∂ 2ϕ(Rt ,F t ,θ)

∂φ 2
i

= 0,
∂ϕ2(Rt ,F t ,θ)

∂φi∂φ j
= 0, i 6= j.
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.1.5 The derivation of RDIC for the dynamic factor models

The complete-data log-likelihood function is:

ln f (Y,F |L,Σ,Φ,Q) = −(K +N)T −K
2

ln2π− T
2

ln |Σ|− 1
2

tr
[
Σ
−1 (Y −FL′

)′ (
Y −FL′

)]
−T −1

2
ln |Q|− 1

2
tr
[
Q−1 (F+1−F−1Φ

′)′ (F+1−F−1Φ
′)] ,

where Y = [Y ′1,Y
′
2, ...,Y

′
T ]
′, F = [F ′1,F

′
2, ...,F

′
T ]
′, F+1 =

[
F ′2,F

′
3, ...,F

′
T
]′, F−1 =

[
F ′1,F

′
2, ...,F

′
T−1
]′.

Denote this function by ϕ(L,Σ,Φ,Q), In this appendix, we derive the first and sec-

ond derivative of the complete-data log-likelihood function. The matrix differentia-

tion used here follows the rules discussed in Magnus and Neudecker (1999).

The first order derivatives of ϕ(L,Σ,Φ,Q):

Whenever there is no confusion, we denote ϕ(L,Σ,Φ,Q) simply by ϕ . The

differential of ϕ(L,Σ,Φ,Q) with respect to L is

dL(ϕ) = d
(
−1

2
tr
[
Σ
−1 (Y −FL′

)′ (
Y −FL′

)])
= −1

2
tr
{
−Σ
−1 (dL)F

′ (
Y −FL′

)
+Σ

−1 (Y −FL′
)′ (
−F (dL)′

)}
=

1
2

tr
{

Σ
−1dLF

′ (
Y −FL′

)
+Σ

−1 (Y −FL′
)′

F (dL)′
}

=
1
2

tr
{

F
′ (

Y −FL′
)

Σ
−1dL+dLF ′

(
Y −FL′

)(
Σ
−1)′}

=
1
2

tr
{

F
′ (

Y −FL′
)((

Σ
−1)′+Σ

−1
)

dL
}

= tr(c̃dL) ,

where

c̃ =
1
2

F
′ (

Y −FL′
)((

Σ
−1)′+Σ

−1
)
.

Taking vec both sides, we get

d
(

vec
(
−1

2
tr
[
Σ
−1(Y −FL′)′(Y −FL)

]))
= d(vec(ϕ)) =

(
vec(c̃)′

)′ d(vec(L)).
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The first derivative of ϕ (L,Σ,Φ,Q) is

DL (ϕ) =

(
vec

([
1
2

F
′ (

Y −FL′
)((

Σ
−1)′+Σ

−1
)]′))′

.

Similarly, we have

DΣ (ϕ) =

(
vec
(
−T

2
Σ
−1 +

1
2

Σ
−1 (Y −FL′

)′ (
Y −FL′

)
Σ
−1
)′)′

,

DΦ (ϕ) =

(
vec

([
1
2

F ′−1
(
F+1−F−1Φ

′)((Q−1)′+Q−1
)]′))′

,

DQ (ϕ) =

(
vec
(
−T −1

2
Q−1 +

1
2

Q−1 (F+1−F−1Φ
′)′ (F+1−F−1Φ

′)Q−1
)′)′

.

The second order derivatives of ϕ (L,Σ,Φ,Q):

The first order derivative of c̃ is

dc̃ = d
(

1
2

F
′ (

Y −FL′
)((

Σ
−1)′+Σ

−1
))

=−1
2

F
′
F (dL)

′ ((
Σ
−1)′+Σ

−1
)
.

And the second order derivative is

d2
Lϕ = tr(dc̃∗dL)

= tr
(
−1

2
F
′
F (dL)

′ ((
Σ
−1)′+Σ

−1
)

dL
)
.

Then, we have,

DL,L (ϕ) =−
1
2

(
F
′
F⊗

((
Σ
−1)′+Σ

−1
))

,

H = G(T ) = T
′
, T = S (Σ) =

1
2

F
′ (

Y −FL′
)((

Σ
−1)′+Σ

−1
)
,

D(G(T )) = KKN ,

D(S (Σ)) = IN⊗
(

F
′ (

Y −FL′
))
·
(
−1

2
(KNN + INN)

)
·
((

Σ
−1)′⊗Σ

−1
)
,

DH (Σ) = (DG(T ))(DS (Σ)) ,
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where KKN is the commutation matrix for a matrix with K rows and N columns.

Thus, we have

DL,Σ (ϕ) =
∂DL (ϕ)

(∂vecΣ)
′ = (DG(T ))(DS (Σ))

= KKN · IN⊗
(

F
′ (

Y −FL′
))
·
(
−1

2
(KNN + INN)

)
·
((

Σ
−1)′⊗Σ

−1
)
,

DL,Φ (ϕ) = 0,

DL,Q (ϕ) = 0,

DΣ,Σ (ϕ) = KNN ·


T
2 ·

1
2

((
Σ−1)′⊗Σ−1 +

(
Σ−1)′⊗Σ−1

)
−1

2


(

Σ−1 (Y −FL′)
′
(Y −FL′)Σ−1

)′
⊗Σ−1

+
(
Σ−1)′⊗(Σ−1 (Y −FL′)

′
(Y −FL′)Σ−1

)

 ,

DΣ,Φ (ϕ) = 0,

DΣ,Q (ϕ) = 0,

DΦ,Q (ϕ)

= KKK ·
(
IK⊗F ′−1

(
F+1−F−1Φ

′)) ·(−1
2
(KKK + IKK)

)
·
((

Q−1)′⊗Q−1
)
,

DΦ,Φ (ϕ) =−1
2

(
F
′
−1F−1⊗

((
Q−1)′+Q−1

))
,

DQ,Q (ϕ)=KKK ·


T−1

2 ·
1
2

((
Q−1)′⊗Q−1 +

(
Q−1)′⊗Q−1

)
−1

2


(

Q−1 (F+1−F−1Φ′)
′
(F+1−F−1Φ′)Q−1

)′
⊗Q−1

+
(
Q−1)′⊗(Σ−1 (F+1−F−1Φ′)

′
(F+1−F−1Φ′)Q−1

)

 .

The special structure of parameter matrix:

Let L,Σ,Φ,Q have some special structures. In particular, let

L∗ = vec
(
L
)
,
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where L is the last (N−K)×K block of L, and

Σ
∗ = diag(Σ) , Φ

∗ = vec(Φ) , Q∗ = vech(Q) .

The first order derivatives are as follows:

DL∗ (ϕ) = DL (ϕ) ·DL∗ (L(L∗)) = DL (ϕ) · İL∗ ,

DΣ∗ (ϕ) = DΣ (ϕ) ·DΣ∗ (Σ(Σ∗)) = DΣ (ϕ) · İΣ∗ ,

DΦ∗ (ϕ) = DΦ (ϕ) · İΦ∗,

DQ∗ (ϕ) = DQ (ϕ) · İQ∗.

The second order derivatives are as follows:

DL∗,L∗ (ϕ) = DL∗ (DL∗ (ϕ)) = DL∗
(
DL (ϕ) · İL∗

)
=

(
İ
′
L∗⊗ I1

)
·DL∗ (DL (ϕ))

=
(

İ
′
L∗⊗ I1

)
·DL,L (ϕ) · İL∗,

DL∗,Σ∗ (ϕ) = DΣ∗ (DL∗ (ϕ)) = DΣ∗
(
DL (ϕ) · İL∗

)
=

(
İ
′
L∗⊗ I1

)
·DΣ∗ (DL (ϕ))

=
(

İ
′
L∗⊗ I1

)
·DΣ (DL (ϕ)) ·DΣ∗ (Σ(Σ∗))

= İ
′
L∗ ·DL,Σ (ϕ) · İΣ∗,

DL∗,Φ∗ (ϕ) = 0,

DL∗,Q∗ (ϕ) = 0,

DΣ∗,Σ∗ (ϕ) = DΣ∗ (DΣ∗ (ϕ)) = DΣ∗
(
DΣ (ϕ) · İΣ∗

)
= İ

′
Σ∗ ⊗ I1 ·DΣ∗ (DΣ (ϕ))

= İ
′
Σ∗ ·DΣ (DΣ (ϕ)) · İΣ∗ ,

DΣ∗,Φ∗ (ϕ) = 0,

DΣ∗,Q∗ (ϕ) = 0.
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DΦ∗,Φ∗ (ϕ) = İ
′
Φ∗ · (DΦ,Φ (ϕ)) · İΦ∗,

DΦ∗,Q∗ (ϕ) = İ
′
Φ∗ ·
(
DΦ,Q (ϕ)

)
· İQ∗,

DQ∗,Q∗ (ϕ) = İ
′
Q∗ ·DQ,Q (ϕ) · İQ∗,

where DL∗ (L(L∗)) = İL∗ , DΣ∗ (Σ(Σ∗)) = İΣ∗.

For İL∗ which is a block diagonal matrix, we have

İL∗ = diag(P1,P2, ...,PK) ,

where

Pi =

 0K×(N−K)

IN−K

 .
And for İΣ∗ , which is an N2×N matrix whose nth column has 1 in the ((n−1)×N +n)th

row and other elements are all zeros. For İΦ∗ , we have

İΦ∗ = IK∗K.

For İQ∗ , we have

İQ∗ = diag(R1,R2, ...Rk, ...,RK) .

where

Rk =

 0(k−1)×(K−k+1)

IK−k+1


K×(K−k+1)

,

since Q is a symmetric matrix.

The first order derivative matrix of the complete-data likelihood with respect to

L∗,Σ∗,Φ∗,Q∗ is:

vec
([

DL∗ (ϕ) DΣ∗ (ϕ) DΦ∗ (ϕ) DQ∗ (ϕ)

])
.

The second order derivative matrix of the complete-data likelihood with respect to
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L∗,Σ∗,Φ∗,Q∗ should be:



DL∗,L∗ (ϕ) DL∗,Σ∗ (ϕ)
0 0

DΣ∗,L∗ (ϕ) DΣ∗,Σ∗ (ϕ)
0 0

0 0
DΦ∗,Φ∗ (ϕ) DΦ∗,Q∗ (ϕ)

0 0
DQ∗,Φ∗ (ϕ) DQ∗,Q∗ (ϕ)



.

.1.6 The derivation of RDIC for the stochastic volatility model

The derivatives of the complete-data log-likelihood for M1

The complete-data log-likelihood function

ln p(y,h|θ) = −n ln2π +
n
2

lnν− 1
2

n

∑
t=1

ht−
1
2

n

∑
t=1

(yt−α)2

exp(ht)

−1
2

ν

[
n

∑
t=1

(ht−µ−φ (ht−1−µ))2

]
,

where y =(y1,y2, ...yn)
′, h =(h1,h2, ...hn)

′, ν = 1/τ2.

The first order derivatives

∂ ln p(y,h|θ)
∂α

=
n

∑
t=1

(yt−α)

exp(ht)
,

∂ ln p(y,h|θ)
∂ µ

= −1
2

ν

[
−2

n

∑
t=1

(ht−µ−φ (ht−1−µ))(1−φ)

]

= ν

[
(1−φ)

n

∑
t=1

(ht−µ−φ (ht−1−µ))

]
,
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∂ ln p(y,h|θ)
∂φ

= −1
2

ν

[
−2

n

∑
t=1

(ht−µ−φ (ht−1−µ))(ht−1−µ)

]

= ν

[
n

∑
t=1

(ht−µ−φ (ht−1−µ))(ht−1−µ)

]
,

∂ ln p(y,h|θ)
∂ν

=
n
2

1
ν
− 1

2

[
n

∑
t=1

(ht−µ−φ (ht−1−µ))2

]
.

The second order derivatives

∂ 2 ln p(y,h|θ)
∂α∂α

=−
n

∑
t=1

1
exp(ht)

=−
n

∑
t=1

exp(−ht) ,

∂ 2 ln p(y,h|θ)
∂α∂ µ

=
∂ 2 ln p(y,h|θ)

∂α∂φ
=

∂ 2 ln p(y,h|θ)
∂α∂ν

= 0,

∂ 2 ln p(y,h|θ)
∂ µ∂ µ

= ν

[
−
(
1−φ

2)− (1−φ)
n

∑
t=1

(1−φ)

]
= −ν

[
n(1−φ)2

]
,

∂ 2 ln p(y,h|θ)
∂ µ∂φ

= ν

[
−

n

∑
t=1

(ht−µ−φ (ht−1−µ))− (1−φ)
n

∑
t=1

(ht−1−µ)

]

= −ν

[
n

∑
t=1

(ht−µ−φ (ht−1−µ))+(1−φ)
n

∑
t=1

(ht−1−µ)

]
,

∂ 2 ln p(y,h|θ)
∂ µ∂ν

= (1−φ)
n

∑
t=1

(ht−µ−φ (ht−1−µ)) ,

∂ 2 ln p(y,h|θ)
∂φ∂φ

= ν

[
−

n

∑
t=1

(ht−1−µ)2

]
,

∂ 2 ln p(y,h|θ)
∂φ∂ν

=
n

∑
t=1

(ht−µ−φ (ht−1−µ))(ht−1−µ) ,

∂ 2 ln p(y,h|θ)
∂ν∂ν

=− n
2ν2 .
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The derivatives of the complete-data log-likelihood for M2

The complete-data log-likelihood function

ln p
(
y,σ2|θ

)
=

n

∑
t=1

lnσ
2
t −

n
2

ln2π +
n
2

lnν− 1
2

ν

[
n

∑
t=1

(
σ

2
t −µ−φ

(
lnσ

2
t−1−µ

))2
]

−1
2

n

∑
t=1

(yt−α)2

σ2
t

− n
2

ln2π− 1
2

n

∑
t=1

lnσ
2
t ,

where σ2 =
(
σ2

1 ,σ
2
2 , ...σ

2
n
)′.

The first order derivatives

∂ ln p
(
y,σ2|θ

)
∂α

=
n

∑
t=1

yt−α

σ2
t

,

∂ ln p
(
y,σ2|θ

)
∂ µ

= ν

[
(1−φ)

n

∑
t=1

(
σ

2
t −µ−φ

(
lnσ

2
t−1−µ

))]
,

∂ ln p
(
y,σ2|θ

)
∂φ

= ν

[
n

∑
t=1

(
σ

2
t −µ−φ

(
lnσ

2
t−1−µ

))(
lnσ

2
t−1−µ

)]
,

∂ ln p
(
y,σ2|θ

)
∂ν

=
n

2ν
− 1

2

[
n

∑
t=1

(
σ

2
t −µ−φ

(
lnσ

2
t−1−µ

))2
]
.

The second order derivatives

∂ ln p
(
y,σ2|θ

)
∂α∂α

=−
n

∑
t=1

1
σ2

t
,

∂ ln p
(
y,σ2|θ

)
∂α∂ µ

=
∂ ln p

(
y,σ2|θ

)
∂α∂φ

=
∂ ln p

(
y,σ2|θ

)
∂α∂ν

= 0,

∂ ln p
(
y,σ2|θ

)
∂ µ∂ µ

= ν

[
−
(
1−φ

2)− (1−φ)
n

∑
t=1

(1−φ)

]
= −ν

[
n(1−φ)2

]
,
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∂ ln p
(
y,σ2|θ

)
∂ µ∂φ

= ν

[
−

n

∑
t=1

(
σ

2
t −µ−φ

(
lnσ

2
t−1−µ

))
− (1−φ)

n

∑
t=1

(
lnσ

2
t−1−µ

)]

= −ν

[
n

∑
t=1

(
σ

2
t −µ−φ

(
lnσ

2
t−1−µ

))
+(1−φ)

n

∑
t=1

(
lnσ

2
t−1−µ

)]
,

∂ ln p
(
y,σ2|θ

)
∂ µ∂ν

= (1−φ)
n

∑
t=1

(
σ

2
t −µ−φ

(
lnσ

2
t−1−µ

))
,

∂ ln p
(
y,σ2|θ

)
∂φ∂φ

= ν

[
−

n

∑
t=1

(
lnσ

2
t−1−µ

)2
]
,

∂ ln p
(
y,σ2|θ

)
∂φ∂ν

=
n

∑
t=1

(
σ

2
t −µ−φ

(
lnσ

2
t−1−µ

))(
lnσ

2
t−1−µ

)
,

∂ 2 ln p
(
y,σ2|θ

)
∂ν∂ν

=− n
2ν2 .

Gaussian Approximation

The complete-data log-likelihood function of M1 can be also expressed as follows:

ln(p(y,h|θ)) = −n
2

ln(2π)− n
2

ln
(
τ

2)− 1
2
(h−µ)′Q(h−µ)

−n
2

ln(2π)− 1
2

n

∑
t=1

ht−
n

∑
t=1

(yt−α)2

2
exp(−ht) ,

where h = (h1,h2, ...,hn), µ = µe, e′ = (1, . . . ,1)n, Q is a tri-diagonal precision

matrix, Q = Q∗/τ2, Q∗ is defined as follows:

Q∗ =



φ 2 −φ

−φ 1+φ 2 −φ

. . .

. . .

−φ 1+φ 2 −φ

−φ 1


.
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The posterior density of h is

p(h|y,θ) ∝ exp

[
−1

2
(h−µ)′Q(h−µ)−

n

∑
t=1

(
1
2

ht +
(yt−α)2

2
exp(−ht)

)]

= exp( f (h))≈ exp
(
−1

2
h′ch+bh+ cons

)
.

In order to obtain the parameters c and b of the canonical form, we use the first

and second order derivatives:

ḟ (h) = −h′Q+µ
′Q− 1

2
e′+

1
2
(
y∗2
)′� exp(−h)′

f̈ (h) = −Q−diag
(

1
2
(y∗)2� exp(−h)

)
,

where y∗ = y−α and α = αe, e′ = (1, . . . ,1)n, y∗2 = (y∗21 , . . . ,y∗2n )′ and exp(−h) =

(exp(−h1), . . . ,exp(−hn))
′.

Denoting the mode of f by m, we apply the Taylor expansion to f (x):

f (h) ≈ (h−m)′
f̈ (m)

2
(h−m)+ ḟ (m)(h−m)+ cons

= −1
2

h′
(
− f̈ (m)

)
h−m′ f̈ (m)h+ ḟ (m)h+ cons

= −1
2

h′ch+bh+ cons.

Now, we obtain c and b as

c =− f̈ (m) = Q+diag
(

1
2

y∗2� exp(−m)

)
,

b = −m′ f̈ (m)+ ḟ (m)

= m′Q+m′diag
(

1
2

y∗2� exp(−m)

)
−m′Q+µ

′Q− 1
2

e′+
1
2
(
y∗2
)′� exp(−m)′

= m′diag
(

1
2

y∗2� exp(−m)

)
+

1
2
(
y∗2
)′� exp(−m)′+µ

′Q− 1
2

e′.
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Using

−1
2

h′ch+bh+ cons =−1
2
(h−m∗)′Q∗ (h−m∗) ,

we obtain

Q∗ = c = Q+diag
(

1
2

y∗2� exp(−m)

)
,

m∗ = Q∗−1b′.

In order to obtain the optimal mode of Q∗ and m∗, we run the above procedure

recursively until convergence.
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.2 Proofs in Chapter 3

.2.1 Proof of Theorem 3.3.1

It can be shown that

Ey

{∫ [∫
log p(y|ϑ)p(y|ϑ)dy

]
p(ϑ |y)dϑ

}
=

∫ ∫ ∫
log p(y|ϑ)p(y|ϑ)dyp(ϑ |y)dϑ p(y)dy

=
∫ ∫ ∫

log p(y|ϑ)p(y|ϑ)dyp(y,ϑ)dydϑ

=
∫ {∫ [∫

log p(y|ϑ)p(y|ϑ)dy
]

p(y|ϑ)dy
}

p(ϑ)dϑ

=
∫ {[∫

log p(y|ϑ)p(y|ϑ)dy
][∫

p(y|ϑ)dy
]}

p(ϑ)dϑ

=
∫ [∫

log p(y|ϑ)p(y|ϑ)dy
]

p(ϑ)dϑ

=
∫ [∫

log p(y|ϑ)p(ϑ |y)dϑ

]
p(y)dy.

Similarly,

Ey

{∫ [∫
log p(y|ϑ 0)p(y|ϑ)dy

]
p(ϑ |y)dϑ

}
=

∫ [∫
log p(y|ϑ 0)p(ϑ |y)dϑ

]
p(y)dy.

Thus,

Ey [TBR(y,θ 0)] = Ey

{∫
KL [p(y|θ), p(y|θ 0)] p(ϑ |y)dϑ

}
= Ey

{∫ [∫
log p(y|ϑ)p(y|ϑ)dy

]
p(ϑ |y)dϑ

}
−Ey

{∫ [∫
log p(y|ϑ 0)p(y|ϑ)dy

]
p(ϑ |y)dϑ

}
=

∫ ∫
log p(y|ϑ)p(ϑ |y)dϑ p(y)dy−

∫ ∫
log p(y|ϑ 0)p(ϑ |y)dϑ p(y)dy

= Ey

∫
[log p(y|ϑ)− log p(y|ϑ 0)] p(ϑ |y)dϑ .

Theorem 4.3.1 is proven.
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.2.2 Proof of Theorem 3.3.2

Applying the Taylor expansion on the logarithm of the posterior density, we get

log p(ϑ |y) = log p(ϑ̂ |y)+L(1)
n (ϑ̂)′(ϑ − ϑ̂)+

1
2
(ϑ − ϑ̂)′L(2)

n (ϑ̃)(ϑ − ϑ̂)

= log p(ϑ̂ |y)+ 1
2
(ϑ − ϑ̂)′L(2)

n (ϑ̃)(ϑ − ϑ̂),

where ϑ̃ lies on the segment between ϑ and ϑ̂ . Note that

p(ϑ |y) = p(y,ϑ)

p(y)
.

Hence,

log p(ϑ |y)− log p(ϑ̂ |y) = log p(y,ϑ)− log p(y)− log p(y, ϑ̂)+ log p(y)

= log p(y,ϑ)− log p(y, ϑ̂) =
1
2
(ϑ − ϑ̂)′L(2)

n (ϑ̃)(ϑ − ϑ̂).

Then, for any ε > 0, there exists an integer N2 such that for any n > N2, L(2)
n (ϑ̃)

satisfies

[
Ip+q−A(ε)

][
−L(2)

n (ϑ̂)
]
≤−L(2)

n (ϑ̃)=
[
L(2)

n (ϑ̃)L−(2)n (ϑ̂)
]
[−L(2)

n (ϑ̂)]≤
[
Ip+q +A(ε)

][
−L(2)

n (ϑ̂)
]
.

Following the proof of Theorem 3.2 in Li et al. (2012), under Assumptions 1-7, we

note that there exists N, when n > N, we have

∫
(ϑ − ϑ̂)′

[
−L(2)

n (ϑ̃)
]
(ϑ − ϑ̂)p(ϑ |y)dϑ

=
∫

H(ϑ̂ ,δ )
[(ϑ − ϑ̂)

′
[
−L(2)

n (ϑ̃)
]
(ϑ − ϑ̂)]p(ϑ |y)dϑ

=
∫

H(ϑ̂ ,δ )
[(ϑ − ϑ̂)

′
[
L(2)

n (ϑ̃)L−(2)n (ϑ̂)
][
−L(2)

n (ϑ̂)
]
(ϑ − ϑ̂)p(ϑ |y)dϑ ,
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which is bounded above by

∫
H(ϑ̂ ,δ )

[(ϑ − ϑ̂)
′ [

Ip+q +A(ε)
][
−L(2)

n (ϑ̂)
]
(ϑ − ϑ̂)]p(ϑ |y)dϑ

= tr
{[

Ip+q +A(ε)
][
−L(2)

n (ϑ̂)
]

V (ϑ̂)
}
,

and below by

∫
H(ϑ̂ ,δ )

[(ϑ − ϑ̂)
′ [

Ip+q−A(ε)
][
−L(2)

n (ϑ̂)
]
(ϑ − ϑ̂)]p(ϑ |y)dϑ

= tr
{[

Ip+q−A(ε)
][
−L(2)

n (ϑ̂)
]

V (ϑ̂)
}
.

Hence, under the regularity conditions, for ε → 0, we have

lim
n−→∞

∫
(ϑ − ϑ̂)′

[
−L(2)

n (ϑ̃)
]
(ϑ − ϑ̂)p(ϑ |y)dϑ = tr

{[
−L(2)

n (ϑ̂)
]

V (ϑ̂)
}
.

Furthermore, it can be shown that

tr
{[
−L(2)

n (ϑ̂)
]

V (θ̂)
}
= tr

{[
−L(2)

n (ϑ̂)
][
−L(2)

n (ϑ̂)
]−1
}
+o(1) = p+q+o(1).

Hence, conditional on the observed data y, we get

∫
log p(y|ϑ)p(ϑ |y)dϑ =

∫
[log p(y,ϑ)− log p(ϑ)] p(ϑ |y)dϑ

=
∫

log p(y,ϑ)p(ϑ |y)dϑ −
∫

log p(ϑ)p(ϑ |y)dϑ

=
∫ [1

2
(ϑ − ϑ̂)′L(2)

n (ϑ̃)(ϑ − ϑ̂)

]
p(ϑ |y)dϑ + log p(y, ϑ̂)−

∫
log p(ϑ)p(ϑ |y)dϑ

= −1
2

tr
{[
−L(2)

n (ϑ̂)
]

V (θ̂)
}
+o(1)+ log p(y, ϑ̂)−

∫
log p(ϑ)p(ϑ |y)dϑ

= log p(y, ϑ̂)−
∫

log p(ϑ)p(ϑ |y)dϑ − 1
2

tr
{[
−L(2)

n (ϑ̂)
]

V (ϑ̂)
}
+o(1)

= log p(y, ϑ̂)−
∫

log p(ϑ)p(ϑ |y)dϑ − 1
2
(p+q)+o(1).
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Furthermore, it is noted that

log p(y, ϑ̄) = log p(y, ϑ̂)+
1
2
(ϑ̄ − ϑ̂)′L(2)

n (θ̃)(ϑ̄ − ϑ̂),

where θ̃ lies on the segment between θ̄ and θ̂ . Using Assumption 7, we can show

that log p(y, ϑ̄) = log p(y, ϑ̂)+op(1).

Similarly, under the null hypothesis, it can be shown that

log p(y,ψ|θ 0) = log p(y, ψ̄)+
log p(y,ψ|θ 0)

∂ψ
|ψ=ψ̄ (ψ− ψ̄)

+
1
2
(ψ− ψ̄)′

[
∂ 2 log p(y,ψ|θ 0)

∂ψ∂ψ ′
|
ψ=ψ̃

∗

]
(ψ− ψ̄),

where ψ̃
∗ lies on the segment between ψ and ψ̄ . When n→∞, we have H(ψ̄,δ1)⊂

H(ψ̂,δ ) and ψ̃
∗ ∈ H(ψ̄,δ1)⊂ H(ψ̂,δ ). Then,

∫
(ψ− ψ̄)′

[
−L(2)

0n (ψ̃
∗)
]
(ψ− ψ̄)p(ϑ |y)dϑ

= tr
{[
−L(2)

0n (ψ̃
∗)
][∫

(ψ− ψ̄)(ψ− ψ̄)′p(ϑ |y)dϑ

]}
= tr

{[
−L(2)

0n (ψ̂)
]

E[(ψ− ψ̄)(ψ− ψ̄)′|y,H1]
}
+op(1).

Moreover, we get

∫ [ log p(y,ψ|θ 0)

∂ψ
|ψ=ψ̄

]
(ψ−ψ̄)p(ϑ |y)dϑ =

[
log p(y,ψ|θ 0)

∂ψ
|ψ=ψ̄

]
(ψ̄−ψ̄)= 0.

and

∫
log p(y,ψ|θ 0)p(ϑ |y)dϑ

= log p(y, ψ̄|θ 0)−
1
2

tr
{[
−L(2)

0n (ψ̂)
]

E[(ψ− ψ̄)(ψ− ψ̄)′|y,H1]
}
+op(1).
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Hence,

E[(ϑ − ϑ̄)(ϑ − ϑ̄)′|y,H1]

= E[(ϑ − ϑ̂)(ϑ − ϑ̂)′|y,H1]+2E[(ϑ − ϑ̂)|y,H1](ϑ̂ − ϑ̄)′+(ϑ̂ − ϑ̄)(ϑ̂ − ϑ̄)′

= E[(ϑ − ϑ̂)(ϑ − ϑ̂)′|y,H1]+op(n−1/2)op(n−1/2)

= E[(ϑ − ϑ̂)(ϑ − ϑ̂)′|y,H1]+op(n−1) =−L−(2)n (ϑ̂)+op(n−1)

=
1
n

[
1
n

L(2)
n (ϑ̂)

]−1

+op(n−1) =
1
n

Op(1)+op(n−1) = Op(n−1),

and

tr
{[
−L(2)

0n (ψ̂)
]

E[(ψ− ψ̄)(ψ− ψ̄)′|y,H1]
}

= tr
{[
−1

n
L(2)

0n (ψ̂)

]
nE[(ψ− ψ̄)(ψ− ψ̄)′|y,H1]

}
= tr

{[
−1

n
L(2)

0n (ψ̄)+op(1)
]

nE[(ψ− ψ̄)(ψ− ψ̄)′|y,H1]

}
= tr

{[
−L(2)

0n (ψ̄)
]

E[(ψ− ψ̄)(ψ− ψ̄)′|y,H1]
}
+op(1).

We can further show that

T (y,θ 0) = 2
[∫

log p(y|ϑ)p(ϑ |y)dϑ −
∫

log p(y|ϑ 0)p(ψ|y)dψ

]
= 2log p(y, ϑ̄)−2

∫
log p(ϑ)p(ϑ |y)dϑ − (p+q)

−2log p(y, ψ̄|θ 0)+2
∫

log p(ψ)p(ϑ |y)dϑ + tr[−L(2)
0n (ψ̄)V22(ϑ̄)]+op(1)

= 2[log p(y, ϑ̄)− log p(y, ψ̄|θ 0)]−2
[∫

log p(ϑ)p(ϑ |y)dϑ −
∫

log p(ψ)p(ϑ |y)dϑ

]
−
[

p+q− tr[−L(2)
0n (ϑ̄ 0)V22(ϑ̄)]

]
+op(1)

= 2[log p(y|ϑ̄)− log p(y|θ 0, ψ̄]+2
[
log p(θ̄ , ψ̄)− log p(ψ̄|θ 0)

]
−2
[∫

log p(θ |ψ)p(ϑ |y)dϑ

]
−
[

p+q− tr[−L(2)
0n (ψ̄)V22(ϑ̄)]

]
+op(1).

For latent variable models, p(y|ϑ) generally does not have an analytical form.
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Using the path sampling technique of Gelman and Meng (1998), we get:

p(z|y, ϑ̄ b) =
p(z,y|ϑ̄ b)

p(y|ϑ̄ b)
=

p(z,y|ϑ̄ b)

f (b)
,

where f (b) = p(y|ϑ̄ b) such that f (1) = p(y|ϑ̄) and f (0) = p(y|ϑ̄ ∗). Then,

∂ log f (b)
∂b

=
f
′
(b)

f (b)
=

1
f (b)

∫
∂ p(y,z|ϑ̄ b)

∂b
dz =

1
f (b)

∫
∂ log p(y,z|ϑ̄ b)

∂b
p(y,z|ϑ̄ b)dz

=
∫

∂ log p(y,z|ϑ̄ b)

∂b
p(y,z|ϑ̄ b)

f (b)
dz =

∫
∂ log p(y,z|ϑ̄ b)

∂b
p(z|y, ϑ̄ b)dz

= E
z|y,ϑ̄ b

[
∂ log p(y,z|ϑ̄ b)

∂b

]
= E

z|y,ϑ̄ b

[
∂ ϑ̄ b

∂b
∂ log p(y,z|ϑ̄ b)

∂ ϑ̄ b

]
.

Hence, we get

log p(y|ϑ̄)− log p(y|ϑ̄ ∗) = log
f (1)
f (0)

=
∫ 1

0

∂ log f (b)
∂b

db

=
∫ 1

0

{
(ϑ̄ − ϑ̄ ∗)

′E
z|y,ϑ̄ b

[
∂ log p(y,z|ϑ)

∂ϑ
|
ϑ=ϑ̄ b

]}
db

=
∫ 1

0

{
(θ̄ −θ 0)

′E
z|y,ϑ̄ b

[
∂ log p(y,z|ϑ)

∂θ
|
θ=θ̄ b

]}
db

+
∫ 1

0

{
(ψ̄− ψ̄)′E

z|y,ϑ̄ b

[
∂ log p(y,z|ϑ)

∂ψ
|ψ=ψ̄b

]}
db

=
∫ 1

0

{
(θ̄ −θ 0)

′E
z|y,ϑ̄ b

[S1(x|ϑ̄ b)]
}

db.

Theorem 3.3.2 is proven.

.2.3 Proof of Theorem 3.3.3

When n→ ∞, the prior information is negligible. Hence, we have

∂ log p(y|θ)
∂θ

= L(1)
n (θ),

∂ 2 log p(y|θ)
∂θθ

′ = L(2)
n (θ),
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and the ML estimator is asymptotically equivalent to the posterior mode θ̂ . Further-

more, according to Theorem 3.2, it can be shown that

T (y,θ 0) = 2
[∫

log p(y|ϑ)p(ϑ |y)dϑ −
∫

log p(y|ψ,θ0)p(ψ|y)dψ

]
= 2

[
log p(y|ϑ̄)− log p(y|θ 0, ψ̄)

]
−
[

p+q− tr[−L(2)
0n (ψ̄)V22(ϑ̄)]

]
+op(1).

In Theorem 3.2, it is shown that log p(y|ϑ̄) = log p(y|ϑ̂)+op(1). Similarly, when

H0 is true, let ϑ̄ ∗ = (θ 0, ψ̄), we can show that

log p(y|θ 0, ψ̄) = log p(y|θ̂ , ψ̂)+L(1)
n (ϑ̂)(ϑ̄ ∗− ϑ̂)+

1
2
(ϑ̄ ∗− ϑ̂)′L(2)

n (ϑ̂)(ϑ̄ ∗− ϑ̂)+op(1)

= log p(y|θ̂ , ψ̂)+
1
2
(ϑ̄ ∗− ϑ̂)′L(2)

n (ϑ̂)(ϑ̄ ∗− ϑ̂)+op(1).

Furthermore, under the null hypothesis, it is noted that ψ̄ = ψ̂+op(n−
1
2 ), 1

nL(2)
n (ϑ̂)=

Op(1) and

−1
n

L(2)
n (ϑ̂) =−1

n
L(2)

n (ϑ 0)+op(1) = J(ϑ 0)+op(1),[
−1

n
L(2)

n (ϑ̂ 0)

]−1

=−
[

1
n

L(2)
n (ϑ 0)

]−1

+op(1) = J−1(ϑ 0)+op(1) = IJ(ϑ 0)+op(1).

Thus, we have

(ϑ̄ ∗− ϑ̂)′L(2)
n (ϑ̂)(ϑ̄ ∗− ϑ̂)

= (θ 0− θ̂)′L(2)
n,11(ϑ̂)(θ 0− θ̂)+2(θ 0− θ̂)′L(2)

n,12(ϑ̂)(ψ̄− ψ̂)+(ψ̄− ψ̂)′L(2)
n,22(ϑ̂)(ψ̄− ψ̂)

= (θ 0− θ̂)′L(2)
n,11(ϑ̂)(θ 0− θ̂)+2Op(n−1/2)Op(n)op(n−1/2)+op(n−1/2)Op(n)op(n−1/2)

= (θ 0− θ̂)′L(2)
n,11(ϑ̂)(θ 0− θ̂)+op(1)

=
√

n(θ 0− θ̂)′
[

1
n

L(2)
n,11(ϑ̂)

]√
n(θ 0− θ̂)+op(1)

= −
√

n(θ 0− θ̂)′ [J11(ϑ 0)+op(1)]
√

n(θ 0− θ̂)+op(1)

= −
√

n(θ 0− θ̂)′ [J11(ϑ 0)]
√

n(θ 0− θ̂)+op(1)Op(1)Op(1)+op(1)

= −
√

n(θ 0− θ̂)′ [J11(ϑ 0)]
√

n(θ 0− θ̂)+op(1).
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According to the ML theory, we know that
√

n(θ̂ − θ 0) ∼ N[0,IJ11(ϑ 0)] so that

ε =
√

nIJ−1/2
11 (ϑ 0)(θ̂ −θ 0)∼ N[0,Iq]. Hence, we have

2
[
log p(y|θ̂ , ψ̂)− log p(y|θ 0, ψ̄)

]
= (ϑ̄ ∗− ϑ̂)′

[
−L(2)

n (ϑ̂)
]
(ϑ̄ ∗− ϑ̂)+op(1)

=
√

n(θ 0− θ̂)′ [J11(ϑ 0)]
√

n(θ 0− θ̂)+op(1)

=
√

n(θ 0− θ̂)′IJ−1/2
11 (ϑ 0)

[
IJ1/2

11 (ϑ 0)J11(ϑ 0)IJ1/2
11 (ϑ 0)

]
IJ−1/2

11
√

n(θ 0− θ̂)+op(1)

= ε
′
[
IJ1/2

11 (ϑ 0)J11(ϑ 0)IJ1/2
11 (ϑ 0)

]
ε +op(1).

Further, when the null hypothesis is true, we can get that

T (y,θ 0)+
[

p+q− tr[−L(2)
0n (ϑ̄)V22(ϑ̄)]

]
= 2

[∫
log p(y|ϑ)p(ϑ |y)dϑ −

∫
log p(y|ψ,θ0)p(ψ|y)dψ

]
+
[

p+q− tr[−L(2)
0n (ϑ̄)V22(ϑ̄)]

]
= T1(y,θ 0)+

[
p+q− tr[−L(2)

0n (ϑ̄)V22(ϑ̄)]
]
+op(1)

= 2[log p(y|ϑ̄)− log p(y|θ 0, ψ̄)]+op(1)

= 2
[
log p(y|θ̂ , ψ̂)− log p(y|θ 0, ψ̄)

]
+op(1)

∼ ε
′
[
IJ1/2

11 (ϑ 0)J11(ϑ 0)IJ1/2
11 (ϑ 0)

]
ε.
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.3 Proofs in Chapter 4

.3.1 Proof of Theorem 4.3.1

When the likelihood information dominates the prior information, we have

1
n

L(2)
n (θ)=

1
n

∂ 2 log p(y|θ)
∂θ∂θ

′ +
1
n

∂ 2 log p(θ)
∂θ∂θ

′ =
1
n

∂ 2 log p(y|θ)
∂θ∂θ ′

+op(1)= Î(θ)+op(1),

and the posterior mode θ is equivalent to the ML estimator. When the model is

specified correctly, using the regularity conditions J(θ 0) = O(1), we get

Ĵ(θ 0) =
1
n

n

∑
i=1

s(yi,θ 0)s′(yi,θ 0)

=
∫ [1

n

n

∑
i=1

s(yi,θ 0)s′(yi,θ 0)

]
p(y|θ 0)dy+op(1) = J(θ 0)+op(1)

= O(1)+op(1) = Op(1).

From the standard ML theory, we get θ 0 = θ̂ +Op(n−1/2) and θ̄ = θ̂ +op(n−1/2)

so that θ̄ = θ 0 +Op(n−1/2) = θ 0 +op(1). Then, we have Ĵ(θ 0) = Ĵ(θ̄)+op(1).

We can further show that

BT = n
∫
(θ − θ̄)′Ĵ(θ̄)(θ − θ̄)p(θ |y)dθ

= n
∫
(θ − θ̄)′

[
Ĵ(θ 0)+op(1)

]
(θ − θ̄)p(θ |y)dθ

= n
∫
(θ − θ̄)′Ĵ(θ 0)(θ − θ̄)p(θ |y)dθ +n

∫
(θ − θ̄)′op(1)(θ − θ̄)p(θ |y)dθ

= n
∫
(θ − θ̄)′Ĵ(θ 0)(θ − θ̄)p(θ |y)dθ +op(1)

= n
∫
(θ − θ̄)′ [J(θ 0)+op(1)] (θ − θ̄)p(θ |y)dθ +op(1)

= n
∫
(θ − θ̄)′J(θ 0)(θ − θ̄)p(θ |y)dθ +n

∫
(θ − θ̄)′op(1)(θ − θ̄)p(θ |y)dθ +op(1)

= n
∫
(θ − θ̄)′J(θ 0)(θ − θ̄)p(θ |y)dθ +op(1)

= ntr
{

J(θ 0)E
[
(θ − θ̄)(θ − θ̄)′|y

]}
.
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Using the regularity condition, we have

Î(θ 0) =
1
n

n

∑
t=1

h(yt ,θ 0)
p−→
∫ [1

n

n

∑
t=1

h(yt ,θ 0)

]
p(y|θ 0)dy = I(θ 0) = O(1).

Then, we get Î(θ 0)= I(θ 0)+op(1)=Op(1)+op(1)=Op(1), Î(θ 0)= Î(θ̂)+op(1)

and

E
[
(θ − θ̄)(θ − θ̄)′|y

]
= E

[
(θ − θ̂ + θ̂ − θ̄)(θ − θ̂ + θ̂ − θ̄)′|y

]
= E

[
(θ − θ̂)(θ − θ̂)′|y

]
+2E

[
(θ − θ̂)|y

]
(θ̂ − θ̄)+(θ̂ − θ̄)(θ̂ − θ̄)′

= E
[
(θ − θ̂)(θ − θ̂)′|y

]
+2(θ̄ − θ̂)(θ̂ − θ̄)+(θ̂ − θ̄)(θ̂ − θ̄)′

= E
[
(θ − θ̂)(θ − θ̂)′|y

]
− (θ̂ − θ̄)(θ̂ − θ̄)′

= −L−(2)n (θ̂)+op(n−1)+op(n−
1
2 )op(n−

1
2 )

= −1
n

[
Î(θ 0)+op(1)

]−1
+op(n−1)

= −1
n

Î−1(θ 0)+op(1)
1
n
+op(n−1)

= −1
n
[I(θ 0)+op(1)]

−1 +op(n−1)

= −1
n

I−1(θ 0)+op(1)
1
n
+op(n−1)

= −1
n

I−1(θ 0)+op(n−1).

When H0 is true, we have J(θ 0) =−I(θ 0). Therefore, we get

BT = ntr
{

J(θ 0)E
[
(θ − θ̄)(θ − θ̄)′|y

]}
= −ntr

{
J(θ 0)

[
1
n

I−1(θ 0)+op(n−1)

]}
= −tr

{
J(θ 0)I−1(θ 0)

}
+ntr

{
J(θ 0)op(n−1)

}
= −tr

{
J(θ 0)I−1(θ 0)

}
+ntr

{
Op(1)op(n−1)

}
= tr

[
−J(θ 0)I−1(θ 0)

]
+op(1) = p+op(1).

Theorem 4.3.1 is proven.
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.3.2 The derivation of BT for the asset pricing models

Let R= {R1,R2, · · · ,Rn}, F= {F1,F2, · · · ,Fn}, ω = {ω1,ω2, · · · ,ωn}, θ =(α,β ,Σ).

The observed data log-likelihood function, Lo(R|θ), is:

Lo(R|θ) =C(ν)− n
2

ln |Σ|− ν +N
2

n

∑
t=1

log [ν +ϕ (Rt ,F t ,θ)] , (.3.1)

where

C(ν) =−nN
2

log(πν)+n
[

lnΓ

(
ν +N

2

)
− lnΓ

(
ν

2

)]
+

n(ν +N) lnν

2
,

ϕ (Rt ,F t ,θ) = (Rt−α−βF t)
′
Σ
−1 (Rt−α−βF t) .

It is noted in Li et al. (2012), using the normal-gamma mixture representation for

the multivariate t distribution, the complete log-likelihood, Lc(R,ω|θ), is given by

−1
2

nN ln(2π)+
N
2

n

∑
t=1

lnωt−
n
2

ln |Σ|− 1
2

n

∑
t=1

ωtϕ (Rt ,F t ,θ)

−n lnΓ

(
ν

2

)
+

nν

2
ln
(

ν

2

)
+

ν

2

n

∑
t=1

(lnωt−ωt)−
n

∑
t=1

lnωt .

Hence, for any θ and θ
∗, we have

Q(θ |θ ∗) =
∫

Lc(R,ω|θ)p(ω|R,θ ∗)dω

= −1
2

nK ln(2π)+
N
2

n

∑
t=1

E(lnωt |Rt ,θ
∗)− n

2
ln |Σ|− 1

2

n

∑
t=1

E(ωt |Rt ,θ
∗)ϕ(Rt ,F t ,θ)

−n lnΓ

(
ν

2

)
+

nν

2
ln
(

ν

2

)
+

ν

2

n

∑
t=1

E(lnωt−ωt |Rt ,θ
∗)−

n

∑
t=1

E(lnωt |Rt ,θ
∗).
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For i = 1,2, · · · ,N, letting φi = Σ
−1
ii , we have

Q(θ |θ ∗)
∂αi

|
θ
∗
=θ

=
n

∑
t=1

E (ω t |θ ,Rt)φi(Rit−αi−β

′

iFt),

Q(θ |θ ∗)
∂β i

|
θ
∗
=θ

=
n

∑
t=1

E (ω t |θ ,Rt)φi(Rit−αi−β

′

iFt)Ft ,

Q(θ |θ ∗)
∂φi

|
θ
∗
=θ

=
n

∑
t=1

[
1
φi
− 1

2
E (ω t |θ ,Rt)(Rit−αi−β

′

iFt)
2
]
,

where

E (ω t |θ ,Rt) =
ν +N

ν +ϕ (Rt ,F t ,θ)
.

Since the data are conditionally independent on F, one can simply delete the sum-

mation in the above Q function to get the first derivative for each observation.

.3.3 The derivation of BT for the DSGE model

The equilibrium object for a DSGE model is a collection of the nonlinear equations

defining optimality conditions, markets clearing conditions, et cetera. We follow

the standard practice and linearize these conditions around a steady state. Then, the

model can be written as linear expectation system,

Γ0 (θ)xt = Γ1 (θ)Et [xt+1]+Γ2 (θ)xt−1 +Γ3 (θ)εt , (.3.2)

where xt are the state variables, εt the exogenous shocks, θ the structural parameters

of interest, and {Γ1} matrix functions that map the equilibrium conditions of the

model, where Γ0 (θ) ,Γ1 (θ) ,Γ2 (θ) are ns× ns, Γ3 (θ) is ns× ne. The solution to

the system takes the form of a VAR(1),

xt = T (θ)xt−1 +R(θ)εt , (.3.3)

The mapping from θ to T and R must be solved numerically for all models of

interest, where T is ns × ns, R is ns × ne. The model variables xt are linked to

observed yt via a state space system:
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xt = T (θ)xt−1 +R(θ)εt ,

yt = D(θ)+Z (θ)xt +ξt ,

where yt , D are ny×1, Z is ny×ns, θ is nq×1.

Consider the state space system

xt = T xt−1 +Rεt ,

yt = D+Zxt +ξt ,

where εt ∼ N (0,Q), ξt ∼ N (0,H) .

Let Ys = (y1,y2...,ys), we can define

xs
t = E (xt |Ys) ,

Ps
t = E{(xt− xs

t )(xt− xs
t )
′ |Ys}.

Then for the linear Gaussian state-space model specified in above equation, with

initial condition x0
0 and P0

0 , for t = 1,2...n, the Kalman Filter algorithm is as follows

(Shumway and Stoffer (2006)):

xt−1
t = T xt−1

t−1,

Pt−1
t = T Pt−1

t−1 T ′+RQR′,

with

xt
t = xt−1

t +Kt
(
yt−D−Zxt−1

t
)
,

Pt
t = [Ins−KtZ]Pt−1

t ,
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where

Kt = Pt−1
t Z′

[
ZPt−1

t Z′+H
]−1

.

From the Kalman Filter, the likelihood of the data is as follows:

log` = −
n

∑
t=1

[
ny

2
log2π +

1
2

log |Ft |+
1
2
(
yt−D−Zxt−1

t
)′

F−1
t
(
yt−D−Zxt−1

t
)]

= −
n

∑
t=1

[
ny

2
log2π +

1
2

log |Ft |+
1
2

ω
′
t F
−1

t ωt

]
,

where

Ft = ZPt−1
t Z′+H,

ωt = yt−D−Z (θ)xt−1
t .

Before we compute the derivatives of the model, we will first introduce some nota-

tions from Magnus and Neudecker (1999) about the matrix derivative.

Definition .3.1 Let F = ( fst) be an m× p matrix function of an n× q matrix of

variables X =
(
xi j
)
. Any mp× nq matrix A containing all the partial derivatives

such that each row contains the partial derivatives of one function with respect to

all variables, and each column contains the partial derivatives of all functions with

respect to one variable xi j, is called a derivative of F. We define the α-derivative

as:

DF (X) =
∂vecF (X)

∂ (vecX)
′ .

In our case, ∂ (vecθ)
′
= ∂θ ′ since θ is a vector.

Definition .3.2 Let A be an m×n matrix. There exists a unique mn×mn permuta-

tion matrix Kmn which is defined as:

Kmn · vecA = vec
(

A
′
)
.
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Since Kmn is a permutation matrix it is orthogonal, K−1
mn = K

′
mn.

In order to compute the first order derivative of the likelihood, we have the

following

∂vec(ωt)

∂θ ′
=−∂vec(D)

∂θ ′
−
(
xt−1′

t ⊗ Iny

) ∂vec(Z)
∂θ ′

− (I1⊗Z)
∂vec

(
xt−1

t
)

∂θ ′
,

∂vec(Ft)

∂θ ′
=

((
Pt−1

t Z′
)′⊗ Iny +

(
Iny⊗

(
ZPt−1

t
))

Knyns

)
∂vec(Z)

∂θ ′

+(Z⊗Z)
∂vec

(
Pt−1

t
)

∂θ ′
+

∂vecH
∂θ ′

,

∂vec
(
F−1

t
)

∂θ ′
=−

((
F−1

t
)′⊗F−1

t

)
∂vec(Ft)

∂θ ′
,

∂vec(log |Ft |)
∂θ ′

=
(

vec
[(

F−1
t
)′])′ ∂vec(Ft)

∂θ ′
,

∂vec
(
ω ′t F

−1
t ωt

)
∂θ ′

=
[(

F−1
t ωt

)′⊗ I1

]
Kny1

∂vec(ωt)

∂θ ′
+
(
ω
′
t ⊗ω

′
t
) ∂vec

(
F−1

t
)

∂θ ′

+
[
I1⊗

(
ω
′
t F
−1

t
)] ∂vec(ωt)

∂θ ′
.

In the above equations, the first order derivatives of the matrix D, Z, Q, H are

easy to get, and according to Iskrev (2008) and Herbst (2010), we can get the first

order derivatives of matrix T and R, substitute (.3.3) into (.3.2), we have

Γ0 (θ)xt = Γ1 (θ)T (θ)xt +Γ2 (θ)xt−1 +Γ3 (θ)εt .

Furthermore

(Γ0 (θ)−Γ1 (θ)T (θ))xt = Γ2 (θ)xt−1 +Γ3 (θ)εt . (.3.4)
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From (.3.4)

(Γ0 (θ)−Γ1 (θ)T (θ))xt =(Γ0 (θ)−Γ1 (θ)T (θ))T (θ)xt−1+(Γ0 (θ)−Γ1 (θ)T (θ))R(θ)εt .

(.3.5)

Comparing (.3.4) and (.3.5), we have

(Γ0 (θ)−Γ1 (θ)T (θ))T (θ)−Γ2 (θ) = 0. (.3.6)

(Γ0 (θ)−Γ1 (θ)T (θ))R(θ)−Γ3 (θ) = 0. (.3.7)

Consider the Eq.(.3.6), we can get the derivatives of matrix T by solving the follow-

ing equation

[
(Ins⊗Γ0)− (Ins⊗Γ1T )−

(
T ′⊗Γ1

)] ∂vec(T )
∂θ ′

−
(
T ′2⊗ Ins

) ∂vec(Γ1)

∂θ ′

+
(
T ′⊗ Ins

) ∂vec(Γ0)

∂θ ′
− ∂vec(Γ2)

∂θ ′
= 0.

From (.3.7), the first order derivatives of matrix R is as follows:

∂vec(R)
∂θ ′

=−
(
Γ
′
3⊗ Ins

)(
W
′−1⊗W−1

)
∂vec(W )

∂θ ′
+
(
Ine⊗W−1) ∂vec(Γ3)

∂θ ′
.

From Herbst (2010), where

W = Γ0−Γ1T,

∂vec(W )

∂θ ′
=

∂vec(Γ0)

∂θ ′
−
(
T ′⊗ Ins

) ∂vec(Γ1)

∂θ ′
− (Ins⊗Γ1)

∂vec(T )
∂θ ′

.

Given the initial conditions P0
0 and x0

0, we have the following recursive equations

∂vec
(
xt−1

t
)

∂θ ′
= (I1⊗T )

∂vec
(
xt−1

t−1
)

∂θ ′
+
(
xt−1′

t−1 ⊗ Ins

) ∂vec(T )
∂θ ′

,

∂vec
(
Pt−1

t
)

∂θ ′
=

((
Pt−1

t−1 T ′
)′⊗ Ins

)
∂vec(T )

∂θ ′
+(T ⊗T )

∂vec
(
Pt−1

t−1
)

∂θ ′

+
(
Ins⊗T Pt−1

t−1
)

Knsns

∂vec(T )
∂θ ′

+
∂vec(RQR′)

∂θ ′
,
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∂vec(xt
t)

∂θ ∗′
=

∂vec
(
xt−1

t
)

∂θ ∗′
+
[(

yt−D−Zxt−1
t
)′⊗ Ins

]
∂vec(Kt)

∂θ ∗′

−(I1⊗Kt)
∂vec(D)

∂θ ∗′
−
(
xt−1′

t ⊗Kt
) ∂vec(Z)

∂θ ∗′
− (I1⊗KtZ)

∂vec
(
xt−1

t
)

∂θ ∗′
,

∂vec(Pt
t )

∂θ ∗′
= −

((
ZPt−1

t
)′⊗ Ins

)
∂vec(Kt)

∂θ ∗′
−
(

Pt−1′
t ⊗Kt

)
∂vec(Z)

∂θ ∗′

+(Ins⊗ (Ins−KtZ))
∂vec

(
Pt−1

t
)

∂θ ∗′
,

where

∂vec(Kt)

∂θ ∗′
=

[(
Z′F−1

t
)′⊗ Ins

]
∂vec

(
Pt−1

t
)

∂θ ∗′
+
[(

F−1
t
)′⊗Pt−1

t

]
Knyns

∂vec(Z)
∂θ ∗′

+
[
Iny⊗Pt−1

t Z′
] ∂vec

(
F−1

t
)

∂θ ∗′
,

and

∂vec(RQR′)
∂θ ′

=
[(

RQ′⊗ Ins

)
+(Ins⊗RQ)Knsne

] ∂vecR
∂θ ′

+(R⊗R)
∂vecQ

∂θ ′
.

The initial condition is given as

x0
0 = 0,

P0
0 = T P0

0 T ′+RQR′.

From the above, we have

vec
(
P0

0
)
=
(

In2
s
−T ⊗T

)−1
vec
(
RQR′

)
.

Then

∂vec
(
P0

0
)

∂θ ′
=
[(

T P0
0 ⊗ Ins

)
+
(
Ins⊗T P0

0
)

Knsns

] ∂vec(T )
∂θ ′

+(T ⊗T )
∂vec

(
P0

0
)

∂θ ′
+

∂vec(RQR′)
∂θ ′

.
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