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Abstract

Essays on High-frequency Financial Econometrics

Shouwei Liu

My dissertation consists of three essays which contribute new theoretical and em-

pirical results to Volatility Estimation and Market Microstructure theory as well as

Risk Management.

Chapter 2 extends the ACD-ICV method proposed by Tse and Yang (2012)

for the estimation of intraday volatility of stocks to estimate monthly volatility.

We compare the ACD-ICV estimates against the realized volatility (RV) and the

generalized autoregressive conditional heteroskedasticity (GARCH) estimates. Our

Monte Carlo experiments and empirical results on stock data of the New York Stock

Exchange show that the ACD-ICV method performs very well against the other two

methods. As a 30-day volatility predictor, the Chicago Board Options Exchange

volatility index (VIX) predicts the ACD-ICV volatility estimates better than the RV

estimates. While the RV method appears to dominate the literature, the GARCH

method based on aggregating daily conditional variance over a month performs well

against the RV method.

Chapter 3 propose to model the aggregate trade volume of stocks in a quote-

driven (specialist) market using a compound Poisson distribution. Trades are as-

sumed to be initiated by either informed or uninformed traders. Our model treats

trade volume endogenously and calibrates two measures of informed trading: rela-

tive frequency of informed trading and relative volume of informed trading. Empiri-

cal analysis of daily volatility estimates of 50 NYSE stocks shows that trade volume

initiated by informed traders increase volatility, while trade volume initiated by un-



informed traders reduce volatility. However, for both informed and uninformed

traders, the disaggregated effect of trade frequency is to increase volatility. Our

results also confirm that trade frequency dominates trade volume and trade size in

affecting volatility. Yet trade volume and trade size have incremental information

for volatility beyond that exhibited in trade frequency.

Chapter 4 propose to estimate the intraday Value at Risk (IVaR) for stocks using

real-time transaction data. Transaction data filtered by price durations are modeled

employing a two-state asymmetric autoregressive conditional duration (AACD) model,

and the IVaR is computed using Monte Carlo simulation. Empirical analysis of New

York Stock Exchange (NYSE) stocks show that IVaR estimated using the AACD ap-

proach track closely to those using the Dionne, Duchesne and Pacurar (2009) and

Giot (2005) methods. Backtesting results show that our method performs the best

among other methods.
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Chapter 1 Introduction

Many studies in the empirical finance literature on the risk-return relationship in-

volve the estimation of the monthly return volatility of stocks. Higher frequency

or daily data are usually not used because returns are typically rather noisy, ren-

dering the risk-return relationship in high frequency difficult to establish. Fur-

thermore, many studies examine the effects of macroeconomic variables on asset

pricing, and these variables are only available monthly or quarterly. For example,

Schwert (1989) constructed vector autoregression models involving monthly data

of short-term interest rates, long-term yields of high-quality and medium-quality

bonds, inflation rates and industrial production to analyze the dynamic structure

of stock volatility. For some recent studies requiring estimates of monthly stock

volatility, see Goyal and Santa-Clara (2003), Bali, Cakici, Yan and Zhang (2005),

Guo and Savickas (2008), Ludvigson and Ng (2007), Jiang and Tian (2010) and

Zhang (2010).

Chapter 2 compare the performance of the RV, GARCH and ACD-ICV meth-

ods using Monte Carlo (MC) experiments and empirical data from the New York

Stock Exchange (NYSE). Our MC results show that the ACD-ICV method outper-

forms the RV method in giving lower root mean-squared error. Indeed, it turns out

that the GARCH method performs better than the RV method in the MC experi-

ments. We also examine the use of the Chicago Board Options Exchange (CBOE)

volatility index (VIX) as a predictor of the volatility for the next 30 days estimated

by the ACD-ICV, RV and GARCH methods using the S&P500 index. Our results

show that VIX predicts the 30-day ACD-ICV volatility estimates better than the RV

estimates.
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The effects of the trade volume of a stock on its return and volatility have been

studied extensively in the finance literature. Wang (1993, 1994) examined the theo-

retical links between trade volume and return dynamics. He showed that informed

trading and uninformed trading have asymmetric effects on stock returns. Andersen

(1996) studied the volatility-volume relationship using the mixture-of-distribution

hypothesis (MDH). He argued that his enhanced model, in which trades may orig-

inate from informed traders or liquidity traders, outperforms the standard MDH

model. While Andersen (1996) assumed that liquidity trading has no effect on

volatility, Li and Wu (2006) relaxed this assumption and postulated that liquidity

trading can lower return volatility. They showed that the positive relationship be-

tween volume and volatility is primarily driven by informed trading.

The seminal work of Jones, Kaul and Lipson (1994) highlighted the importance

of studying the effects of trade frequency and trade size on return volatility. Their

results show that trade size has no information content beyond that contained in the

frequency of trades. Chan and Fong (2000), however, objected to this conclusion

and argued for “the significance of the size of trades, beyond that of the number of

trades, in the volatility-volume relation”. More recently, Chan and Fong (2006) and

Xu, Chen and Wu (2006) contributed to the debate. Their results are in favor of the

dominance of trade frequency over trade volume in their effects on volatility. Huang

and Masulis (2003) studied transactions data from the London Stock Exchange and

lent support to the general conclusion of Jones, Kaul and Lipson (1994).

Chapter 3 use transaction data of trade frequency and trade size over 30-minute

intervals to estimate the aggregate-volume model. We use two approaches to esti-

mate the model. First, we use covariates as proxies for information intensity, con-

ditional on the covariates the likelihood function of trade frequency and trade size

can be obtained, from which the parameters of the model can be estimated using the

MLE method. Alternatively, we may calculate the unconditional moments and cross

moments of trade volume and trade frequency, treating the moments of the informa-

tion intensity as unknown parameters. The parameters of the primary and secondary
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distributions of the compound Poisson distribution, together with the moments of

the information intensity, can then be estimated using the GMM method. For each

stock we calculate the daily RFIT and RVIT measures. We then study the effects of

informed trade frequency, informed trade volume, uninformed trade frequency and

uninformed trade volume on volatility. Our results show that the empirical relation

between volume and volatility under the MLE approach is similar to the empiri-

cal relation under the GMM approach. Both the MLE and GMM approaches show

that trade frequency dominates trade volume in explaining volatility, although trade

volume still has incremental information for volatility in the presence of trade fre-

quency. Rather interestingly, while informed trading volume has positive effects

on volatility, uninformed trading volume has negative effects on volatility. This

result is consistent with Li and Wu (2006), who find negative correlation between

volatility and trade volume due to liquidity traders. However, both the informed and

uninformed trading frequency has positive effect on volatility.

The global financial crisis in 2008 highlighted the need for the banks’ decision

makers, such as trader and heads of desks, to have real-time access to accurate in-

formation in order to make rapid and well-informed decisions, particularly during

periods of market turmoil. After the Market Access Rule (MAR) came into effect,

any order sent to the market must go through pre-trade risk control. Current ap-

proaches to risk management in many large investment banks are inadequate. At

present, the majority of banks are relying on risk information on a daily or, at best,

intraday basis. Intraday risk reports might be regarded as adequate when used as a

reporting tool. However, if a trader is required to act on that risk information, as is

surely desirable, information must be provided instantaneously. The ability to react

to risk events on a real-time basis would give a bank or trader serious competitive

advantage. Managing risk in (near) real-time becomes increasingly important for

banks and traders.

Chapter 4 apply the AACD model to a two-state point process for price move-

ments, where the two states represent an upward or a downward price movement
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of a pre-determined threshold δ . Following Bauwens and Giot (2003), we allow

the expected duration to vary with the lagged durations, and the lagged conditional

expected durations. Using an intraday Monte Carlo simulation approach, with infor-

mation for the price movements before a stated time, we simulate the price move-

ments starting from the stated time for any horizon during the trading hours. We

study all index stocks of the S&P 500 traded on the NYSE for three different pe-

riods during and after the 2008 global financial crisis. Our empirical results of

30-min IVaR backtesting show that the AACD approach outperforms other IVaR

evaluation methods. IVaR can be computed for any time horizon once the AACD

model has been estimated without requiring new sampling and estimation when the

time horizon changes, due to the the flexibility of irregularly-spaced information.

60-min IVaR backtesting results also indicate that the AACD approach performs

well against other methods.
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Chapter 2 Estimation of Monthly Volatility:

An Empirical Comparison of Re-

alized Volatility, GARCH and ACD-

ICV Methods

2.1 Introduction

Since the seminal work of French, Schwert and Stambaugh (1987) and Schwert

(1989), researchers often use the sum of the squared daily stock returns over a month

(or some modifications of it) as an estimate of the monthly volatility of the stock.

Later, Andersen, Bollerslev, Diebold and Ebens (2001) and Andersen, Bollerslev,

Diebold and Labys (2001) proposed to use the sum of the squared returns of tick

data to estimate intraday volatility, and called this estimate the realized volatility

(RV). Since then the literature on RV has expanded very quickly, producing asymp-

totic results of the properties of the RV as an estimate of the integrated volatility over

daily or intraday intervals. In addition, some enhanced RV estimates dealing with

problems of market microstructure noise and/or price jumps have been proposed, in-

cluding the subsampling technique due to Zhang, Mykland and Aı̈t-Sahalia (2005),

the bipower variation method by Barndorff-Nielsen and Shephard (2004), the re-

alized kernel method by Barndorff-Nielsen, Hansen, Lunde and Shephard (2008),

and the duration-based RV method by Andersen, Dobrev and Schaumburg (2008).

The estimation of intraday volatility using RV methods typically requires sam-
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pling over five-minute intervals or shorter, with sampling over one- or two-minute

intervals not uncommon. Given the asymptotic theories established by Barndorff-

Nielsen and Shephard (2002), Barndorff-Nielsen and Shephard (2004), Barndorff-

Nielsen, Hansen, Lunde and Shephard (2008) and Zhang, Mykland and Aı̈t-Sahalia

(2005) and the availability of large numbers of return observations over short dura-

tions in a trading day, the RV methods have firm theoretic underpinning as a tool

for estimating intraday volatility. In contrast, in applying the RV methods to es-

timate monthly volatility using daily data there are only approximately 21 return

observations to compute each monthly estimate. Thus, measurement errors may be

a concern and may weaken the validity of the statistical inference. Clearly, an ap-

propriate choice of the monthly volatility estimates is important for studies that use

these estimates to investigate asset pricing.

Another line of research applies the autoregressive conditional heteroskedastic-

ity (ARCH) model of Engle (1982) and the generalized ARCH (GARCH) model

of Bollerslev (1986) to estimate monthly volatility. French, Schwert and Stam-

baugh (1987) estimated monthly volatility using a GARCH-in-mean model, while

Fu (2009) estimated monthly idiosyncratic risk using the exponential GARCH (EGARCH)

model of Nelson (1991). Generally, monthly volatility can be estimated using

GARCH type of models on monthly data, or using these models on daily data from

which aggregates of daily conditional variances form a monthly estimate.

Recently, Tse and Yang (2012) proposed a method to estimate high-frequency

volatility using the autoregressive conditional duration (ACD) model of Engle and

Russell (1998), called the ACD-ICV method. They estimate high-frequency volatil-

ity (over a day or shorter intervals) by integrating the instantaneous conditional

return variance per unit time obtained from the ACD models. Unlike the RV meth-

ods, which sample data over regular intervals, the ACD-ICV method samples price

events based on high-frequency transaction price changes exceeding a threshold.

ACD models for the durations between sequential price events are estimated using

the maximum likelihood method, and the conditional variance over a given intra-
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day interval is computed by integrating the instantaneous conditional variance over

different durations within the interval. The Monte Carlo results of Tse and Yang

(2012) show that the ACD-ICV method gives lower root mean-squared error than

the RV methods in estimating intraday volatility. While Tse and Yang (2012) fo-

cused on the estimation of intraday volatility, in this chapter we apply the ACD-ICV

method to estimate monthly volatility.

The literature so far has little to say about the choice of the estimation method

for monthly volatility. While the RV approach seems to dominate the literature, the

use of the GARCH type of models is not uncommon. In addition, the ACD-ICV

method may be a useful alternative, as it has been shown to perform well for the

estimation of intraday volatility. In this chapter we compare the performance of

the RV, GARCH and ACD-ICV methods using Monte Carlo (MC) experiments and

empirical data from the New York Stock Exchange (NYSE). Our MC results show

that the ACD-ICV method outperforms the RV method in giving lower root mean-

squared error. Indeed, it turns out that the GARCH method performs better than the

RV method in the MC experiments. We also examine the use of the Chicago Board

Options Exchange (CBOE) volatility index (VIX) as a predictor of the volatility for

the next 30 days estimated by the ACD-ICV, RV and GARCH methods using the

S&P500 index. Our results show that VIX predicts the 30-day ACD-ICV volatility

estimates better than the RV estimates.

The rest of the chapter proceeds as follows. Section 2.2 summarizes the RV and

GARCH estimation methods of monthly volatility studied in this chapter. Section

2.3 describes the use of the ACD-ICV method for the estimation of monthly volatil-

ity, and Section 2.4 describes the data used in the empirical study. In Section 2.5

we report some MC results on the comparison of the RV, GARCH and ACD-ICV

methods. The MC study suggests that the best results for the ACD-ICV method

appear to be obtained when the range of the return for defining the price event is

about 0.15% to 0.35%. It also shows that the ACD-ICV method performs very well

against the RV method. Section 2.6 reports our results for the estimation of monthly
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volatility using some empirical data from the NYSE. In Section 2.7 we examine the

use VIX as a predictor of the market volatility over the next 30 days, with market

volatility estimated using the ACD-ICV, RV and GARCH methods. Finally, Section

2.8 concludes.

2.2 Review of Some Monthly Volatility Estimation Meth-

ods

Volatility estimation over monthly or quarterly intervals dated back to the 1970s.

Researchers in earlier work adopted the 12-month rolling standard-deviation esti-

mate as the volatility estimate of the centered month, as in Officer (1973), Fama

(1976), and Merton (1980). Schwert (1989) employed a two-step rolling regression

to construct monthly volatility, which allows the conditional mean return to vary

over time and allows different weights for the lagged absolute unexpected returns.

Since the work of French, Schwert and Stambaugh (1987), Schwert (1989), Schw-

ert (1990a), Schwert (1990b) and Schwert and Seguin (1990), the use of the sum

of the squared daily returns over a month, called the RV method, has emerged as

the most popular method for the estimation of monthly stock volatility. On the other

hand, monthly volatility can also be estimated using GARCH models estimated with

monthly data, or by aggregating daily conditional variances over a month estimated

from GARCH models with daily data. In this section we provide a brief review of

the estimation of monthly volatility using RV and GARCH methods.

2.2.1 RV Method

Let rti denote the return on day i in month t, r̄t denote the average daily return in

month t and Nt denote the number of trading days in month t. The basic RV estimate

of monthly variance, denoted by VR, is defined as

VRM =
Nt

∑
i=1

(rti − r̄t)
2. (2.2.1)
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It is well known that non-synchronous trading of securities causes daily portfolio

returns to be autocorrelated, particularly at lag one (see Fisher (1966) and Scholes

and Williams (1977)). Akgiray (1989) showed that there exists linear dependence in

daily return series of market indices, and the presence of linear dependence can be

attributed to various market phenomena and anomalies. The presence of a common

market factor, the problem of thin trading in some stocks, the speed of information

processing by market participants, and the day-of-week effects may all contribute

to the observed first-order autocorrelation. Because of this autocorrelation, French,

Schwert and Stambaugh (1987) proposed to estimate the variance of the monthly

return as the sum of the squared daily returns plus twice the sum of the products of

adjacent returns, thus resulting in the following estimate of monthly volatility

V ∗
R =

Nt

∑
i=1

r2
ti +2

Nt−1

∑
i=1

rtirt,i+1. (2.2.2)

Note that in the above equation the sample mean of the return is not subtracted from

the daily return, as the effect of this adjustment is usually very small. However,

this return correlation adjustment is found not helpful in improving the monthly

volatility estimation.

The application of VRM and V ∗
R using daily closing prices has been widely adopted

in the literature. Apart from the simplicity of the calculation, the problem of overnight

price jumps is not an issue when daily data are used. However, as monthly volatil-

ity estimates using daily data makes use of only about 21 observations for each

estimate, the accuracy of the estimates may be a concern. As high-frequency data

have become more easily available, we extend the use of monthly RV estimation to

transaction data. For the purpose of using as much data as possible, shorter sam-

pling intervals are preferred. However, returns over short sampling intervals may be

contaminated by market microstructure noise. To balance between these two con-

flicting goals, we use 5-minute price data to calculate the RV. This is in contrast to

Jiang and Tian (2005) and Becker, Clements and White (2007), who used 30-minute

data to compute the RV.
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To extend the use of equation (2.2.1) to intraday returns, we have to consider

the treatment of overnight price jumps. Let x be the closing price of the stock on

a trading day, y be the opening price of the stock on the next trading day, and z

be the price of the stock at the 5th minute of the next trading day. We modify

the calculation of RV in equation (2.2.1), without the mean correction, using two

methods. In the first method, we add, for each overnight transition, the term (logy−

logx)2+(logz− logy)2 to take account of the overnight price change. In the second

method, we treat trading as continuous and add the term (logz− logx)2 only. We

denote the RV estimates of the monthly volatility using these two methods by VR1

and VR2, respectively.

2.2.2 GARCH Method

Another popular method for constructing monthly volatility is to use the GARCH

model. The ARCH model proposed by Engle (1982) is well-known to capture

the clustering of volatility of many economic and financial time series. Bollerslev

(1986) extended the ARCH model to the GARCH model, which provides a more

flexible framework to capture the dynamic structure of conditional variance.

The original GARCH specification assumes that the response of the conditional

variance of a stock to a shock is symmetric with respect to the sign of the shock.

Several extensions of the GARCH model, however, have been proposed to accom-

modate the asymmetry in the response. These include the GJR-GARCH model of

Glosten, Jagannathan, Runkle (1993), the asymmetric GARCH models of Engle

and Ng (1993a), the quadratic GARCH model of Sentana (1995) and the Exponen-

tial GARCH (EGARCH) model of Nelson (1991). Pagan and Schwert (1990) fitted

a number of different models to monthly US stock-return data and found that the

EGARCH model is the best in overall performance. Engle and Ng (1993b) also

concluded that the EGARCH model does a good job in capturing the asymmetry of

conditional volatilities. In this chapter we adopt the EGARCH model to estimate

monthly stock volatility.
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In the EGARCH model, the conditional variance, σ2
t , is an asymmetric function

of the lagged disturbances εt−i. Specifically, we have

logσ2
t = ω +

q

∑
i=1

αig(zt−i)+
p

∑
j=1

β j logσ2
t− j, (2.2.3)

where

g(zt) = θzt + γ [|zt |−E|zt |], (2.2.4)

with zt = εt/σt . As argued in Nelson (1991), the generalized error distribution

(GED) is a more flexible assumption for the distribution of εt , because it encom-

passes the normality assumption as a special case, as well as many other distribu-

tions. The density function of the GED distribution with parameter ν > 0 is defined

as

f (z) =
ν exp[−(1

2)|z/λ |ν ]
λ 21+1/νΓ(1/ν)

, −∞ < z < ∞,0 < ν ≤ ∞, (2.2.5)

where Γ(·) denotes the gamma function and λ ≡ [2(−2/ν)Γ(1/ν)/Γ(3/ν)]1/2.

In this chapter, we adopt the EGARCH(1, 1) model defined by

logσ2
t = ω +α

εt−1

σt−1
+β

∣∣∣∣ εt−1

σt−1

∣∣∣∣+ γ logσ2
t−1. (2.2.6)

There are two approaches of using the EGARCH(1, 1) method to estimate monthly

volatility. First, we use monthly data and calculate the estimated conditional vari-

ance σ̂2
t and denote it by V M

G . Second, we estimate the EGARCH(1, 1) model using

daily data and compute the daily conditional variance σ̂2
ti , for t = 1, · · · ,N, over N

days of the month t. We then aggregate the estimated daily conditional variances

and denote it by V D
G , so that

V D
G =

N

∑
t=1

σ̂2
ti. (2.2.7)

In our study we find that V D
G performs dramatically better than V M

G ; hence, we only

report V D
G for the GARCH measures.

In sum, we consider RV estimates VRM, VR1 and VR2, as well as EGARCH es-

timates V D
G . In addition, VR1 and VR2 use 5-minute data, whereas VRM and V D

G use
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daily data.

2.3 Monthly Volatility Estimation using ACD Models

The ACD model was first proposed by Engle and Russell (1998) to analyze the

durations of transaction data. A recent review of the literature on the ACD models

and their applications to finance can be found in Pacurar (2008). Analogous to

the GARCH model, which captures the clustering of volatility, the ACD model

analyzes the clustering of transaction duration. The latter phenomenon describes

the stylized fact that short (long) transaction durations tends to be followed by short

(long) transaction durations.

Adopting the augmented ACD (AACD) model proposed by Fernandes and Gram-

mig (2006), Tse and Yang (2012) proposed to estimate intraday volatility by in-

tegrating the instantaneous conditional variance per unit time estimated from the

AACD model, resulting in the ACD-ICV method. In this section, we first review

the ACD-ICV method proposed by Tse and Yang (2012), followed by an outline of

the modification of this method for the estimation of monthly volatility.

2.3.1 ACD-ICV Method

Let t0, t1, · · · , tN denote a sequence of times for which ti is the time of the ith price

event, to be defined below.1 Thus, xi = ti − ti−1, for i = 1,2, · · · ,N, are the intervals

between consecutive price events, called price duration. In Tse and Yang (2012), a

price event occurs if the cumulative change in the logarithm transaction price since

the last price event is at least of a preset amount δ , called the price range. Thus,

from time ti−1 to ti, the price changes by at least an amount δ , whether upwards

or downwards. Let Φi be the information set upon the transaction at time ti, and

denote ψi = E(xi |Φi−1), which is the conditional expectation of the transaction du-

ration. The standardized durations, εi = xi/ψi, are assumed to be independently and

1In this section t denotes the intraday time, not month notation t.
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identically distributed positive random variables. If σ2(t |Φi) is the instantaneous

variance of the return per unit time at time t, for ti < t < ti+1, conditional upon

the information Φi, the integrated conditional variance over the interval (ti, ti+1),

denoted by ICVi, is

ICVi =
∫ ti+1

ti
σ2(t |Φi)dt,

=
δ 2

ψi+1

∫ ti+1

ti
λ
(

t − ti
ψi+1

)
dt,

(2.3.1)

where λ (·) is the hazard function of the standardized durations ε . See the details of

the above derivation in Tse and Yang (2012).

Tse and Yang (2012) proposed estimating the hazard function using a semipara-

metric (SP) method, which does not specify the distribution of ε . However, if ε

are assumed to follow the standard exponential distribution the hazard function is

constant and the integrated conditional variance in the interval (ti, ti+1) is reduced

from equation (2.3.1) to the simple result

ICVi = δ 2
[

ti+1 − ti
ψi+1

]
. (2.3.2)

For estimating the volatility over one trading day, t0 and tN are the opening and

closing times of the day, respectively, while t1, · · · , tN−1 are the time of occurrence

of the price events within the day. Thus, the integrated conditional variance of the

day, denoted by ICV, is

ICV = δ 2
N−1

∑
i=0

ti+1 − ti
ψi+1

. (2.3.3)

The implementation of the ACD-ICV method to estimate monthly volatility depends

on the price data available. If only daily data are available, the price changes over

each day may be too big for the transaction durations to be precisely approximated.

One remedy to overcome this difficulty is to linearly intrapolate the daily closing

prices to obtain a continuous-time price function, from which the transaction dura-

tions are computed. This approach, however, is found to incur large errors in the
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estimation and has to be abandoned. An alternative is to resort to using higher fre-

quency data. In this chapter we use transaction data. We ignore the overnight close

of the market and treat the first trade of each day as continuously away from the

last trade of the previous trading day. Hence, given the return range δ we compile

t1, · · · , tN−1 based on the continues transaction data as the price-event times over a

month. We then apply equation (2.3.3) to estimate the integrated conditional vari-

ance of the month.

2.3.2 ACD and AACD Models

The use of equation (2.3.3) requires estimates of the conditional expected duration

ψi+1. Tse and Yang (2012) employ the AACD model for this purpose.

Engle and Russell (1998) proposed the ACD(p,q) model for the analysis of

transaction duration, which is defined by

ψi = ω +
p

∑
j=1

α jxi− j +
q

∑
j=1

β jψi− j. (2.3.4)

Setting p = q = 1, we obtain the ACD(1,1) model as

ψi = ω +αxi−1 +βψi−1, (2.3.5)

where α,β and ω ≥ 0, with α +β ≤ 1.

Recently, Fernandes and Grammig (2006) proposed some extensions of the

ACD(1,1) model, including incorporating a Box-Cox type transformation with pos-

sible asymmetry in the duration shocks. In Tse and Yang (2012), they adopt the

AACD model of Fernandes and Grammig (2006), which is defined by

ψλ
i = ω +αψλ

i−1[|εi−1 −b|+ c(εi−1 −b)]υ +βψλ
i−1. (2.3.6)

The AACD model nests the ACD(1,1) model as a special case and provides a more

flexible model for the conditional expected duration. The parameter λ > 0 deter-
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mines the shape of the transformation, with λ ≥ 1 representing a convex transfor-

mation and λ ≤ 1 representing a concave transformation. Asymmetric responses in

duration shocks are permitted through the shift parameter b and the rotation param-

eter c. The shape parameter υ assumes a similar role as λ . As in the case of the

ACD(1,1) model, the parameters α , β and ω are assumed to be nonnegative. How-

ever, Tse and Yang (2012) find that the ICV estimates are not sensitive to the choice

of ACD(1,1) or AACD model, so considering estimation of monthly volatility us-

ing hundred of thousands tick data, AACD model is computationally expensive and

beneficial little over ACD(1,1) model, we shall use ACD(1,1) model for this pur-

pose.

Given an assumed density function f (·) for ε , the maximum likelihood estimates

(MLE) of the parameters of the ACD equation can be computed straightforwardly.

A particularly simple model is the case when ε are assumed to be standard expo-

nential, which results in the quasi MLE (QMLE) method. As shown by Drost and

Werker (2004) the QMLE method is consistent provided the conditional expected

duration equation is correctly specified, regardless of the true distribution of the

standardized duration. However, if the exponential distribution assumption is in-

correct it may induce error in the computation of the conditional intensity function

and hence the integrated conditional variance. While this issue can be resolved by

employing the semiparametric (SP) method, Tse and Yang (2012) showed that the

QMLE and SP methods produce very similar results for the ACD-ICV estimates. As

the SP method is computationally very intensive, we shall adopt the QMLE method

in this chapter.

Under the exponential assumption the ACD-ICV estimate, denoted by VA, is

given by

VA = δ 2
N−1

∑
i=0

ti+1 − ti
ψ̂i+1

, (2.3.7)

where ψ̂i+1 is the QMLE of ψi+1. The choice of δ affects the fit of the ACD(1,1)

model for price duration, and hence the performance of VA as an estimate of the

monthly ICV. We shall vary δ from 0.15% through 0.35% in steps of 0.05%, and
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denote the resulting estimates by VA j for j = 1, · · · ,5, respectively, to correspond to

δ being 0.15%, 0.20%, 0.25%, 0.30% and 0.35%.

We compare the performance of the different estimates of monthly volatility

using a MC study and empirical data from the NYSE. The MC study will throw

light on the optimal choice of δ for the ACD-ICV method. In the next section we

describe the data used in the empirical study.

2.4 NYSE Data

We apply the RV, GARCH and ACD-ICV methods to estimate monthly volatility us-

ing empirical data from the Trade and Quotation (TAQ) database provided through

the Wharton Research Data Services (WRDS). The TAQ data files contain continu-

ously recorded information on the trades and quotations for the securities listed on

the NYSE, the American Stock Exchange (AMEX), and the National Association of

Security Dealers Automated Quotation system (NASDAQ). We select ten actively

traded stocks listed on the NYSE without company merger and acquisition from

2003 through 2007, with 60 months of data. The price changes due to stock splits

are adjusted according to the capitalization of the company. The selected stocks and

their codes are summarized in Table 2.1.

We extract stock transaction prices from 9:30 to 16:00 on each day. When no

trade occurred exactly at the required end of interval, the price of the last transaction

was recorded. In addition, we also record the overnight price jumps of the stocks.

2.5 Monte Carlo Study

We conduct MC experiments to compare the performance of the RV, GARCH and

ACD-ICV estimates of monthly volatility. As the assumption underlying the the-

oretical derivation of RV in the literature is that the logarithmic stock price fol-

lows a Brownian semimartingale (BSM), we create artificial data generation pro-

cesses along this line. We denote the observed price at time t by p(t) and denote
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p̃(t) = log p(t), which is assumed to follow the BSM

p̃(t) =
∫ t

0
µ(t)dt +

∫ t

0
σ(t)dW (t), (2.5.1)

where µ(t) is the instantaneous drift rate, σ2(t) is the instantaneous variance and

W (t) is a standard Brownian process. For each MC sample, we generate data over

5 years, with a total of 60 months of observations.

For the drift term µ(t) we consider two different artificial processes, which are

plotted in Figure 2.1. For the variance process σ2(t) we consider two methods:

deterministic volatility and stochastic volatility models, which will be described in

the next two subsections. Given the drift term µ(t) and the variance term σ2(t), we

generate the logarithmic price series p̃(t) by the equation

p̃(t +∆t) = p̃(t)+µ(t)∆t +σ(t)
√

∆t ε, (2.5.2)

where ε ∼ N(0,1). We take ∆t to be one second so that we generate price series

at one-second intervals and the starting price is $100. We further add to the series

sB(u) a jump component sJ(u), which is assumed to follow a Poisson process with a

mean of 0.4 per five minutes. When a jump occurs, it takes value of –$0.05, –$0.03,

$0.03 and $0.05 with probabilities of 0.25 each. Finally, we consider a price process

consisting of a BSM and a white noise; following the definition of noise-to-signal

(NSR) ratio NSR = [Var{ε(t)}/Var{σ(t)}] 1
2 in Tse and Yang (2012), for similarly,

we set NSR = 0.6.

From the generated price series pt we round the price to the cent and sample

the rounded price by 1 cent to get the transaction price for ACD-ICV estimation;

after which we also sample the transaction price at 5-minute and one-day intervals,

depending on the estimation method for the monthly volatility.
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2.5.1 Deterministic Volatility Model

For the deterministic instantaneous variance term σ2(t), we assume two artificial

processes: a sinusoidal function and an empirical function. The sinusoidal function

has cycles of volatility taking the form

σ(t) = 0.05sin
(

2tπ
30

+
π
2

)
+0.15, t = 1, · · · ,60, (2.5.3)

called DV Model 1. To construct an empirical volatility process we estimate an

EGARCH(1, 1) model described by equation (2.2.6) using 5-year daily prices of the

stock GE employing data in the period 2003-2007. The estimated parameters are:

ω̂ = −0.1873, α̂ = −0.0264, β̂ = 0.1191 and γ̂ = 0.9899 with r̂ = 1.3909. The

deterministic empirical volatility function is then smoothed by applying a spline

function to the estimated conditional variance function over 60 months. This model

is called DV Model 2. Figure 2.2 shows the two deterministic volatility models in

our MC experiments.

2.5.2 Stochastic Volatility Model

For the stochastic volatility model we consider the set-up due to Heston (1993).

Thus, we assume the following generation process for the logarithmic price

d p̃(t) =
(

µ(t)− σ2(t)
2

)
dt +σ(t)dW1(t), (2.5.4)

and

d σ2(t) = κ(α −σ2(t))dt + γσ(t)dW2(t), (2.5.5)

where W1(t) and W2(t) are standard Brownian processes with a correlation coeffi-

cient of ρ . Two different sets of parameters are adopted for the Heston model.

First, we use the model defined in Aı̈t-Sahalia and Mancini (2008), which was

also adopted by Tse and Yang (2012). Specifically, we set κ = 5, α = 0.04, γ = 0.5

and ρ = −0.5. Furthermore, we apply the same drift terms µ(t) defined in Figure
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1 to the stochastic volatility models. We call this parametric set-up SV Model 2.

Second, we vary SV Model 2 by setting the reversion-rate parameter κ to 4 and the

volatility-rate parameter γ to 0.4. We call this parametric set-up SV Model 1; we

also set the reversion-rate parameter κ to 6 and the volatility-rate parameter γ to 0.6

and this set-up is called SV model 3. As before, price data are generated second by

second, and then sampled to get transaction data, 5-minute and one-day intervals

depending on the estimation method required.

2.5.3 Overnight Price Jump

While BSM may approximate price movements when the market is open, the pro-

cess is disrupted when the market is closed. To this effect, it is important to ex-

amine how overnight price jumps affect the performance of the monthly volatility

estimates. While the estimation of intraday volatility can be studied without taking

account of overnight price jumps, this issue cannot be overlooked when the objec-

tive is to estimate monthly volatility. Table 2.2 summarizes some statistics for the

distribution of the overnight returns of the ten NYSE stocks in our sample. The

results show that the absolute values of the minimum and maximum of many of the

stocks are larger than 10%.

We consider two models for fitting the overnight return: the generalized normal-

distribution model and the t-distribution model. We also consider the empirical

price jumps randomly drawn from the true jumps computed from the 10 NYSE

stocks. Thus, if y denotes the overnight return, the generalized normal-distribution

model states that y ∼ GN(µ,α,β ), with

f (y) =
β

2αΓ(1/β )
e−(|y−u|/α). (2.5.6)
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On the other hand, the t-distribution model states that the density function of y is

f (y) =
Γ
(

ν +1
2

)
σ
√

νπ Γ
(ν

2

)


ν +

(
y−µ

σ

)2

ν


− ν+1

2

, (2.5.7)

where µ and σ are the location and scale parameters, respectively, and ν is the

degrees of freedom.

We estimate the generalized normal model and t model for overnight returns of

the sample of ten stocks using the maximum likelihood method. The results are

summarized in Table 2.3. Figure 2.3 presents the QQ plots of five stocks in the

sample. It can be seen that the generalized normal model and t model both appear

to fit the overnight returns well. In our MC experiments, however, we consider both

models. Based on the results in Table 2-3, we set µ = 0, α = 0.0026, β = 0.69 for

the generalized normal distribution model in our MC study. For the parameters of

the t-distribution model, we set σ = 0.004, µ = 0 and ν = 2.5. We also consider

less fatter tails of the overnight returns by setting µ = 0, α = 0.0032, β = 0.74 for

the generalized normal distribution model and σ = 0.0046, µ = 0 and ν = 2.75,

which is called robust check 1. Further, for the fatter tailed model, we set µ = 0,

α = 0.0021, β = 0.64 for the generalized normal distribution model and σ = 0.003,

µ = 0 and ν = 2.25, which is called robust check 2.

In sum, we consider the following four processes of generating stock prices:

BSM without empirical price jumps, BSM with overnight returns following gener-

alized normal distribution, BSM with overnight returns following the t distribution

and BSM with randomly drawn empirical price jumps.

2.5.4 Monte Carlo Results

Tables 2.4 through 2.9 summarize the MC results comparing the performance of dif-

ferent monthly volatility estimates based on their mean error (ME) and root mean-

squared error (RMSE). All results are estimated using 1,000 MC replications. As
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the results for the two drift-term models are qualitatively similar, for the robustness

MC check in Table 2.8 and Table 2.9, we present the results for Drift Model 1 only.

Tables 2.4 shows the results for the case when there are no overnight price

jumps. These results throw light on markets with continuous trading for which the

price process can be approximated by pure BSM. In this case, VR1 and VR2 perform

better than the ACD-ICV method, and the ACD-ICV methods perform better than

VRM and V D
G . Since there are no overnight price jumps, VR1 is numerically the same

as VR2, so we only report VR1 in this case. It should be noted, however, that the VA

estimates use tick data, while the VR and V D
G estimates use daily data.Surprisingly,

V D
G outperforms VRM in all reported cases, although the latter is far more widely

used in the literature.

The results for the cases when there are overnight price jumps are summarized

in Tables 2.5 through 2.9. The VA estimates perform the best for the deterministic

volatility and stochastic volatility models, providing lower RMSE versus VR1 and

VR2, which use tick data. Of the two RV estimates using 5-minute data, VR1 performs

slightly better than VR2, although the difference is not large. Rather surprisingly, for

the deterministic volatility models, V D
G based on daily data performs well against the

VR j estimates based on 5-minute data. The results are, however, slightly different

for the stochastic volatility models, for which VR j clearly outperforms better than

V D
G . As in the case with no overnight price jumps, if only daily data are available

for estimation, GARCH estimates outperform RV estimates.

Table 2.5 and 2.6 present the results of overnight price jumps with parameters

estimated empirically for generalized normal distribution and t distribution respec-

tively. Table 2.7 shows the results of overnight jumps randomly drawn from the

empirical price jumps. The optimal price range is different for different volatility

models and different distribution models. For the generalized normal distribution,

lowest RMSE is achieved at δ = 0.35%, 0.25%, 0.3%, 0.25% and 0.2% for MV1,

MV2, SV1, SV2 and SV3 respectively; for t distribution, lowest RMSE is achieved

at δ = 0.15% for all volatility models. However, the ACD-ICV measure which
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achieved lowest RMSE is slightly lower than the other ACD-ICV measures for all

the volatility models, and the difference is quite small. Not surprisingly, the case

for overnight prices jumps randomly drawn from empirical jumps is similar to the

case of generalized normal distribution.

Table 2.8 and 2.9 present the results of Robustness MC check for the generalized

normal distribution and t distribution. Panel A in Table 2.8 and 2.9 show less fatter

tails for the overnight returns, however, panel B present much fatter tails. The results

are similar to Table 2.5 and 2.6.

Figure 2.4 through 2.9 present examples of monthly volatility plots over a sam-

ple of 60 months. Note that all estimates trace the true volatility quite closely,

although the RV estimates appear to be more volatile, especially for the stochastic

volatility model.

In sum, the ACD-ICV method compares very well against the RV method for

estimating monthly volatility when existence with overnight price jumps. The best

results for the ACD-ICV method are obtained for δ in the range of 0.15% to 0.35%.

When high-frequency data are available, the ACD-ICV method gives lower RMSE

than the RV method. The GARCH method based on daily data, which is less popular

in the literature for estimating monthly volatility, performs better than the widely

used RV method.

2.6 Empirical Results for NYSE Data

We estimate the monthly volatility for the ten NYSE stocks in our sample. Figure

2.10 plots the monthly volatility estimates of the ten stocks for the 60 months over

the period 2003 through 2007. To avoid jamming the figures, only the estimates VA3

(for δ = 0.25%), VR1 and V D
G are presented. It can be seen that all estimates track

each other quite closely, and there does not appear to be any systematic bias among

the different methods. The RV method VR1, however, exhibits a few extreme values

of high volatility estimates and generally have the largest fluctuations among the
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three methods. It is interesting to observe that the volatility paths of the different

stocks show significant co-movements.

Table 2.10 summarizes the average correlations across selected volatility estima-

tion methods over the ten stocks in the sample period. It is noted that the pairwise

correlations of VA1, VA3, VA5, VR1, VRM and V D
G are all above 0.6. The pairwise cor-

relation coefficients of the volatility estimates VA3, VR1 and V D
G of the ten stocks are

summarized in Table 2.11. It can be seen that the correlations are highest for VA3,

followed by V D
G and then VR1. Specifically, of the 45 pairs of volatility correlations

93.3% are maximized when VA3 is used as the volatility estimate, the remaining

6.7% are maximized when V D
G is used as the volatility estimate, while none for

VR1. Many studies in the literature examine the effects of macroeconomic variables

on stock volatility, and generally points to the co-movements of volatility across

stocks. Thus, the ACD-ICV estimates support a higher volatility co-movement ver-

sus estimates based on the RV method. It will be interesting to further investigate

volatility co-movements using the ACD-ICV estimates, in particular in relation to

macroeconomic variables such as inflation, exchange rate, GDP growth and interest

rate movements.

2.7 Volatility of S&P500

Implied volatility computed from option prices has often been used as a predictor for

future historical volatility. The S&P500 Index volatility has been a case of particular

research interest in the literature due to the popular reference to the CBOE volatility

index VIX. Whaley (2009) provided a description of VIX and discussed some of

its properties. In this section we examine the use of VIX as a predictor for future

historical volatility when RV, GARCH and ACD-ICV estimates are used as proxies

for historical volatility.

VIX is calculated and disseminated in real time by CBOE. It is a forward-

looking index of the expected return volatility of the S&P500 Index over the next 30
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calendar days and is implied from the prices of S&P500 Index options. The VIX in-

dex is quoted in percentage points as the annualized standard deviation of the return

of the S&P500 Index over the next 30 days. It is based upon a model-free formula

using a wide range of selected near- and near-term put and call options. Studies in

the literature on the forecasting performance of implied volatility often use RV as

the proxy for historical volatility. Jiang and Tian (2005) and Becker, Clements and

White (2007) used RV computed over 30-day intervals as proxy for 30-day histori-

cal volatility in their studies on the information content of VIX on the volatility of

the S&P500. Recently, Chung, Tsai, Wang and Weng (2011) considered both VIX

and VIX options as predictors for the RV of the S&P500, although they did not

specify the RV method used. We shall investigate the forecasting performance of

VIX for the volatility of S&P500 when historical volatility is estimated by GARCH

and ACD-ICV, and compare the results against using RV.

We downloaded daily closing values of VIX from the website of the CBOE.

S&P500 tick data were obtained from The Institute for Financial Markets (IFM)

Data Center. The sample period is from 1998 through 2007, with 2516 daily obser-

vations. 5-minute S&P500 data were extracted from 8:30 to 15:00 (Chicago time)

each day.

We select N time points in the sample period that are at least 30 calendar days

apart and denote them by ti, for i = 1, · · · ,N. Altogether there are 117 nonoverlap-

ping 30-day intervals in our sample (N = 117). Let VIXi be the closing value of VIX

at date ti. We denote Yi generically as an estimate of the historical volatility over the

30-day period starting from time ti. Let Yi be VR1,V D
G or VA j, for j = 1, · · · ,5, so that

historical estimates using the RV, GARCH and ACD-ICV methods are considered.

We also denote Ri as the 30-day return of the S&P500 starting from time ti. Table

2.12 summarizes the correlations between VIX and different estimates of 30-day

volatility over the forecast intervals of VIX. It can be seen that VR1 has the lowest

correlation with VIX, whereas VA1 and VA2 have the highest correlations.

To examine the relationship between return and volatility we consider the re-
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gression of return on VIX and contemporaneous volatility. Thus, we estimate the

following regression equations

Ri = α +βXi +ξi, (2.7.1)

and

Ri = α +βX2
i +ξi, (2.7.2)

for i = 1, · · · ,N, where Xi is VIX at time ti or historical volatility estimate Yi. In

the former case, return is regressed on volatility forecast, while in the latter case

we consider a contemporaneous return-volatility relationship. The results are sum-

marized in Table 2.13. We can see that VIX, VA1, VR1, VRM and V D
G are statisti-

cally significant, while all other regressors are insignificant at the 5% level. Overall

the return-volatility relationship is quite weak, which is in line with the results in

Chung, Tsai, Wang and Weng (2011).

More importantly, we consider the regressions of historical volatility estimates

on volatility forecasts using VIX. Thus, we estimate the following regression equa-

tions

Yi = α +β VIXi +ξi, (2.7.3)

and

Y 2
i = α +β VIX2

i +ξi, (2.7.4)

for i = 1, · · · ,N. The results are summarized in Table 2.14. It can be seen that R2

is the highest for the regressions with the ACD-ICV measures as the dependent

variables. Rather remarkably, the regressions with VR1 as the dependent variable

produce the lowest R2. These results show that VIX is a more successful predictor

of future volatility if volatility is estimated by the ACD-ICV method but not the RV

method. Figure 11 plots VIX and some historical volatility estimates. VIX appears

to be more volatile than the historical volatility it predicts. There are some periods

for which VIX over-predicts volatility as estimated by VR1. This over-prediction,
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however, is not evident if historical volatility is estimated by the ACD-ICV method.

Overall, our results show that VIX has higher prediction value if its performance is

measured against historical estimates using the ACD-ICV method.

2.8 Conclusion

In this chapter we have extended the ACD-ICV method proposed by Tse and Yang

(2012) to estimate stock volatility over longer intervals such as a month. Estimation

of low-frequency volatility is important for studies involving macroeconomic data

that are available only monthly or quarterly. In addition, returns over longer inter-

vals are less susceptible to the contamination of noise over short intervals and may

be preferred in studies on asset pricing. Our MC study suggests that price events de-

fined by return of about 0.15% to 0.35% are appropriate for the ACD-ICV method.

Based on the transaction data, the ACD-ICV method outperforms the RV method in

our MC experiments. On the other hand, if daily data are used, the GARCH method

based on aggregating the daily estimates of conditional variance is superior to the

RV method, which is widely used in the literature.

Our empirical results using ten NYSE stocks show that the ACD-ICV, RV and

GARCH estimates track each other quite closely. The RV estimates, however,

have larger fluctuations and exhibit occasionally extreme volatility estimates. Co-

movements of volatility across different stocks are highest according to the ACD-

ICV estimates. Our empirical study on VIX and the S&P500 index shows that VIX

is a more successful predictor of future volatility if volatility is estimated by the

ACD-ICV method than the RV method.

Overall we have shown that using the ACD-ICV method on high-frequency data

(tick transaction data) provides superior estimates of low-frequency volatility (over

monthly intervals) to the RV method. If only daily data are available, however,

monthly volatility computed by aggregating the daily conditional variance estimates

of the GARCH model provides a better estimate than the RV method. As better
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volatility estimates may help improve the pricing of derivatives and enhance the

robustness of inference in asset pricing, the ACD-ICV method should provide a

useful tool in empirical research.
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Table 2.1: Stocks

Stock Code

Bank of America Corp BAC

General Electric GE

Merck & Co Inc MRK

Johnson & Johnson JNJ

JP Morgan JPM

Wal Mart WMT

IBM IBM

Pfizer PFE

AT&T Inc. T

Chevron Corporation CVX
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Table 2.2: Summary statistics of overnight returns

Quantile

Code Min 5% 25% 50% 75% 95% Max

BAC -0.2559 -0.0124 -0.0037 0.0000 0.0032 0.0119 0.1061

GE -0.1030 -0.0108 -0.0032 0.0000 0.0033 0.0112 0.0777

MRK -0.2997 -0.0127 -0.0035 0.0000 0.0036 0.0112 0.0633

JNJ -0.1809 -0.0111 -0.0030 0.0000 0.0034 0.0107 0.0489

JPM -0.1245 -0.0153 -0.0037 0.0000 0.0044 0.0157 0.0808

WMT -0.0931 -0.0130 -0.0039 0.0000 0.0047 0.0136 0.0849

IBM -0.1553 -0.0118 -0.0030 0.0000 0.0034 0.0126 0.1377

PFE -0.1638 -0.0134 -0.0033 0.0000 0.0044 0.0136 0.1078

T -0.1313 -0.0121 -0.0031 0.0000 0.0035 0.0111 0.0603

CVX -0.0518 -0.0097 -0.0025 0.0000 0.0034 0.0094 0.0382
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Table 2.3: Estimation of overnight-return models

Generalized Normal Local t

Code µ α β µ σ ν

BAC -0.0003 0.0025 0.6757 -0.0001 0.0043 2.1674

GE 0.0001 0.0027 0.7258 0.0000 0.0042 2.4911

MRK -0.0002 0.0029 0.7224 0.0001 0.0045 2.4651

JNJ 0.0001 0.0022 0.6731 0.0002 0.0043 2.6833

JPM 0.0003 0.0023 0.6107 0.0004 0.0051 2.0563

WMT 0.0004 0.0039 0.7847 0.0004 0.0051 2.5951

IBM 0.0002 0.0023 0.6572 0.0002 0.0039 1.9239

PFE 0.0004 0.0034 0.7432 0.0005 0.0048 2.2945

T 0.0000 0.0004 0.4173 0.0002 0.0042 2.3526

CVX 0.0004 0.0034 0.8735 0.0005 0.0039 2.9249
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Table 2.4: Monte Carlo results without overnight jumps.

Volatility Model
MV1 MV2 SV1 SV2 SV3

method ME RMSE ME RMSE ME RMSE ME RMSE ME RMSE

Panel A: Drift Model 1

VA1 0.538 0.654 0.578 0.681 0.894 1.115 0.839 1.061 0.816 1.041
VA2 0.422 0.604 0.458 0.614 0.724 1.014 0.686 0.984 0.685 0.975
VA3 0.350 0.603 0.377 0.596 0.616 0.994 0.599 0.977 0.624 0.990
VA4 0.302 0.630 0.322 0.607 0.544 1.012 0.558 1.021 0.600 1.054
VA5 0.272 0.669 0.298 0.639 0.507 1.060 0.540 1.089 0.587 1.131
VR1 0.043 0.272 0.034 0.325 0.025 0.519 0.028 0.486 0.031 0.466
VRM -0.514 2.395 -0.624 2.892 -1.037 4.675 -0.957 4.358 -0.906 4.165
V D

G 0.133 1.745 0.191 1.916 0.446 3.769 0.535 3.797 0.654 3.825

Panel B: Drift Model 2

VA1 0.554 0.666 0.596 0.699 0.949 1.172 0.882 1.106 0.856 1.080
VA2 0.435 0.612 0.472 0.627 0.771 1.059 0.725 1.022 0.715 1.003
VA3 0.356 0.607 0.387 0.604 0.654 1.030 0.631 1.007 0.655 1.018
VA4 0.311 0.631 0.331 0.613 0.576 1.042 0.587 1.045 0.624 1.072
VA5 0.286 0.673 0.306 0.643 0.534 1.091 0.562 1.109 0.606 1.149
VR1 0.044 0.272 0.035 0.325 0.026 0.520 0.029 0.486 0.032 0.466
VRM -0.514 2.395 -0.624 2.892 -1.037 4.675 -0.957 4.358 -0.906 4.165
V D

G 0.133 1.747 0.203 1.915 0.446 3.768 0.536 3.797 0.656 3.825

Notes: ME = mean error, RMSE = root mean-squared error. The results are based on 1000 MC
replications of 5-year monthly volatility. All figures are in percentage. VA1, VA2,VA3, VA4, VA5 is
ACD-ICV volatility measures for δ =0.15%,0.2%, 0.25%, 0.3%, 0.35% respectively. VR1 is realized
volatility defined in Section 2.1. VRM is realized volatility defined in equation (1). V D

G is GARCH
estimates based on daily data.
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Table 2.5: Monte Carlo results with overnight jumps following Generalized Normal Distribution

Volatility Model
MV1 MV2 SV1 SV2 SV3

method ME RMSE ME RMSE ME RMSE ME RMSE ME RMSE

Panel A: Drift Model 1

VA1 0.249 1.890 0.502 1.321 0.827 1.659 0.606 1.850 0.424 2.061
VA2 0.094 1.890 0.328 1.287 0.566 1.547 0.359 1.780 0.193 2.022
VA3 0.006 1.892 0.227 1.280 0.406 1.513 0.218 1.762 0.077 2.046
VA4 -0.048 1.873 0.160 1.288 0.301 1.501 0.142 1.783 0.030 2.072
VA5 -0.077 1.849 0.111 1.288 0.237 1.526 0.106 1.820 0.024 2.085
VR1 -0.182 2.860 -0.124 2.563 -0.066 2.026 -0.087 2.164 -0.104 2.273
VR2 -0.184 2.870 -0.127 2.576 -0.068 2.046 -0.089 2.182 -0.106 2.289
VRM -0.885 4.042 -0.919 4.211 -1.224 5.403 -1.170 5.170 -1.138 5.039
V D

G 0.436 2.328 0.390 2.301 0.330 3.808 0.349 3.864 0.385 3.927

Panel B: Drift Model 2

VA1 0.274 1.895 0.530 1.327 0.904 1.735 0.672 1.901 0.485 2.103
VA2 0.111 1.890 0.347 1.287 0.632 1.603 0.411 1.823 0.240 2.056
VA3 0.020 1.889 0.243 1.279 0.459 1.562 0.263 1.795 0.116 2.070
VA4 -0.036 1.868 0.173 1.284 0.347 1.541 0.179 1.815 0.065 2.093
VA5 -0.069 1.847 0.121 1.285 0.275 1.558 0.139 1.845 0.050 2.104
VR1 -0.181 2.860 -0.123 2.563 -0.064 2.026 -0.086 2.164 -0.103 2.272
VR2 -0.183 2.870 -0.126 2.575 -0.066 2.046 -0.088 2.182 -0.105 2.289
VRM -0.884 4.042 -0.919 4.211 -1.224 5.403 -1.169 5.170 -1.138 5.039
V D

G 0.439 2.327 0.413 2.329 0.327 3.804 0.350 3.863 0.385 3.926

Notes: ME = mean error, RMSE = root mean-squared error. The results are based on 1000 MC
replications of 5-year monthly volatility. All figures are in percentage. VA1, VA2,VA3, VA4, VA5 is
ACD-ICV volatility measures for δ =0.15%,0.2%, 0.25%, 0.3%, 0.35% respectively. VR1 and VR2

are realized volatility defined in Section 2.1. VRM is realized volatility defined in equation (1). V D
G is

GARCH estimates based on daily data. Overnight returns are generalized normally distributed with
µ = 0,α = 0.0026,β = 0.69.
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Table 2.6: Monte Carlo results with overnight jumps following t Distribution

Volatility Model
MV1 MV2 SV1 SV2 SV3

method ME RMSE ME RMSE ME RMSE ME RMSE ME RMSE

Panel A: Drift Model 1

VA1 -1.165 2.106 -0.767 1.402 -0.065 1.496 -0.341 1.779 -0.562 2.061
VA2 -1.320 2.202 -0.941 1.510 -0.321 1.511 -0.587 1.826 -0.796 2.121
VA3 -1.411 2.256 -1.041 1.581 -0.484 1.558 -0.732 1.872 -0.913 2.179
VA4 -1.463 2.272 -1.108 1.636 -0.589 1.595 -0.810 1.921 -0.959 2.216
VA5 -1.493 2.274 -1.154 1.670 -0.659 1.648 -0.846 1.962 -0.974 2.230
VR1 -1.705 3.537 -1.456 3.145 -1.038 2.462 -1.143 2.647 -1.225 2.791
VR2 -1.707 3.543 -1.458 3.152 -1.037 2.473 -1.142 2.656 -1.225 2.799
VRM -2.369 4.685 -2.215 4.717 -2.167 5.716 -2.197 5.534 -2.230 5.443
V D

G -1.092 2.460 -0.905 2.405 -0.595 3.759 -0.654 3.801 -0.680 3.847

Panel B: Drift Model 2

VA1 -1.143 2.094 -0.741 1.380 0.011 1.552 -0.276 1.818 -0.502 2.082
VA2 -1.304 2.192 -0.923 1.494 -0.257 1.548 -0.534 1.848 -0.746 2.139
VA3 -1.398 2.246 -1.027 1.570 -0.432 1.591 -0.687 1.891 -0.874 2.188
VA4 -1.454 2.269 -1.097 1.624 -0.545 1.623 -0.773 1.935 -0.927 2.224
VA5 -1.484 2.269 -1.146 1.661 -0.617 1.669 -0.813 1.976 -0.945 2.238
VR1 -1.704 3.537 -1.455 3.144 -1.037 2.462 -1.142 2.646 -1.224 2.790
VR2 -1.706 3.542 -1.457 3.152 -1.036 2.472 -1.141 2.655 -1.223 2.798
VRM -2.369 4.685 -2.215 4.717 -2.167 5.716 -2.196 5.534 -2.231 5.443
V D

G -1.116 2.469 -0.922 2.398 -0.595 3.758 -0.657 3.799 -0.680 3.845

Notes: ME = mean error, RMSE = root mean-squared error. The results are based on 1000 MC repli-
cations of 5-year monthly volatility. All figures are in percentage. VA1, VA2,VA3, VA4, VA5 is ACD-ICV
volatility measures for δ =0.15%,0.2%, 0.25%, 0.3%, 0.35% respectively. VR1 and VR2 are realized
volatility defined in Section 2.1. VRM is realized volatility defined in equation (1). V D

G is GARCH
estimates based on daily data. Overnight returns are t distributed with µ = 0,σ = 0.004,ν = 2.5.
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Table 2.7: Monte Carlo results with overnight jumps randomly drawn from the empirical jumps

Volatility Model
MV1 MV2 SV1 SV2 SV3

method ME RMSE ME RMSE ME RMSE ME RMSE ME RMSE

Panel A: Drift model 1

VA1 0.240 1.939 0.487 1.377 0.729 1.608 0.524 1.828 0.356 2.060
VA2 0.093 1.935 0.321 1.338 0.498 1.522 0.303 1.783 0.145 2.036
VA3 0.012 1.930 0.226 1.330 0.349 1.506 0.176 1.773 0.039 2.054
VA4 -0.040 1.905 0.161 1.334 0.256 1.511 0.103 1.798 0.004 2.091
VA5 -0.065 1.880 0.120 1.333 0.195 1.534 0.081 1.838 0.001 2.097
VR1 -0.286 3.459 -0.200 3.142 -0.099 2.509 -0.127 2.667 -0.150 2.788
VR2 -0.287 3.465 -0.202 3.151 -0.103 2.527 -0.131 2.683 -0.154 2.802
VRM -0.986 4.525 -0.994 4.633 -1.256 5.663 -1.209 5.464 -1.184 5.358
V D

G 0.369 2.359 0.386 2.341 0.342 3.862 0.357 3.923 0.387 3.993

Panel B: Drift model 2

VA1 0.263 1.944 0.513 1.375 0.791 1.665 0.577 1.870 0.403 2.092
VA2 0.110 1.937 0.340 1.341 0.546 1.568 0.345 1.814 0.181 2.064
VA3 0.022 1.932 0.238 1.331 0.393 1.546 0.208 1.801 0.070 2.076
VA4 -0.030 1.907 0.173 1.336 0.292 1.540 0.134 1.819 0.029 2.103
VA5 -0.055 1.878 0.129 1.332 0.229 1.558 0.106 1.855 0.021 2.112
VR1 -0.285 3.459 -0.200 3.142 -0.098 2.509 -0.126 2.667 -0.149 2.788
VR2 -0.286 3.465 -0.201 3.151 -0.102 2.527 -0.130 2.682 -0.153 2.802
VRM -0.986 4.525 -0.994 4.632 -1.256 5.663 -1.209 5.465 -1.185 5.358
V D

G 0.327 2.332 0.407 2.369 0.341 3.861 0.357 3.922 0.387 3.992

Notes: ME = mean error, RMSE = root mean-squared error. The results are based on 1000 MC
replications of 5-year monthly volatility. All figures are in percentage. VA1, VA2,VA3, VA4, VA5 is
ACD-ICV volatility measures for δ =0.15%,0.2%, 0.25%, 0.3%, 0.35% respectively. VR1 and VR2

are realized volatility defined in Section 2.1. VRM is realized volatility defined in equation (1). V D
G

is GARCH estimates based on daily data. Overnight returns are randomly drawn from the empirical
jumps.
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Table 2.8: Robustness Monte Carlo results with overnight jumps following GN Distribution

Volatility Model
MV1 MV2 SV1 SV2 SV3

method ME RMSE ME RMSE ME RMSE ME RMSE ME RMSE

Panel A: Robustness check 1

VA1 0.356 1.926 0.599 1.369 0.890 1.691 0.674 1.879 0.497 2.085
VA2 0.202 1.913 0.425 1.324 0.632 1.572 0.428 1.801 0.266 2.043
VA3 0.115 1.909 0.324 1.307 0.472 1.532 0.287 1.778 0.149 2.058
VA4 0.061 1.882 0.258 1.309 0.366 1.518 0.212 1.798 0.104 2.086
VA5 0.035 1.851 0.211 1.301 0.302 1.536 0.180 1.832 0.098 2.091
VR1 -0.051 2.745 -0.012 2.463 0.019 1.948 0.006 2.080 -0.005 2.183
VR2 -0.053 2.754 -0.014 2.476 0.017 1.968 0.004 2.098 -0.007 2.199
VRM -0.755 3.949 -0.808 4.138 -1.140 5.354 -1.077 5.113 -1.039 4.975
V D

G 0.529 2.313 0.482 2.291 0.411 3.816 0.436 3.874 0.474 3.940

Panel B: Robustness check 2

VA1 2.552 2.992 2.484 2.680 0.931 1.728 0.717 1.910 0.541 2.120
VA2 2.467 2.924 2.383 2.594 0.675 1.604 0.470 1.835 0.311 2.074
VA3 2.415 2.870 2.316 2.543 0.514 1.565 0.330 1.810 0.192 2.090
VA4 2.381 2.844 2.270 2.507 0.407 1.554 0.253 1.832 0.150 2.118
VA5 2.375 2.829 2.251 2.494 0.343 1.565 0.219 1.868 0.138 2.129
VR1 2.250 3.866 2.006 3.466 0.038 2.232 0.023 2.381 0.010 2.496
VR2 2.245 3.879 2.003 3.473 0.035 2.251 0.021 2.397 0.008 2.511
VRM 1.543 4.439 1.204 4.455 -1.111 5.457 -1.051 5.237 -1.016 5.116
V D

G 2.897 3.790 2.567 3.520 0.453 3.845 0.480 3.905 0.524 3.974

Notes: ME = mean error, RMSE = root mean-squared error. The results are based on 1000 MC
replications of 5-year monthly volatility. All figures are in percentage. VA1, VA2,VA3, VA4, VA5 is
ACD-ICV volatility measures for δ =0.15%,0.2%, 0.25%, 0.3%, 0.35% respectively. VR1 and VR2

are realized volatility defined in Section 2.1. VRM is realized volatility defined in equation (1). V D
G

is GARCH estimates based on daily data. Overnight returns in panel A are generalized normally
distributed with µ = 0,α = 0.0032,β = 0.74; overnight returns in panel B are generalized normally
distributed with µ = 0,α = 0.0021,β = 0.64.
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Table 2.9: Robustness Monte Carlo results with overnight jumps following t Distribution

Volatility Model
MV1 MV2 SV1 SV2 SV3

method ME RMSE ME RMSE ME RMSE ME RMSE ME RMSE

Panel A: Robustness check 1

VA1 -0.599 1.918 -0.264 1.245 0.291 1.488 0.038 1.750 -0.165 2.010
VA2 -0.752 1.978 -0.435 1.301 0.038 1.449 -0.205 1.747 -0.393 2.031
VA3 -0.839 2.008 -0.535 1.347 -0.125 1.470 -0.346 1.765 -0.510 2.067
VA4 -0.891 2.007 -0.600 1.386 -0.230 1.488 -0.420 1.799 -0.556 2.099
VA5 -0.921 1.996 -0.646 1.404 -0.295 1.523 -0.456 1.839 -0.567 2.108
VR1 -1.095 3.225 -0.923 2.887 -0.639 2.294 -0.709 2.455 -0.764 2.581
VR2 -1.096 3.233 -0.925 2.897 -0.639 2.309 -0.709 2.469 -0.765 2.594
VRM -1.766 4.399 -1.687 4.497 -1.777 5.597 -1.772 5.393 -1.780 5.284
V D

G -0.500 2.289 -0.398 2.262 -0.212 3.750 -0.237 3.796 -0.240 3.849

Panel B: Robustness check 2

VA1 -2.444 2.876 -1.929 2.182 -0.715 1.671 -1.031 1.970 -1.277 2.255
VA2 -2.534 2.955 -2.032 2.281 -0.974 1.759 -1.281 2.080 -1.513 2.371
VA3 -2.590 2.994 -2.102 2.354 -1.139 1.844 -1.426 2.162 -1.635 2.458
VA4 -2.627 3.033 -2.149 2.401 -1.248 1.907 -1.509 2.223 -1.688 2.504
VA5 -2.639 3.038 -2.171 2.425 -1.318 1.967 -1.548 2.271 -1.706 2.526
VR1 -2.866 4.040 -2.462 3.531 -1.755 2.712 -1.923 2.941 -2.056 3.123
VR2 -2.869 4.053 -2.463 3.538 -1.755 2.722 -1.923 2.950 -2.056 3.130
VRM -3.506 5.174 -3.199 5.075 -2.859 5.885 -2.951 5.744 -3.035 5.690
V D

G -2.343 3.101 -1.950 2.885 -1.306 3.834 -1.418 3.900 -1.483 3.956

Notes: ME = mean error, RMSE = root mean-squared error. The results are based on 1000 MC
replications of 5-year monthly volatility. All figures are in percentage. VA1, VA2,VA3, VA4, VA5 is
ACD-ICV volatility measures for δ =0.15%,0.2%, 0.25%, 0.3%, 0.35% respectively. VR1 and VR2

are realized volatility defined in Section 2.1. VRM is realized volatility defined in equation (1). V D
G is

GARCH estimates based on daily data. Overnight returns in panel B are t distributed with µ = 0,σ =

0.0046,ν = 2.75; overnight returns in panel B are t distributed with µ = 0,σ = 0.0030,ν = 2.25.
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Table 2.10: Correlations of different volatility estimates

VA1 VA3 VA5 VR1 VRM V D
G

VA1 1.000 0.972 0.958 0.745 0.628 0.697
VA3 1.000 0.978 0.763 0.653 0.727
VA5 1.000 0.786 0.680 0.755
VR2 1.000 0.892 0.700
VRM 1.000 0.701
V D

G 1.000
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Table 2.11: Correlations of volatility estimates of different stocks

Volatility estimate: VA3

BAC GE MRK JNJ JPM WMT IBM PFE T CVX

BAC 1.000 0.714 0.734 0.441 0.898 0.819 0.867 0.550 0.642 0.658
GE 1.000 0.603 0.843 0.903 0.713 0.828 0.772 0.806 0.316
MRK 1.000 0.517 0.720 0.648 0.704 0.691 0.632 0.744
JNJ 1.000 0.687 0.455 0.649 0.802 0.734 0.218
JPM 1.000 0.843 0.925 0.690 0.759 0.541
WMT 1.000 0.870 0.512 0.547 0.599
IBM 1.000 0.678 0.701 0.616
PFE 1.000 0.704 0.375
T 1.000 0.385
CVX 1.000

Volatility estimate: VR1

BAC GE MRK JNJ JPM WMT IBM PFE T CVX

BAC 1.000 0.600 0.106 0.253 0.848 0.672 0.667 0.036 0.251 0.564
GE 1.000 0.042 0.776 0.859 0.685 0.716 0.109 0.558 0.207
MRK 1.000 0.062 0.058 0.005 -0.043 0.171 0.065 0.023
JNJ 1.000 0.577 0.384 0.530 0.187 0.535 -0.007
JPM 1.000 0.794 0.808 0.057 0.471 0.480
WMT 1.000 0.669 -0.048 0.327 0.514
IBM 1.000 0.031 0.435 0.451
PFE 1.000 0.226 0.037
T 1.000 -0.052
CVX 1.000

Volatility estimate: V D
G

BAC GE MRK JNJ JPM WMT IBM PFE T CVX

BAC 1.000 0.704 0.057 0.247 0.817 0.559 0.655 0.147 0.418 0.120
GE 1.000 0.175 0.686 0.859 0.812 0.697 0.349 0.708 -0.049
MRK 1.000 0.332 0.125 0.005 -0.008 0.371 0.163 -0.082
JNJ 1.000 0.517 0.536 0.445 0.556 0.641 -0.158
JPM 1.000 0.788 0.781 0.268 0.679 0.174
WMT 1.000 0.600 0.179 0.604 -0.069
IBM 1.000 0.182 0.554 0.299
PFE 1.000 0.231 0.055
T 1.000 -0.114
CVX 1.000
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Table 2.12: Correlations of VIX and S&P500 30-day volatility estimates

VIX VA1 VA2 VA3 VA4 VA5 VR1 VRM V D
G

VIX 1.000 0.989 0.986 0.979 0.978 0.834 0.845 0.921 0.910
VA1 1.000 0.989 0.983 0.985 0.853 0.864 0.921 0.901
VA2 1.000 0.988 0.986 0.862 0.873 0.910 0.900
VA3 1.000 0.981 0.862 0.873 0.900 0.897
VA4 1.000 0.878 0.888 0.893 0.882
VA5 1.000 0.999 0.754 0.681
VR1 1.000 0.770 0.701
VRM 1.000 0.911
V D

G 1.000
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Table 2.13: Regression results of return on VIX and volatility estimates

VIX VA1 VA2 VA3 VA4 VA5 VR1 VRM V D
G

Panel A: Ri = α +β Xi +ξi

α -0.0251 0.0208 0.0160 0.0156 0.0123 0.0123 0.0132 0.0303 0.0315
(-1.9263) (1.4835) (1.2225) (1.2160) (0.9847) (1.0258) (1.6967) (2.7931) (2.4280)

β 0.1442 -0.0755 -0.0531 -0.0511 -0.0350 -0.0356 -0.0459 -0.1577 -0.1618
(2.4668) (-1.1714) (-0.8768) (-0.8632) (-0.6065) (-0.6373) (-1.2470) (-2.5215) (-2.1512)

R2 0.0503 0.0118 0.0066 0.0064 0.0032 0.0035 0.0133 0.0524 0.0387

Panel B: Ri = α +β X2
i +ξi

α -0.0125 0.0134 0.0109 0.0100 0.0088 0.0086 0.0077 0.0181 0.0178
(-1.7400) (1.7116) (1.4754) (1.3974) (1.2476) (1.2727) (1.5814) (2.8498) (2.4304)

β 0.3574 -0.1731 -0.1215 -0.1028 -0.0767 -0.0737 -0.0559 -0.4274 -0.4232
(3.0684) (-1.2657) (-0.9618) (-0.8530) (-0.6537) (-0.6655) (-1.2025) (-2.7581) (-2.1370)

R2 0.0757 0.0137 0.0080 0.0063 0.0037 0.0038 0.0124 0.0620 0.0382

Notes: Ri is the return of the ith 30-day interval. Xi is the forecast of the volatility of the ith interval by
VIX or a historical estimate of the volatility of the interval, Yi (e.g., VA2). Numbers in parentheses are
t-statistics.
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Table 2.14: Regression results of 30-day volatility estimates on VIX

VA1 VA2 VA3 VA4 VA5 VR1 VRM V D
G

Panel A: Yi = α +β VIXi +ξi

α 0.0407 0.0267 0.0223 0.0134 0.0066 -0.0580 0.0145 0.0299
(4.0632) (2.5170) (2.0564) (1.2418) (0.5818) (-2.3715) (1.1098) (3.1344)

β 0.7896 0.8449 0.8627 0.8988 0.9213 1.1078 0.6896 0.6330
(17.5326) (17.6902) (17.6637) (18.5012) (18.0094) (10.0801) (11.7403) (14.7747)

R2 0.7254 0.7289 0.7283 0.7463 0.7360 0.4645 0.5412 0.6520

Panel B: Y 2
i = α +β VIX2

i +ξi

α 0.0125 0.0094 0.0075 0.0058 0.0037 -0.0184 0.0059 0.0070
(4.1117) (2.8253) (2.1425) (1.6487) (0.9559) (-1.4203) (1.7788) (3.1855)

β 0.7032 0.7584 0.7972 0.8259 0.8600 1.2749 0.4891 0.4602
(14.2688) (14.0031) (14.0789) (14.3752) (13.6903) (6.0709) (9.0759) (12.8213)

R2 0.6359 0.6271 0.6296 0.6394 0.6164 0.2361 0.4123 0.5848

Notes: Yi is a historical estimate of the volatility of the ith 30-day interval (e.g., VA2). Numbers
in parentheses are t-statistics.
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Figure 2.1: The drift term
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Figure 2.2: Deterministic volatility models
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Figure 2.3: QQ plot of overnight returns
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Figure 2.4: Estimation of deterministic volatility with generalized normal overnight price jumps
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Figure 2.5: Estimation of stochastic volatility with generalized normal overnight price jumps
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Figure 2.6: Estimation of deterministic volatility with t overnight price jumps

48



1 12 24 36 48 60
0.1

0.2

0.3

0.4

0.5

0.6

Period in Month

A
nn

ua
liz

ed
 S

ta
nd

ar
d 

D
ev

ia
tio

n

SV Model 1: Monthly volatility estimates

1 12 24 36 48 60
0.1

0.2

0.3

0.4

0.5

0.6

Period in Month

A
nn

ua
liz

ed
 S

ta
nd

ar
d 

D
ev

ia
tio

n

SV Model 2: Monthly volatility estimates

1 12 24 36 48 60
0.1

0.2

0.3

0.4

0.5

0.6

Period in Month

A
nn

ua
liz

ed
 S

ta
nd

ar
d 

D
ev

ia
tio

n

SV Model 3: Monthly volatility estimates

Figure 2.7: Estimation of stochastic volatility with with t overnight price jumps
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Figure 2.8: Estimation of deterministic volatility with empirical overnight price jumps
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Figure 2.9: Estimation of stochastic volatility with empirical overnight price jumps
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Fig 2.10A: Empirical estimates of monthly volatility
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Fig 2.10B: Empirical estimates of monthly volatility
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Figure 2.11: VIX and S&P500 30-day volatility estimates
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Chapter 3 Trade Volume, Trade Frequency

and Trade Size: Their Implica-

tions for Informed Trading and

Volatility

3.1 Introduction

Trade volume consists of two components: number of trades (trade frequency) and
trade size. As pointed out by Jones, Kaul and Lipson (1994), theoretical models of
stock trading, such as Wang (1993, 1994) and Harris and Raviv (1993), standard-
ize trades to be of unit size. Thus, these models have little to say in segregating
the effects of trade frequency and trade size on return volatility, and they can only
provide guidance on the interaction between aggregate trade volume and volatility.
Furthermore, most empirical work in the literature treats volume as exogenous. This
has been criticized by Jones, Kaul and Lipson (1994), who stated that their results
“suggest that theoretical models need to endogenize both the frequency and size of
trade”. This call for action, however, has not yet been answered.

The purpose of this chapter is to propose a statistical model for the aggregate
volume of trade. We model trade volume as a compound Poisson distribution, with
trade frequency as the primary distribution (i.e., the random variable determining
the number of summation terms) and trade size as the secondary distribution (i.e.,
the random variable determining the distribution of each term in the summation).
Our focus is on the quote-driven (specialist) market, which was the dominant mar-
ket in the New York Stock Exchange (NYSE) prior to 2006.1 We consider two types
of traders in this market: informed and uninformed traders, who trade against the
specialists. Our notion of informed traders differs from that of Easley, Hvidkjaer
and O’Hara (2002), who assume that information can only be either good news or
bad news, and that trade direction (buy or sell) is completely determined by such

1Section 2 describes briefly the introduction of the hybrid market in 2006 and the subsequent
dominance of the limit-order market in the NYSE.
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news. In contrast, “informed traders” in our model are determined by their moti-
vation, for which divergence of opinion is possible. We assume that the aggregate
volume of trades originating from each group of traders follows a separate com-
pound Poisson distribution. Thus, the aggregate volume of all trades is the sum of
two independent compound Poisson distributions. In addition, the parameters of the
compound Poisson distribution for the informed traders are postulated to depend on
some information variables.

Using the estimated aggregate trade volume model, we propose two measures
of intensity of informed trading: relative frequency of informed trading (RFIT) and
relative volume of informed trading (RVIT), which estimate the relative intensity of
informed traders according to their trade frequency and trade volume, respectively.
Thus, our model provides a volume-based method to calibrate the intensity of in-
formed trading, which may be used as a measure of asymmetric information. To the
best of our knowledge, this chapter is the first attempt to model trade volume, trade
frequency and trade size endogenously. Furthermore, our measures of the relative
intensity of informed trading do not make use of return data. We do not assume a
priori that volume and volatility are related, as in the case of the MDH approach
of Andersen (1996) and Li and Wu (2006). Our approach contrasts that of Li and
Wu (2006), who use return data to calibrate their model for volume of trade and
estimate the “informed component of volume”.

Our empirical analysis involves 50 stocks traded on the NYSE. We use transac-
tion data of trade frequency and trade size over 30-minute intervals to estimate the
aggregate-volume model. We use two approaches to estimate the model. First, we
use covariates as proxies for information intensity, conditional on the covariates the
likelihood function of trade frequency and trade size can be obtained, from which
the parameters of the model can be estimated using the MLE method. Alternatively,
we may calculate the unconditional moments and cross moments of trade volume
and trade frequency, treating the moments of the information intensity as unknown
parameters. The parameters of the primary and secondary distributions of the com-
pound Poisson distribution, together with the moments of the information intensity,
can then be estimated using the GMM method. For each stock we calculate the
daily RFIT and RVIT measures. We then study the effects of informed trade fre-
quency, informed trade volume, uninformed trade frequency and uninformed trade
volume on volatility. Our results show that the empirical relation between volume
and volatility under the MLE approach is similar to the empirical relation under
the GMM approach. Both the MLE and GMM approaches show that trade fre-
quency dominates trade volume in explaining volatility, although trade volume still
has incremental information for volatility in the presence of trade frequency. Rather
interestingly, while informed trading volume has positive effects on volatility, un-
informed trading volume has negative effects on volatility. This result is consistent
with Li and Wu (2006), who find negative correlation between volatility and trade
volume due to liquidity traders. However, both the informed and uninformed trad-
ing frequency has positive effect on volatility.

In sum, this chapter contributes to the literature in several aspects. First, we
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propose a statistical model for the aggregate trade volume of a stock with informed
and uninformed traders. Our model can be estimated using high-frequency transac-
tion data and provides estimated measures of the relative intensity of informed (and
uninformed) traders over intraday intervals. While we use these measures in this
chapter to study the effects of informed and uninformed trades on volatility, they
can also be used to examine return-volume relationships. Second, we contribute to
the frequency-size debate using improved econometric methodology. Unlike many
studies in the literature that uses daily absolute return as proxy for volatility, we
use the integrated conditional variance (ICV) estimate proposed recently by Tse
and Yang (2012).2 Our results confirm the dominance of trade frequency over trade
volume in influencing return volatility, although trade volume still has incremen-
tal information for volatility beyond trade frequency. Third, in segregating trading
frequency/volume into their informed and uninformed components, we find that in-
formed trading volume increase volatility and uninformed trading volume reduce
volatility. Surprisingly, both the informed and uninformed components of trade fre-
quency have positive effects on volatility.

The balance of this chapter is as follows. In Section 2 we describe our data,
which are high-frequency transaction data extracted from the Trade and Quote (TAQ)
database of the NYSE. We present some summary statistics of the data and moti-
vate the construction of the statistical model. The compound Poisson model for the
aggregate trade volume originating from both informed and uninformed traders are
outlined in Section 3, in which we also discuss the estimation of the model param-
eters. Section 4 reports the empirical results of the compound Poisson model and
the resulting RFIT and RVIT measures of the NYSE stocks. We examine the effects
of informed and uninformed trade frequency and volume on volatility in Section 5.
Some concluding remarks are summarized in Section 6.

3.2 The Data

The data used in this chapter were extracted and compiled from the TAQ database
provided through the Wharton Research Data Services. We downloaded the follow-
ing variables from the Consolidated Trade (CT) file: date, time, price, and trade
size, and the following variables from Consolidated Quote (CQ) file: date, time, bid
price, ask price, bid size, and ask size.

From the CT file we compiled the data for the trade frequency over every 30-
minute interval and recorded the size of every trade in the interval. We also com-
puted the tick imbalance, which is the (absolute) difference between the number
of up-tick and down-tick trades. Due to the unusual large volumes traded at the
opening and the closing of trades, we only used trade data between 9:45 and 15:45.

2Some authors (see, e.g., Chan and Fong (2006)) use realized volatility as a measure of daily
volatility. As shown by Tse and Yang (2012), the ICV estimates perform very well against the
realized volatility method, and can provide intraday volatility estimates over short intervals such as
half hour.
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We selected 50 stocks from the S&P500 index stocks for our study. All selected
stocks were without any stock split or stock dividend in the sample period. To
economize on space we report detailed graphical results only on a short-list of 10
stocks from the top size-quintile, although the overall conclusions are drawn from
the 50 stocks analyzed.3

Trading in NYSE went through a transition in 2006. OpenBook was first in-
troduced in 2002 in the NYSE, providing limit-order-book information to traders
off the floor. Electronic trading grew from 2002 onwards and hybrid activation was
rolled out gradually between October 2006 and January 2007, when the limitation
of orders of up to 1,099 shares was removed for immediate automatic execution
(Auto-X).4 Under the hybrid trading system the TAQ database identifies the mode
of trading in the field COND. Of the 50 stocks in our sample, regular trading (i.e., a
trade without any stated condition in the field COND) under the quote-driven (spe-
cialist) system represented 75.53% of the trade frequency in 2005, but dropped to
8.04% in 2007. In contrast, Auto-X trade (a trade with code E for COND) increased
from 24.45% in 2005 to 80.58% in 2007. As the model we propose below identi-
fies informed versus uninformed traders based on their trading motivation when
they trade against the market makers, we used only data from the specialist market.
Specifically, we extracted and used data from regular trading in 2005, before the
transition to the hybrid market. Of the 50 stocks in our sample, the proportion of
trade frequency under regular trade varied from 67.49% to 85.60%. After filtering
out data with abnormality, our sample consists of 245 to 251 days of trades for the
50 stocks. Figure 1 plots the relative frequency distribution of trade size. It can be
observed that there are spikes at certain trade sizes, notably 1000 and multiples of
thousand. Overall, the relative-frequency diagrams exhibit a profile commensurate
with an exponential distribution for the trade size.

There are two possible approaches to model information and calibrate the model:
one approach uses some suitable proxies for information and the other approach
treats information intensity as random and unobservable. In the first approach, pos-
sible candidates for the information proxy are order imbalance, tick imbalance and
quote revision. Given the data on the transaction volume and the information proxy,
the parameters of the model can be computed using the MLE method. In the second
approach, the likelihood function is not available. However, if the parameters of the
model are simple linear functions of the intensity of information, unconditional mo-
ments of trade volume, trade frequency and trade size can be derived, from which
the model parameters can be estimated using the generalized method of moments
(GMM). For the first method, the performance of the model may be compromised if
the information proxy used is not appropriate. For the second method, although no
errors due to a wrong proxy will incur, the model may only adopt simple parametric
forms. In this chapter, we adopt both the MLE approach specifying the information

3These 10 stocks are Exxon (XOM), General Electric (GE), Procter & Gamble (PG), Johnson
& Johnson (JNJ), AT & T (T), Chevron (CVX), JP Morgan Chase (JPM), Wal Mart (WMT), IBM
(IBM) and Pfizer (PFE).

4See Hendershott and Moulton (2011) for an account of the hybrid transition in the NYSE.
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proxy and the GMM approach treating the information proxy as random and param-
eters to estimate. It is crucial to select the appropriate proxy in the first approach.
More recently, many researchers question the order imbalance still being a valid
signal of informed trading. Quote revision, however, only stand for the information
represented by a small proportion of market participants (market markers). In this
chapter, we consider the use of tick imbalance as possible candidate for information
proxy in the MLE approach.

3.3 The Model

We assume that there are two types of traders in the quote-driven market: informed
traders and uninformed traders. Our definitions for the two groups of traders are
based on their trading motivation. Thus, informed traders trade when there is in-
formation, private or public, that is made available to them, although their inter-
pretation of the information may differ. On the other hand, uninformed traders do
not trade in response to specific information, but for other reasons such as liquid-
ity needs or portfolio rebalancing. Our notion of information is different from that
of Easley, Kiefer, O’Hara and Paperman (1996) and Easley, Hvidkjaer and O’Hara
(2002), who assume that information can only be either good news or bad news.
They assume that good news induces traders to buy and bad news induces traders
to sell. In our model we allow informed traders to have divergence in opinions, so
that different traders may trade differently in response to the same news. This is
also in line with Duarte and Young (2009), who allow the arrival of public news to
be interpreted differently by uninformed traders, causing increases in both buy- and
sell-orders. Duarte and Young (2009) call the unconditional probability of a trade
coming from uninformed traders due to their response to news the probability of
symmetric order-flow shock (PSOS).

We consider the trade volume of a stock over a given time interval, set to be
30 minutes in this chapter. Let N be the number of trades (trade frequency) and
Y be the trade volume (aggregate number of lots traded) in the time interval. We
denote the numbers of trades initiated by the informed and uninformed traders in
the interval by NI and NU , respectively. Likewise, we denote the volumes of trades
initiated by the informed and uninformed traders by YI and YU , respectively. Thus,
the aggregate number of trades N in the interval is given by N = NI +NU and the
aggregate volume of trades Y is given by Y = YI +YU . If we denote the size of each
trade initiated by the informed traders by XIi, for i = 1, · · · ,NI , and the size of each
trade initiated by the uninformed traders by XUi, for i = 1, · · · ,NU , we have

YI =
NI

∑
i=1

XIi, (3.3.1)
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and

YU =
NU

∑
i=1

XUi. (3.3.2)

We assume that the trade frequencies NI and NU are distributed as Poisson vari-
ables with means λI and λU , respectively, so that NI ∼ P(λI) and NU ∼ P(λU).

If we further assume that XIi are independently and identically distributed (iid) and
are independent of NI , then YI follows a compound Poisson distribution. Similar
assumptions for XUi imply that YU also follows a compound Poisson distribution.
NI and NU are called the primary distributions, while XIi and XUi are called the
secondary distributions.5

As we are modeling stock trades in a quote-driven market in which the transac-
tions are executed against the market makers, we can, in principle, classify a trade
as initiated by an informed or uninformed trader according to his trading motiva-
tion, i.e., whether the trade is driven by relevant market information or for liquidity
needs.6 To distinguish between the behavior of informed and uninformed traders,
we assume that λI depends on an information-intensity variable K, so that

λI = λI(K) = βK, (3.3.3)

where β > 0 and K is nonnegative. Thus, the intensity of the trade frequency of
informed traders λI varies positively with the information intensity. On the other
hand, we assume the intensity of the trade frequency of uninformed traders λU

to be constant. We further assume that informed and uninformed traders trade in
different quanta. For informed traders, we assume that their trade-size variable
XIi are distributed exponentially with mean µI , i.e., XIi ∼ iid E (µI). Similarly, for
uninformed traders we assume XUi ∼ iid E (µU).

We denote the size of the ith trade in the interval by Xi, so that

Xi = XIi1{i∈I}+XUi1{i∈U}, i = 1, · · · ,N, (3.3.4)

where 1{i∈I} and 1{i∈U} are indicator variables taking value 1 when the ith trade
is initiated by informed and uninformed traders, respectively, and zero otherwise.
Note that the identity of informed versus uninformed traders is not available from

5Compound distributions are sums of iid random variables, where the number of summation
terms is random. If the primary distribution (number of summation terms) is Poisson, we have a
compound Poisson distribution. Compound distributions have been used extensively in the actuarial
science literature to model aggregate insurance losses. See Tse (2009) for further properties of
compound Poisson distributions.

6In contrast, for an order-driven market in which orders are executed through a computerized
order book without the intermediation of dealers, traders may choose to enter a market or limit order.
While many authors assume that informed traders always submit market orders, limit orders may also
be information-motivated (see Pascual and Veredas (2010)). The interpretation of informed traders
in the limit-order literature goes beyond characterization by motivation, as in Goettler, Parlour and
Rajan (2009) and Dumitrescu (2010).
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the data. Hence, while Xi are observable, 1{i∈I} and 1{i∈U} are not. The observable
total trade volume is (YI and YU are not observable)

Y = YI +YU =
N

∑
i=1

Xi. (3.3.5)

Thus, we have completed the definition of our model of trade frequency N, trade
size Xi and trade volume Y . Note that only N, Xi and Y are observable, while NU ,
NI , YU , YI , XUi and XIi are not.

To estimate the parameters of the model, two approaches may be considered.
First, we may use covariates as proxies for information intensity. Conditional on the
covariates, the likelihood function of trade frequency and trade size can be obtained,
from which the parameters of the model can be estimated using the MLE method.
The MLE approach is facilitated by the independence assumption of the primary
and secondary distributions of the compound Poisson model, and that the sum of
two compound Poisson distributions has also a compound Poisson distribution (See
Tse (2009)). An advantage of this approach is that trade frequency can be modeled
as a nonlinear function of the possible candidates of information proxy.7

Alternatively, we may calculate the unconditional moments and cross moments
of trade volume and trade frequency based on the Poisson assumption for the pri-
mary distribution and the exponential assumption for the secondary distribution,
treating the moments of the information intensity as unknown parameters. The
parameters of the primary and secondary distributions of the compound Poisson
distributions, together with the moments of the information intensity, can then be
estimated using the GMM. This approach parallels that of Andersen (1996) and Li
and Wu (2006) in estimating the enhanced MDH. An advantage of this approach
is that data for the information proxy is not required, which will circumvent the
problem due to an inappropriate proxy. On the other hand, the moments and cross
moments of the trade data are only tractable when the parameters are linear in the
information intensity, which limits the applicability of the GMM approach.

3.3.1 The Case of Proxied Information

We now outline the MLE procedure for the estimation of the compound Poisson dis-
tribution. Let there be n (30-minute) intervals in the sample, with trade frequency ni

in the ith interval, for i= 1, · · · ,n. Denote the (observable) covariate for the informa-
tion proxy in the ith interval by Ki and the trade sizes by xi j, for i = 1, · · · ,n and j =
1, · · · ,ni. As N = NI +NU is the sum of two independent Poisson variates, we have
N ∼ P(λU + βK). From equation (3.3.4), Xi ∼ iid wUE (µU)+ (1−wU)E (µI),

7We also estimated the model treating λI = βKα . however, the parameter estimation of α turns
out to be quite small with average value around 0.1 for all the stocks. Empirical results also inferior
to the cases when λI = βK. In order to compare with the GMM cases we will not present the
estimation results with nonlinear dependence of the information proxies.
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where

wU =
λU

λU +βK
. (3.3.6)

If we denote n = {n1, · · · ,nn} and K = {K1, · · · ,Kn}, the conditional log-likelihood
of n is

log fN|K(n) =
n

∑
i=1

fi, (3.3.7)

where, dropping the irrelevant constant,

fi = ni log(λU +βKi)− (λU +βKi). (3.3.8)

Furthermore, the conditional log-likelihood of x = {xi j} is

log fX|K(x) =
n

∑
i=1

ni

∑
j=1

gi j, (3.3.9)

where

gi j = log
[

λU

λU +βKi

[
1

µU

]
exp
[
−

xi j

µU

]
+

βKi

λU +βKi

[
1
µI

]
exp
[
−

xi j

µI

]]
. (3.3.10)

Denoting θ = (λU ,β ,µU ,µI) as the parameter vector of the model, the joint log-
likelihood of n and x is

L(θ) = log fN|K(n)+ log fX|K(x) =
n

∑
i=1

fi +
n

∑
i=1

ni

∑
j=1

gi j. (3.3.11)

We denote the MLE of θ by θ̂ , with robust variance-covariance matrix V̂ = Â−1B̂Â−1,
where

B̂ =
n

∑
i=1

∂ fi

∂θ
∂ fi

∂θ ′ +
n

∑
i=1

ni

∑
j=1

∂gi j

∂θ
∂gi j

∂θ ′ (3.3.12)

and

Â =−∂ 2L(θ̂)
∂θ∂θ ′ . (3.3.13)

3.3.2 The Case of Unobservable Information

To apply the GMM, we first derive the moments of N and Y up to the third order.8

The derivation turns out to be more complex when then information variable K

8In order to adjust the 30-minute intraday periodicity of trade frequency N and trade volume Y ,
we simply divide them by their corresponding 30-minute sample average.
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is not observable.9 In this approach, we treat K as a random variable and derive
the moments of the trade data as functions of the moments of K, which are some
parameters to be estimated, among others.

We define µK = E(K), so E(λI) = β µK , the unconditional moments involving
N and Y are given by

E(N) = λU +β µK = N̄ (3.3.14)

E(N − N̄)2 = (λU +β µK)+β 2E(K −µK)
2 (3.3.15)

E(N − N̄)3 = (λU +β µK)+3β 2E(K −µK)
2 +β 3E(K −µK)

3 (3.3.16)

E(Y ) = λU µU +β µKµI = Ȳ (3.3.17)

E(Y − Ȳ )2 = 2(λU µ2
U +β µKµ2

I )+µ2
I β 2E(K −µK)

2 (3.3.18)

E(Y −Ȳ )3 = 6(λU µ3
U +β µKµ3

I )+6µ3
I β 2E(K−µK)

2+µ3
I β 3E(K−µK)

3 (3.3.19)

E(N − N̄)(Y − Ȳ ) = (λU µU +β µKµI)+µIβ 2E(K −µK)
2 (3.3.20)

E(N − N̄)2(Y − Ȳ ) = (λU µU +β µKµI)+3µIβ 2E(K −µK)
2 +µIβ 3E(K −µK)

3

(3.3.21)

E(N − N̄)(Y − Ȳ )2 = 2(λU µ2
U +β µKµ2

I )+4µ2
I β 2E(K −µK)

2 +µ2
I β 3E(K −µK)

3

(3.3.22)
The parameters θ to be estimated including λU , β µK , β 2E(K −µK)

2, β 3E(K −
µK)

3, µU and µI .10 There are 6 parameters to be estimated and 9 unconditional
moments, resulting 3 over-identifying restrictions.

9The derivation is presented in the Appendix.
10Another way to estimate the model is to isolate β from parameters β µK , β 2E(K − µK)

2 and
β 3E(K−µK)

3, treating β as a separated parameter to be estimated. However, this makes the estima-
tion more complicated and since to compute the RFIT and RVIT only need β µK , so we treat β µK ,
β 2E(K −µK)

2 and β 3E(K −µK)
3 as three individual parameters.
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We denote g(θ) as the vector of unconditional moments derived from equation
(3.3.14) through (3.3.22). To estimate θ using the GMM approach, we calculate the
sample moments to match g(θ). For i = 1, · · · ,M, we define fi as

fi =
(

Ni,(Ni − N̄)2,(Ni − N̄)3,Yi,(Yi − Ȳ )2, (Yi − Ȳ )3,(Ni − N̄)(Yi − Ȳ ),(Ni − N̄)2(Yi − Ȳ ),

(Ni − N̄)(Yi − Ȳ )2
)′
, (3.3.23)

and let

f =
1
M

M

∑
i=1

fi (3.3.24)

The GMM estimate of θ is computed as the value that minimizes the objective
function

Q = ( f −g(θ))′S(θ)−1( f −g(θ)) (3.3.25)

where

S(θ) =
1
M

M

∑
i=1

( f −g(θ))( f −g(θ))′ (3.3.26)

3.3.3 Relative Intensity of Informed Trading

Conditional on the information proxy Ki in interval i, the relative intensity of in-
formed traders measured by trade frequency can be computed as

βKi

λU +βKi
(3.3.27)

and the relative intensity of informed traders measured by trade volume can be
computed as11

µIβKi

λU µU +µIβKi
. (3.3.28)

With the model parameters estimated by MLE, we compute the Relative Frequency
of Informed Trading (RFIT) over the n intervals as

RFIT =
1
n

n

∑
i=1

β̂Ki

λ̂U + β̂Ki
. (3.3.29)

11Note that µIβKi and λU µU are the means of the trade volume in the interval due to informed
and uninformed traders, respectively.
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Likewise, the Relative Volume of Informed Trading (RVIT) is computed as12

RVIT =
1
n

n

∑
i=1

µ̂Iβ̂Ki

µ̂U λ̂U + µ̂Iβ̂Ki
. (3.3.30)

However, when the information variable is random and not observable, it has
to be estimated. For this purpose, we adopt the approach suggested by Li and Wu
(2006) to recover the values of Ki. First, we define vi as

vi =

 Ni −E(Ni|Ki)

Yi −E(Yi|Ki)

=

 Ni −µN(θ |Ki)

Yi −µY (θ |Ki)

 (3.3.31)

Thus, we have

E(viv
′
i|θ ,Ki) =

 E(N2
i |θ ,Ki)− [E(Ni|θ ,Ki)]

2 E(NiYi|θ ,Ki)−E(Ni|θ ,Ki)E(Yi|Ki)

E(NiYi|θ ,Ki)−E(Ni|θ ,Ki)E(Yi|Ki) E(Y 2
i |θ ,Ki)− [E(Yi|θ ,Ki)]

2



=

 µN2(θ |Ki)−µ2
N(θ |Ki) µNY (θ |Ki)−µN(θ |Ki)µY (θ |Ki)

µNY (θ |Ki)−µN(θ |Ki)µY (θ |Ki) µY 2(θ |Ki)−µ2
Y (θ |Ki)


= Σ(θ ,Ki)

= Σi (3.3.32)

We compute K̂i to minimize Li = v
′
iΣ

−1
i vi, from which we calculate estimates of

RFIT and RVIT over the given interval as13

ˆRFIT =
1
n

n

∑
i=1

ˆ[βK]i

λ̂U + ˆ[βK]i
(3.3.33)

and

ˆRVIT =
1
n

n

∑
i=1

µ̂I
ˆ[βK]i

µ̂U λ̂U + µ̂I
ˆ[βK]i

(3.3.34)

12RFIT and RVIT can also be calculated over any subinterval in the sample.
13We actually compute ˆ[βK]i, since they are always combine together in the model estimation.
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3.4 Empirical Results on Modeling Trade Volume

We estimate the compound Poisson model for the 50 selected stocks from NYSE.
We use tick imbalance as the information proxy for the MLE approach. In order to
compare the model output to the unobservable information case, we standardize the
information proxy to have unit mean over the estimation sample period.

We measure the information proxy as the absolute difference between the num-
ber of up- and down-tick movements within each 30-minute intervals. The trade
size variables Xi are the number of lots traded. The MLE of the 50 stocks are pre-
sented in Table 3.1, with standard errors given in parentheses. It can be seen that
the results across the 50 stocks are quite similar. Estimates of µI are larger than
those of µU for all stocks except stock DVN, showing that the average trade size of
informed traders are larger than that of uninformed traders. Table 3.2 presents the
average RFIT and RVIT of the stocks over the sample period. RFIT varies between
9.31% (for WB) and 23.68% (for GE) with a mean of 15.45%, whereas RVIT varies
between 9.93% (for DVN) and 58.53% (for GE) with a mean of 32.91%. While the
informed traders are responsible for about 15% of the number of trades, their trade
volume takes up about 30% of the market. Ratio of the estimates of µI to µU varies
from 0.82 (for DVN) and 6.14 (for GE) with a mean of 3.24.

The GMM of the 50 stocks are presented in Table 3.3, with standard errors
given in parentheses. It can be seen that the results across the 50 stocks are quite
different, which is contrary to the MLE approach. One reasonable reason is that
the ‘true’ information proxy might be quite different for different stocks under our
model assumption. For example, for stock A the ‘true’ information proxy is tick
imbalance, for stock B is order imbalance and for stock C it is other information
proxy under the compound Poisson assumption. Estimates of µI are larger than
those of µU for all stocks except stock DIS, showing that the average trade size of
informed traders are larger than that of uninformed traders. Table 3.4 presents the
average RFIT and RVIT of the stocks over the sample period. RFIT varies between
0.58% (for RIG) and 86.03% (for MCD) with a mean of 28.19%, whereas RVIT
varies between 0.72% (for RIG) and 90.06% (for VZ) with a mean of 47.13%.
While the informed traders are responsible for about 30% of the number of trades,
their trade volume takes up about 50% of the market. Ratio of the estimates of µI

to µU varies from 0.77 (for DIS) and 6.40 (for GE) with a mean of 3.08.
We compute the means of RFIT and RVIT over each of the 30-minute intervals

from 9:45 through 15:45 for the ten short-listed stocks over the sample. In order
to economize the space, we only present the result under unobservable information
cases. The results are plotted in Figure 3.2. It can be seen that both RFIT and RVIT
exhibit intraday periodicity. In particular, there is an intraday “information-intensity
smile”, with intensity being the lowest in the (11:45, 12:45) interval for most stocks.
The information-intensity smiles based on frequency and volume are quite similar,
except that the RVIT curves are much smoother than the RFIT curves.

Lastly we plotted the daily RFIT and RVIT for all the stocks under the un-
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observable information assumption in our sample period. The results for the ten
short-listed stocks are given in Figure 3. As excepted the paths of RFIT and RVIT
are quite similar, and both exhibit variations over time in the sample.

3.5 Empirical Results on the Volume-Volatility Rela-

tionship

We now re-visit the issue of the effect of trade volume on volatility as studied by
Jones, Kaul and Lipson (1994). Using regression models, we examine the effects of
trade frequency, trade volume and trade size in the time series context. Furthermore,
the regression models incorporates trade frequency and trade volume that are due to
informed and uninformed traders separately.

The notations used in our regressions are defined as follows (all on daily fre-
quency): F = trade frequency, V = trade volume, S = average trade size = V/F,
RF = RFIT, RV = RVIT, IF = informed trade frequency = F*RF, IV = informed
trade volume = V*RV, UF = uninformed trade frequency = F*(1 – RFIT) and UV =
uninformed trade volume = V*(1 – RVIT).

The dependent variable VL of the regressions is the daily volatility computed
using the ACD-ICV method of Tse and Yang (2012).14 We regressed VL on one
or more of the regressors defined above for each of the 50 stocks. The results of
13 models are summarized in Table 3.5. For each model we present the number of
stocks with the computed t-ratio larger than 2 (indicated by a positive number) or
less than −2 (indicated by a negative number).15 The last three columns of the table
summarizes the mean, minimum and maximum of R̄2 over the 50 regressions. We
assess the comparative importance of the regressors based on the number of cases
of extreme t-ratios, as well as the size of R̄2.

The first 6 regressions are regression of volatility on trade frequency, trade vol-
ume and trade size, which are presented in Panel A. Models 1 and 2 show that trade
frequency explains volatility better than trade volume. However, Models 3 and 4
suggest that both trade volume and average trade size have incremental information
on volatility beyond what is contained in trade frequency. Model 5 is misspecified,
as both frequency and volume are left out in the model, resulting in low R̄2. Fi-
nally, average trade size is found to have negative coefficients in Model 6, as trade
frequency, which is negatively correlated with average trade size, is left out of the
model.

Panel B and C present regressions of volatility on the information variables
constructed by RFIT and RVIT, which are calibrated from the MLE and GMM

14The ACD-ICV method estimates the integrated conditional variance (ICV) over an intraday
interval using tick data. It is computed as the weighted sum of instantaneous conditional variances
estimated from an Autoregressive Conditional Duration (ACD) model.

15For example, in Model 6, 49 of the stocks have the t-ratio of V larger than 2, and 45 stocks have
the t-ratio of S less than −2.
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approaches, respectively. The Regression results in Panel B are similar to the re-
gression results in Panel C, only with numerical difference. Model 7 and Model 8
show that both the relative frequency of informed trading (RFIT and RVIT) cali-
brated from the MLE( and GMM) approach are informative in explaining volatility.
Model 9 show that the trade frequency of informed traders have positive effect in
explaining volatility, however, Model 10 show that trade frequency of uninformed
traders still have incremental information on volatility. Model 11 and Model 12
show that while trade volume of informed trades increases volatility, trade volume
of uninformed trades reduces volatility. Model 13 reinforce the result of Model 3
that informed trade volume have incremental information for volatility beyond what
is contained in informed trade frequency. The converse volatility effects of unin-
formed trade frequency and uninformed trade volume show that liquidity traders’
behavior have different effects on volatility. Liquidity traders with small trade sizes
(when trade size is small, trade frequency is equivalent to trade volume) have pos-
itive effect on volatility, while liquidity traders with moderate or large trade sizes
has negative effects on volatility.

In sum, while our results confirm the dominance of trade frequency over trade
volume and average trade size in explaining volatility, we find that volume and aver-
age trade size have incremental information beyond trade frequency. Surprisingly,
the trade frequency and trade volume of uninformed traders have converse effects
on volatility. The trade frequencies of both informed and uninformed traders in-
crease volatility. However, the trade volume of informed traders increases volatility,
while the trade volume of uninformed trader reduces volatility. From the Volume-
Volatility relationship, the relative frequency (volume) of informed trading cali-
brated from tick imbalance have similar properties with the relative frequency (vol-
ume) of informed trading calibrated from the unobservable information assumption.

3.6 Conclusion

We have proposed to model the aggregate trade volume of stocks in a quote-driven
market using a compound Poisson distribution. In our model trades may be initiated
by informed or uninformed traders, differentiated by their motivation of trade. We
assume that the aggregate volume of each group of traders follow a compound Pois-
son distribution, with the parameters for the distribution of trades due to informed
traders dependent on some information variables. We use two approaches to es-
timate the model. First, we use tick imbalance as proxy for information variable.
Conditional on the tick imbalance, MLE method is used to estimate the model; Sec-
ond, we treat the information variable random and unobservable, GMM method is
used to estimate the model. We then calibrate the model and propose measures of
relative intensity of informed trading based on trade frequency and trade volume.
Our model treats volume endogenously and does not assume a priori that volume
and volatility are related.
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Our empirical analysis of the daily volatility estimates of 50 NYSE stocks con-
firm that trade frequency dominates trade volume and trade size in affecting volatil-
ity. Yet trade volume and trade size have incremental information for volatility
beyond that contained in trade frequency. Tick imbalance is an appropriate infor-
mation proxy under our compound Poisson distribution assumption. Our results
also show that informed trading volume increase volatility, while uninformed trad-
ing volume reduce volatility. However, for both informed and uninformed traders,
the disaggregated effect of trade frequency is to increase volatility. The converse
effects of liquidity traders on volatility remains the future research.

Since the transition year of 2007 in which the NYSE started to operate a hybrid
market, the limit-order market has gained importance over the specialist market.
Electronic trading provides the platform for the development of High Frequency
Trading (HFT). The SEC (2010) report showed that trade frequency and trade vol-
ume increased substantially from 2005 though 2009, while the average trade size
had dropped. While the model proposed in this chapter applies only to the spe-
cialist market, in which informed traders are defined against the market maker, the
compound Poisson approach proposed in this chapter remains a strong candidate as
a statistical tool for modeling trade volume in the limit-order market. The distinc-
tion between the information role of market order and limit order, however, has to
be carefully studied in developing such a model.
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Table 3.1: Estimated models of 50 stocks of the MLE approach

Parameters
Stocks λU β µU µI

XOM 320.3 (2.755) 81.36 (2.259) 1043 (11.78) 3497 (9.358)
C 264.8 (1.694) 76.58 (1.252) 775.4 (4.862) 3573 (14.94)
CVX 319.1 (2.468) 47.68 (1.73) 611.5 (3.419) 1449 (6.338)
GE 231.8 (1.409) 84.64 (1.113) 800.4 (4.396) 4910 (19.32)
GS 194 (1.688) 26.18 (1.307) 602.2 (3.206) 1181 (7.335)
JPM 193.5 (1.353) 61.52 (1.005) 782.3 (5.996) 3655 (14.09)
RIG 240.5 (2.67) 43.23 (1.986) 538 (2.398) 909.9 (6.76)
BAC 207.6 (1.237) 54.46 (0.8097) 694.6 (3.556) 3335 (14.7)
PFE 261.8 (1.838) 90.22 (1.501) 1135 (8.044) 6512 (30.5)
WMT 240.9 (1.66) 78.71 (1.213) 714.6 (4.603) 3585 (15)
FCX 162.6 (1.632) 19.92 (1.249) 479.4 (1.726) 647.5 (14.69)
TXN 264.6 (2.47) 65.82 (1.998) 941 (11.68) 3063 (8.747)
AIG 196.5 (2.355) 57.88 (1.971) 918.6 (17.32) 3287 (10.44)
IBM 235 (1.91) 42.98 (1.447) 558.6 (4.702) 1651 (6.869)
T 115.9 (1.151) 31.47 (0.7313) 776 (6.853) 2962 (15.44)
PG 192.6 (1.291) 54.34 (0.8734) 599.4 (3.552) 2719 (11.85)
HD 205.5 (1.738) 45.78 (1.311) 771.5 (7.86) 2492 (8.498)
HPQ 190.1 (1.312) 57.73 (1.017) 872.9 (6.538) 4433 (20.16)
JNJ 209.8 (1.298) 52.49 (0.8697) 571.9 (3.267) 2446 (10.53)
NEM 220.6 (2.214) 37.54 (1.639) 612 (3.282) 1173 (7.173)
BHI 206.2 (1.951) 27.87 (1.522) 462.9 (1.437) 524.4 (10.55)
MRK 192.3 (1.648) 51.87 (1.24) 804.9 (7.529) 2987 (12.29)
CFC 161.7 (1.42) 23.73 (1.12) 593.7 (4.435) 1376 (7.291)
AA 183.2 (1.512) 23.71 (1.039) 775.8 (5.406) 1890 (8.659)
WB 179.4 (1.533) 19.59 (1.111) 665 (4.134) 1415 (7.392)
GLW 171.8 (1.499) 50.93 (1.032) 872.4 (6.771) 3413 (15.66)
TGT 208.2 (1.827) 31.7 (1.443) 526.4 (2.827) 1046 (6.453)
VZ 192.2 (1.472) 50 (0.9657) 715.4 (4.873) 2970 (13.79)
AMD 171.9 (1.891) 44.98 (1.384) 956.6 (12.87) 3050 (11.9)
BA 182.2 (1.676) 28.62 (1.268) 562.3 (4.171) 1292 (6.279)
X 182.6 (1.695) 28.35 (1.228) 605.7 (4.51) 1418 (7.185)
KO 214.1 (1.662) 35.03 (1.23) 675 (5.659) 1926 (7.25)
DVN 201.2 (1.788) 29.19 (1.291) 540.5 (1.819) 440.5 (10.97)
AXP 147.3 (1.018) 36.51 (0.6097) 521.5 (2.818) 2421 (12.37)
EMC 166.4 (1.215) 45.44 (0.7889) 901.5 (6.728) 4955 (23.57)
TWX 219.9 (1.489) 67.97 (1.036) 983.9 (5.966) 5604 (25.39)
MCD 191.8 (1.259) 43.77 (0.7316) 562.3 (2.558) 2380 (12.06)
DIS 199.5 (1.492) 35.93 (1.105) 773.6 (6.786) 2520 (9.796)
APA 174.4 (1.711) 22.1 (1.379) 470.9 (1.313) 628.8 (11.32)
WYE 192.1 (1.736) 27.31 (1.216) 544.2 (4.036) 1376 (7.136)
WM 144.9 (1.202) 27.49 (0.8943) 583.1 (4.68) 1762 (9.482)
ABT 178.1 (1.338) 21.23 (0.9198) 600.9 (3.91) 1540 (7.77)
DD 193.5 (1.415) 31 (0.936) 463.3 (2.839) 1333 (6.628)
DOW 174.4 (1.427) 29.93 (1.068) 554.2 (4.739) 1568 (6.574)
MDT 176.5 (1.423) 21.12 (1.081) 602.7 (4.04) 1358 (6.65)
MMM 173.6 (1.388) 22.79 (0.9798) 421.6 (2.467) 1034 (6.942)
HON 180 (1.533) 24.36 (1.102) 574.7 (3.593) 1306 (6.977)
KSS 137.1 (1.132) 26.86 (0.7692) 454.2 (3.444) 1463 (7.992)
NSM 139 (1.382) 33.62 (0.9984) 651.1 (6.514) 2032 (9.468)
BMY 156.2 (1.261) 21.2 (0.9831) 934.3 (8.376) 2505 (11.04)

Notes: Information proxy is tick imbalance. Numbers in parentheses are standard errors.
The data used are regular trades in 2005. Since the sample average of tick imbalance is
1, so the value of β is also the value of β µK . We keep 4 significant digital figures in the
table.
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Table 3.2: Summary statistics of the MLE approach

Stocks RFIT RVIT µI/µU Stocks RFIT RVIT µI/µU

XOM 0.1835 0.3930 3.3527 C 0.2006 0.4803 4.6073
CVX 0.1207 0.2310 2.3691 GE 0.2368 0.5853 6.1351
GS 0.1112 0.1888 1.9613 JPM 0.2144 0.5014 4.6716
RIG 0.1403 0.2084 1.6913 BAC 0.1878 0.4711 4.8016
PFE 0.2245 0.5506 5.7348 WMT 0.2189 0.5229 5.0171
FCX 0.1021 0.1308 1.3508 TXN 0.1789 0.3781 3.2550
AIG 0.2036 0.4333 3.5784 IBM 0.1431 0.3063 2.9552
T 0.1897 0.4214 3.8164 PG 0.1979 0.4752 4.5369
HD 0.1652 0.3560 3.2299 HPQ 0.2061 0.5044 5.0788
JNJ 0.1809 0.4368 4.2772 NEM 0.1342 0.2186 1.9171
BHI 0.1111 0.1231 1.1330 MRK 0.1900 0.4209 3.7106
CFC 0.1185 0.2235 2.3174 AA 0.1070 0.2124 2.4355
WB 0.0931 0.1717 2.1283 GLW 0.2002 0.4405 3.9123
TGT 0.1226 0.2074 1.9876 VZ 0.1858 0.4372 4.1519
AMD 0.1841 0.3789 3.1888 BA 0.1260 0.2350 2.2978
X 0.1248 0.2360 2.3416 KO 0.1302 0.2775 2.8527
DVN 0.1178 0.0993 0.8150 AXP 0.1805 0.4541 4.6422
EMC 0.1900 0.4927 5.4964 TWX 0.2090 0.5288 5.6960
MCD 0.1671 0.4099 4.2337 DIS 0.1401 0.3169 3.2574
APA 0.1057 0.1340 1.3353 WYE 0.1160 0.2340 2.5288
WM 0.1460 0.3132 3.0219 ABT 0.1000 0.2085 2.5634
DD 0.1275 0.2738 2.8762 DOW 0.1351 0.2842 2.8299
MDT 0.1005 0.1914 2.2532 MMM 0.1088 0.2176 2.4528
HON 0.1115 0.2103 2.2726 KSS 0.1504 0.3331 3.2204
NSM 0.1752 0.3635 3.1203 BMY 0.1112 0.2340 2.6810
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Table 3.3: Estimated models of 50 stocks of the GMM approach

Parameters
Stocks λU β µK µU µI

XOM 255.6 (10.02) 87.09 (4.181) 1730 (7.176) 5807 (265.2)
C 237.2 (17.46) 39.55 (8.953) 1709 (4.384) 6448 (62.05)
CVX 209.9 (18.14) 36.69 (8.838) 1358 (38.84) 2219 (121.8)
GE 196.3 (6.508) 74.19 (4.78) 2161 (6.868) 7463 (188.8)
GS 134.1 (33.4) 44.53 (24.07) 1064 (9.226) 1780 (151.3)
JPM 163.6 (5.527) 41.23 (4.127) 1584 (2.612) 5794 (39.98)
RIG 245.5 (53.02) 1.442 (55.59) 943.9 (53.03) 1159 (81.55)
BAC 177.6 (7.849) 58.39 (6.753) 1579 (11.6) 6624 (242.3)
PFE 209.1 (8.441) 93.34 (3.307) 2785 (7.627) 11280e (376.5)
WMT 175.9 (14.11) 78.61 (11.63) 1793 (19.69) 8168 (1007)
FCX 106.8 (22.51) 19.47 (13.35) 946.6 (25.98) 1314 (119.4)
TXN 271.8 (8.086) 2.643 (5.561) 2050 (3.291) 4935 (65.11)
AIG 219.1 (12.39) 15.98 (12.38) 3676 (15.34) 9627 (615.5)
IBM 153.5 (15.01) 63.09 (8.745) 804.9 (2.835) 2243 (77.54)
T 72.64 (5.687) 44.99 (3.683) 2103 (1.922) 4744 (179.5)
PG 158.7 (6.625) 57.7 (5.252) 1514 (15.18) 6279 (535.4)
HD 189.5 (9.678) 21.43 (6.86) 1696 (2) 3174 (80.33)
HPQ 153.1 (10.11) 57.27 (3.967) 2187 (10.21) 9225 (526.7)
JNJ 243.1 (12.96) 12.43 (14.18) 1850 (9.15) 4085 (367.6)
NEM 132.5 (19.85) 34.12 (9.217) 758.1 (32.13) 2380 (170.4)
BHI 139.7 (66.11) 10.97 (39.75) 1011 (91.29) 1323 (201)
MRK 93.1 (13.2) 103.4 (17.05) 1412 (0.2644) 8635 (0.326)
CFC 75.4 (16.93) 66.47 (6.564) 812.4 (2.993) 2866 (251.1)
AA 109.7 (5.883) 47.23 (3.704) 1127 (1.791) 2982 (66.8)
WB 145.5 (9.125) 3.107 (4.904) 1244 (7.139) 2231 (109.6)
GLW 104 (6.599) 6.015 (1.687) 730.8 (4.519) 6164 (208.3)
TGT 95.29 (19.37) 103.3 (9.343) 819.9 (3.47) 1891 (166.5)
VZ 39.49 (14.4) 127.7 (11.1) 1472 (3.271) 4122 (920)
AMD 113.1 (12.37) 46.77 (6.473) 1760 (7.917) 8326 (379.9)
BA 127.8 (12.1) 21.06 (7.529) 1180 (13.17) 1703 (85.78)
X 134.8 (44.28) 16.02 (18.54) 714 (6.936) 4175 (3.607)
KO 159.8 (18.41) 24.66 (11.43) 1438 (16.05) 2166 (111.6)
DVN 104.2 (36.84) 45.49 (10.26) 892.5 (44.98) 1563 (279.5)
AXP 58.72 (10.22) 92.5 (3.291) 908.7 (4.131) 4049 (476.8)
EMC 101 (10.5) 33.11 (8.242) 2849 (1.126) 7760 (26)
TWX 111 (20.52) 82.06 (9.976) 2715 (4.698) 9732 (358.3)
MCD 21.86 (8.573) 134.7 (8.263) 1293 (0.8475) 3229 (536.2)
DIS 111 (22.94) 94.67 (27.14) 2410 (10.37) 1863 (108.6)
APA 124.6 (14.72) 3.556 (9.487) 949.8 (19.11) 1187 (53.67)
WYE 178 (17.87) 10.07 (13.76) 711.3 (10.46) 4552 (27.64)
WM 86.13 (8.665) 45.92 (4.987) 1139 (1.342) 2494 (74.55)
ABT 75.27 (5.888) 74.97 (2.355) 703.2 (1.55) 2550 (101.4)
DD 122.9 (5.676) 73.14 (2.292) 663.6 (2.194) 2154 (98.7)
DOW 109.4 (12.39) 23.2 (5.571) 1020 (4.272) 2780 (116.6)
MDT 93.02 (7.398) 80.35 (4.256) 892.9 (1.449) 1796 (85.66)
MMM 97.01 (35.59) 74.79 (48.77) 642.3 (107) 1777 (655.8)
HON 67.06 (8.938) 94.53 (4.897) 851.8 (1.679) 2144 (162.5)
KSS 38 (7.674) 60.83 (3.166) 809 (3.825) 2123 (127.6)
NSM 104.8 (10.78) 36.32 (9.176) 1404 (10.44) 4991 (305)
BMY 122.9 (4.56) 1.61 (2.638) 1082 (2.373) 4511 (23.37)

Notes: Information proxy is unobservable. Numbers in parentheses are standard errors.
The data used are regular trades in 2005.We keep 4 significant digital figures in the table.
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Table 3.4: Summary statistics of the GMM approach

Stocks RFIT RVIT µI/µU Stocks RFIT RVIT µI/µU

XOM 0.2541 0.5336 3.3574 C 0.1429 0.3862 3.7737
CVX 0.1488 0.2221 1.6335 GE 0.2743 0.5663 3.4542
GS 0.2493 0.3572 1.6729 JPM 0.2013 0.4797 3.6583
RIG 0.0058 0.0072 1.2282 BAC 0.2474 0.5797 4.1961
PFE 0.3086 0.6437 4.0486 WMT 0.3089 0.6706 4.5562
FCX 0.1542 0.2019 1.3883 TXN 0.0096 0.0229 2.4069
AIG 0.0680 0.1604 2.6188 IBM 0.2912 0.5338 2.7865
T 0.3824 0.5828 2.2557 PG 0.2666 0.6012 4.1473
HD 0.1016 0.1747 1.8714 HPQ 0.2723 0.6122 4.2183
JNJ 0.0487 0.1015 2.2082 NEM 0.2047 0.4469 3.1388
BHI 0.0728 0.0932 1.3086 MRK 0.5261 0.8716 6.1146
CFC 0.4685 0.7567 3.5283 AA 0.3010 0.5327 2.6470
WB 0.0209 0.0369 1.7936 GLW 0.0547 0.3279 8.4341
TGT 0.5201 0.7142 2.3061 VZ 0.7638 0.9006 2.8006
AMD 0.2926 0.6618 4.7315 BA 0.1415 0.1921 1.4423
X 0.1062 0.4100 5.8476 KO 0.1337 0.1886 1.5066
DVN 0.3039 0.4332 1.7510 AXP 0.6117 0.8753 4.4554
EMC 0.2468 0.4716 2.7239 TWX 0.4250 0.7260 3.5849
MCD 0.8603 0.9390 2.4982 DIS 0.4602 0.3972 0.7729
APA 0.0277 0.0344 1.2501 WYE 0.0535 0.2658 6.3999
WM 0.3477 0.5387 2.1903 ABT 0.4990 0.7832 3.6260
DD 0.3731 0.6589 3.2457 DOW 0.1749 0.3663 2.7270
MDT 0.4635 0.6346 2.0108 MMM 0.4353 0.6808 2.7669
HON 0.5850 0.7801 2.5166 KSS 0.6155 0.8077 2.6243
NSM 0.2573 0.5519 3.5539 BMY 0.0129 0.0518 4.1684
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Table 3.5: Summary of regressions

Panel A: Regressions of trade frequency, trade volume and trade size

Model F V S RF RV IF IV UF UV R̄2
mean R̄2

min R̄2
max

1 +49 0.2613 0.0231 0.5316

2 +49 0.1385 -0.0037 0.3154

3 +46 +12 0.2765 0.0564 0.5304

4 +49 +9 0.2754 0.0547 0.5301

5 +22 0.0369 -0.0040 0.2146

6 +49 -45 0.2647 0.0566 0.5103

Panel B: Regressions using RFIT and RVIT calibrated from the MLE approach

Model F V S RF RV IF IV UF UV R̄2
mean R̄2

min R̄2
max

7 +50 0.1963 0.0360 0.3595

8 +50 0.1739 0.0312 0.3329

9 +50 0.2980 0.0687 0.5564

10 +50 +23 0.3175 0.0651 0.5803

11 +49 0.2012 0.0182 0.3747

12 +49 -23 0.2258 0.1044 0.4233

13 +46 +11 0.3089 0.1328 0.5549

Panel C: Regressions using RFIT and RVIT calibrated from the GMM approach

Model F V S RF RV IF IV UF UV R̄2
mean R̄2

min R̄2
max

7 +48 0.2397 0.0063 0.4565

8 +47 0.2201 0.0038 0.4555

9 +48 0.2551 0.0203 0.5264

10 +47 +16 0.2684 0.0256 0.5304

11 +49 0.1918 -0.0009 0.4156

12 +49 -35 0.2558 0.0474 0.4964

13 +39 +15 0.2701 0.0467 0.5271

Notes: The data used are regular trades in 2005. Volatility is estimated using the
ACD-ICV method. +n (−n) means n stocks have regression coefficient with a t
ratio larger (less) than 2 (−2). R̄2

mean, R̄2
min and R̄2

max are, respectively, the mean,
minimum and maximum of R̄2 of the 50 regressions. Panel A shows the regressions
of volatility on trading frequency, trade volume and trade size. Panel B and Panel C
show the regressions adopting RFIT and RVIT calibrated from the MLE and GMM
approaches, respectively.
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Figure 3.1: Relative frequency of trade size
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Figure 2: Intraday information profile
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Chapter 4 Intraday Value at Risk: Asym-

metric Autoregressive Conditional

Duration Approach

4.1 Introduction

This chapter proposes a method to compute intraday Value at Risk (IVaR) using
real-time high-frequency transaction data, which takes into account the instanta-
neous market events. With the rapid growth of high-frequency trading, transactions
can be done within a second, millions of data points flow out of the stock markets
driving investors’ and traders’ decision logic. In Table 4.1 the average daily transac-
tions during the period of January 2008 to December 2010 for ten selected large-cap
stocks are all above 10,000, with the average duration per trade ranging from 0.98
second for JPM to 2.17 seconds for IBM.1 While the number of trades per day re-
duces dramatically after combining the trades in the same time stamp into one trade,
it is still larger than 5,000 for all the stocks. Due to decimalization, the minimum
tick size for the New York Stock Exchange (NYSE) is reduced to one cent. From
Table 1, around half of the transactions of the selected 10 stocks are at tick zero
(no price change), more than 5% of the transaction price changes are greater than
or equal to 5 ticks, which leads to large price jumps in ticks and a larger range of
observable discrete trade-by-trade price jumps. Since transaction price changes are
quoted as multiples of the smallest divisor, the use of a continuous distribution to
characterize price changes is not appropriate for stocks with high transaction inten-
sities.

A problem in using high-frequency data is that the raw data contain excessive
noise. The aim of applying econometric and other computational methods to high-
frequency data is to filter noise and extract information. In the microstructure liter-
ature, due to the presence of transaction costs, a rational informed trader will only
trade when the current price deviates from his/her estimate of the “true price” by
more than the transaction cost incurred.

1We select 10 large-cap stocks traded on the NYSE for reporting convenience, information for
other stocks is exhibited in Table 2.
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We propose to sample the high-frequency data using price duration events to
filter out the microstructure noise. Our method for estimating and evaluating the
IVaR is based on an extension of the asymmetric autoregressive conditional dura-
tion (AACD) model of Bauwens and Giot (2003). For a pre-determined threshold δ ,
a price-event is triggered if the cumulative price change (either upwards or down-
wards) exceeds δ , and the time taken to observe the event is the duration. Upon
modeling the price movements and the durations of price-events jointly, we forecast
the next price movement and the price-event time. We then employ a simulation
approach to estimate the IVaR within a pre-determined time horizon.

In providing intraday information, IVaR is a useful tool to define risk profiles,
monitor risk and measure performance for traders. IVaR was first proposed by
Giot (2005), who aggregates the irregularly-spaced high-frequency data to retrieve
a regularly-sampled intraday returns and employs Gaussian GARCH, Student’s t
GARCH and RiskMetrics models to quantify IVaR. He also employs a duration
(log-ACD) model to access the irregularly-spaced high-frequency data. Based on
an empirical study on the NYSE stocks, he shows that the Student’s t GARCH
model performs the best. Dionne, Duchesne and Pacurar (2009) investigate the use
of tick-by-tick data and estimate IVaR by intraday Monto Carlo simulations using
irregularly-spaced high-frequency data. Coroneo and Veredas (2011) propose to es-
timate IVaR using quantile regression for regularly-spaced high-frequency financial
data.

There are important advantages of our approach over the above methods. First,
we employ price-duration point process to filter out the microstructure noise, which
is crucial in modeling high-frequency transaction data. Second, we model the price
movements and price durations jointly using AACD model, which avoids modeling
the intraday return distribution. Third, we employ a time transaction method to ad-
just the intraday seasonality pattern of the price duration process, which allows us to
switch from calendar time and diurnally-adjusted time conveniently for evaluating
IVaR. Finally, we use all the information before the forecast IVaR intervals, which
makes the IVaR forecast more accurate.

The autoregressive conditional duration (ACD) model is proposed by Engle
and Russell (1998) to analyze the durations between transactions, irrespective of
whether they correspond to a price increase or decrease. Bauwens and Giot (2003)
extend the ACD model to study the mid-point of bid-ask quotes. They propose
a two-state AACD model to analyze mid-price decrease and increase jointly with
trade duration. In their model, the conditional expected duration of each state varies
with conditional information. This conditional information may include lagged du-
ration, lagged volume, and lagged spread. Recently, such models have been ex-
panded rapidly with contribution by Gramming and Maurer (2000), Zhang, Russell
and Tsay (2001), Engle and Lunde (2003), Gourieroux, Jasiak and Le Fol (2004),
and Fernandes and Gramming (2005), among others. Paccurar (2008) provides a
comprehensive suvey of ACD models.

We apply the AACD model to a two-state point process for price movements,
where the two states represent an upward or a downward price movement of a pre-
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determined threshold δ . Following Bauwens and Giot (2003), we allow the ex-
pected duration to vary with the lagged durations, and the lagged conditional ex-
pected durations. Using an intraday Monte Carlo simulation approach, with infor-
mation for the price movements before a stated time, we simulate the price move-
ments starting from the stated time for any horizon during the trading hours. We
study all index stocks of the S&P 500 traded on the NYSE for three different pe-
riods during and after the 2008 global financial crisis. Our empirical results of
30-min IVaR backtesting show that the AACD approach outperforms other IVaR
evaluation methods. IVaR can be computed for any time horizon once the AACD
model has been estimated without requiring new sampling and estimation when the
time horizon changes, due to the the flexibility of irregularly-spaced information.
60-min IVaR backtesting results also indicate that the AACD approach performs
well against other methods.

The structure of this chapter is as follows. Section 2 summarizes the IVaR meth-
ods considered for comparison in this chapter. Section 3 presents the IVaR evalua-
tion method employing the AACD model. Section 4 describes the IVaR backtesting
methods used in our paper. In Section 5 we describe our data, which are high-
frequency transaction data extracted from the Trade and Quote (TAQ) database of
the NYSE. Section 6 reports the empirical results of our study. Section 7 concludes
the paper.

4.2 Review of Intraday Value at Risk

The Value at Risk (VaR) concept has emerged as one of the most prominent mea-
sures for downside market risk. VaR can be defined in terms of the conditional
quantile of the asset portfolio return distribution for a given horizon and a given
shortfall probability (typically chosen between 1% and 5%). Consider a time series
of portfolio returns rt and an associated series of ex-ante VaR forecasts with target
probability p, denoted by VaRt(p). The VaRt(p) implied by a model M is defined
by

PrM
t−1(rt <−VaRt(p)) = p, (4.2.1)

where PrM
t−1 denotes a probability derived from Model M using the information up

to time t − 1, and the negative sign in equation (4.2.1) is due to the convention of
reporting VaR as a positive number.

Much effort has been spent on developing increasingly sophisticated risk mod-
els of VaR type for daily data and/or longer horizons. IVaR was initially discussed
by Giot (2005), who applies VaR technique to intraday data. Giot (2005) aggre-
gates irregularly-spaced high-frequency data to retrieve regularly-sampled intraday
returns, which are in turn fitted into the normal GARCH, Student’s t GARCH and
RiskMetrics models in the framework of the VaR methodology. He also employs
a duration (log-ACD) model for the irregularly-spaced high-frequency data. His
study on the NYSE stocks shows that the Student’s t GARCH model performs the
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best, while the high-frequency duration model behaves rather poorly in a regularly
time-spaced framework. Similar to Giot (2005), Sakalauskas and Kriksciuniene
(2006) suggest the modified RiskMetrics model of risk evaluation for short-term
investments in the currency market, which is based on calculating VaR on hourly
basis, using seasonal decomposition.

Giot and Grammig (2006) introduce the so-called liquidity adjusted IVaR by
taking into account the potential price impact of liquidating an asset. In their model,
liquidity risk is quantified by employing a new empirical technique which extends
the classical frictionless IVaR methodology in an automated auction market. The
liquidity adjusted IVaR measure is particularly relevant for impatient investors who
submit market orders. Such models have been studied with recent contributions by
Angelidis and Benos (2006), Qi and Ng (2010) and Groth and Muntermann (2011).

Coroneo and Veredas (2011) propose an IVaR model based on the conditional
distribution of high-frequency financial returns by means of a two-component quan-
tile regression model. In this model, the high-frequency returns are decomposed
into two components, one to account for the intraday seasonality using a Fourier
series and another for the return dynamics employing the lags of absolute returns.
The application of this model on Spanish stocks outperforms GARCH-based IVaR
methods.

The above-mentioned approaches are all based on regularly-spaced high-frequency
data, which not only require finding the optimal aggregating scheme, but also in-
evitably lead to loss of important information contained in the time intervals be-
tween transactions as argued by Dionne, Duchesne and Pacurar (2009). These au-
thors propose a method to compute the IVaR model based on irregularly-spaced
high-frequency data and intraday Monte Carlo simulation. We call these kind of
models irregularly-spaced IVaR models.

In this chapter, we will consider the Giot (2005) and Dionne, Duchesne and
Pacurar (2009) methods for comparison.

4.2.1 Giot Method

One way to evaluate IVaR is to model the regularly-spaced intraday returns and their
associated volatility. First, the feature of non-regularly time-spaced data requires a
pre-determined sampling scheme. Define pi as the sampled price, “raw return” can
be computed as ri = log(pi)− log(pi−1), where pi is sampled at every s seconds
so that ti − ti−1 = s and ti is the calender time. Second, the GARCH-type volatility
models can be used for volatility modeling provided that intraday seasonality is
taken into account. Giot (2005) assumes deterministic seasonality in the intraday
volatility, and the “deseasonalized return” Ri is computed from the raw returns ri as

Ri =
ri√
ϕ(ti)

(4.2.2)
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where ϕ(·) is the deterministic intraday seasonal variance factor, defined as the
expected variance conditional on time of day and usually computed by averaging
the squared returns over s-second intervals for each day over the sample. Cubic
splines are then used to smooth the time-of-day function. However, the choice for
the time point in adjusting return Ri is quite arbitrary. For example, one can use the
starting point of the interval ti−1 or the middle point of the interval ti−1+ti

2 .
As intraday seasonality has been taken into account, the volatility models can be

applied to the deseasonalized returns Ri. IVaR are then computed by re-including
the seasonal component ϕ(ti). In Giot (2005), the deseasonalized returns Ri are
assumed to follow an AR(1)-GARCH(1,1) model, which can be written as

Ri = µ +δRi−1 + ei, ei = εi
√

hi, (4.2.3)

with εi following an i.i.d. standard normal distribution and hi given by

hi = ω +αe2
i−1 +βhi−1. (4.2.4)

Once all the parameters are determined, the one-step-ahead IVaR at time index i+1
is computed as

IVaRi+1 =−
(

µ̂
√

ϕ(ti+1)+ δ̂Ri
√

ϕ(ti+1)+ zp

√
ĥi+1ϕ(ti+1)

)
(4.2.5)

where zp is the p-quantile of the standard normal distribution.2

4.2.2 Dionne-Duchesne-Pacurar Method

Dionne, Duchesne and Pacurar (2009) (DDP hereafter) adopt an intraday simula-
tion method to evaluate IVaR, which considers the joint density of trade duration
and tick-by-tick return, defined as the time and return between two consecutive
transactions respectively. Let f (xi,ri|x(i−1),r(i−1);θ) represent the joint density of
duration xi and return ri, and x(i−1) and r(i−1) denote the past observations of du-
ration and return up to the (i− 1)th transaction. The log-likelihood function for a
sample of observations {xi, ri}, with i = 1, . . . ,n, can then be written as

ℓ(θ1, θ2) =
n

∑
i=1

[
log{g(xi|x(i−1),r(i−1);θ1)}+ log{q(ri|xi,x(i−1),r(i−1);θ2)}

]
(4.2.6)

where g(xi|x(i−1),r(i−1);θ1) is the marginal density of the duration xi with param-
eter vector θ1 conditional on past durations and returns, q(ri|xi,x(i−1),r(i−1);θ2)

is the conditional density of the return ri with parameter vector θ2 conditional on
2The negative sign in equation (5) is due to the convention of reporting IVaR as a positive number.

83



past durations and returns as well as the contemporaneous duration xi. After the
duration and tick-by-tick return models are determined, we can forecast the trade
durations and tick-by-tick returns within a pre-determined time interval. From sim-
ulated replications, the empirical distribution of returns within the pre-determined
interval is obtained.

In this chapter, we modify the DDP method by filtering microstructure noise
employing volume duration, defined as the time until a given aggregate volume v̄
is achieved.3 Volume duration is introduced by Gourieroux, Jasiak, and Le Fol
(1999) as a reasonable measure of liquidity that accounts simultaneously for the
time and volume dimension of the trading process. There are few studies about
volume durations and Paccurar (2008) provides an extensively survey.

Let t0, t1, · · · , tN denote a sequence of time for which ti is the time of occurrence
of the ith volume event, which is said to have occurred if the cumulative trade vol-
ume since the last volume event is at least of a pre-set amount v̄. Thus, xi = ti− ti−1,
for i = 1,2, · · · ,N, are the intervals between consecutive volume events, called vol-
ume durations. As before, raw return ri = log(pi)− log(pi−1), where pi is the
transaction price at time ti.

The duration series {xi}N
i=1, generated by volume events in contrast to the trade

durations in the original DDP method, is modeled by the ACD model. Let ψi =

E(xi|Φi−1) be the conditional duration, where Φi is the information set upon the
volume event at time ti. We assume the standardized duration

εi =
xi

ψi
(4.2.7)

to be a sequence of i.i.d. positive random variables with unit mean and finite vari-
ance. Following Bauwens, Giot, Grammig and Veredas (2004), we employ the
log-ACD model with the flexible Weibull distribution to model the volume duration
process, i.e.,

logψi = ω +α logxi−1 +β logψi−1. (4.2.8)

The standardized duration εi follows the Weibull distribution with density function

f (ε;λ ,ϕ) =
ϕ
λ

( ε
λ

)ϕ−1
exp
[
−
( ε

λ

)ϕ
]
, ε > 0, (4.2.9)

where we have imposed the restriction λ = 1/Γ(1+1/ϕ) to ensure unit mean.
The return series {ri}N

i=1, generated by the volume events, similar to the tick-by-
tick returns in the original DDP method, can be modeled by the EGARCH method.
Since both the volatility and duration exhibit intraday seasonality, the intraday pe-
riodicity of ri has to be taken into account. Similar to ϕ(ti) in Giot’s method, we
assume φ(ti) to be the deterministic intraday seasonal component of the intraday re-

3DDP method can also be modified by employing the frequency duration, which is, defined as
the time until a given aggregate transaction amount is achieved.
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turn variance. The difference between ϕ(ti) and φ(ti) is that φ(ti) is the conditional
variance of the irregularly-spaced intraday returns, while ϕ(ti) is the conditional
variance for the regularly-spaced intraday returns. Similarly, IVaR are computed
by re-including the seasonal component φ(ti) for the original returns ri. The de-
seasonalized return series Ri = ri/

√
φ(ti) can be modeled by the EGARCH model,

with
Ri = zi

√
hi, (4.2.10)

where zi denotes white nose, which is assumed to be i.i.d. random variables with
standard normal distribution. The conditional variance hi is given by

log(hi) = γ log(xi)+ ω̃ + β̃ (log(hi−1)− γ log(xi−1))+ξ |zi−1|+ α̃zi−1, (4.2.11)

or in another form by simple transformation:

log

(
hi

xγ
i

)
= ω̃ + β̃ log

(
hi−1

xγ
i−1

)
+ξ |zi−1|+ α̃zi−1. (4.2.12)

This method is similar to Engle’s (2000) UHF-GARCH model that specifies a GARCH
component for the volatility of returns per unit time, which is hi/xi. Under En-
gle’s framework, the conditional variance of return from one transaction to the next
(hi = Vi−1(ri|xi), where Vi−1(·) denotes the conditional variance upon information
at time ti−1) equals the duration between the two consecutive trades (xi) times the
variance per second (σ2

i = Vi−1(ri/
√

xi|xi)). Although it seems natural to model
the variance as a function of time when using irregularly-spaced transaction data,
the modeling for the unit of time might be quite restrictive for some empirical data.
The conditional heteroskedasticity in the returns could depend on time in a more
complicated way due to the fact that the impact of the trading volume on volatility
following the news events depends on the trading behavior of different type of in-
vestors, some are more sophisticated than others. Therefore, in the DDP method,
the parameter γ specifies the duration weighting for the volatility of a particular
stock, which has to be estimated for each stock. When γ = 1, the model is simi-
lar, though not equivalent, to the UHF-GARCH model; when γ = 0, it becomes the
standard EGARCH model.

If the durations are weakly exogenous with respect to the processes for the re-
turns, then the two parts of the log-likelihood function could be maximized sepa-
rately, which simplifies the estimation (see, for instance, Engle (2000)). After the
parameters are determined, we use simulation to forecast the price movements and
the volume durations over a certain fixed time interval. In this chapter, the empirical
return distribution of the forecast interval is estimated by 5,000 replications, and the
IVaRt(p) is then computed as the absolute value of the p-quantile of the empirical
distribution.

The parameters estimated from the estimation part will be used to forecast the
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durations and returns within the forecast interval. For instance, to compute the
IVaR between 10:10 - 10:45, the initial value of x0, ψ0, z0 and h0 can be collected
from the information before 10:10. First, we collect the volume-event information
between 9:30 - 10:10 and then compute the volume duration series {xb

i }m
i=1 and

return duration series {rb
i }m

i=1 during 9:30 - 10:10 according to the pre-determined
threshold v̄.4 Second, calculate the {ψb

i }m
i=1 by equation (8), and calculate {zb

i }m
i=1

and {hb
i }m

i=1 by equation (11). Third, set the initial value of x0, ψ0, z0 and h0 to be xb
m,

ψb
m, zb

m and hb
m respectively. Finally, the simulation algorithm can be summarized as

follows,

1. For i = 1, set the initial value for x0 and obtain ψ1 from equation (4.2.8).

2. Draw random number εi from the Weibull distribution.

3. Compute xi = ψi εi, and ψi+1 from equation (4.2.8).5

4. Conditional on the simulated value of xi, hi is computed using equation (4.2.11).

5. Draw random noise zi from the standard normal distribution, and compute
Ri = zi

√
hi. Calculate ti = ti−1 + xi and log pi = log pi−1 +Ri

√
φ(ti).

6. Set i = i+1 and iterate Steps 2, 3, 4 and 5 until ti exceeds the pre-set forecast
time interval.

4.3 AACD approach

Although the modified DDP method does not only take into account the irregularly-
spaced information of transaction data but also takes account of noise filtering, the
modeling of intraday returns and their associated volatility remain an important
component in evaluating IVaR. While the problem arising from modeling the dis-
creteness of the price process at the transaction level maybe solved to some extent by
filtering microstructure noise, price changes are still modeled under the continuous-
distribution framework. Models treating the price movement as a discrete vari-
able and modeling the joint density of duration and price movement are needed to
solve this problem. Bauwens and Giot (2003) propose an Asymmetric ACD model
(AACD) in which the duration and quote revision are modeled jointly. Russell and
Engle (2005) further propose an Autoregressive Conditional Multinomial - Autore-
gressive Conditional Duration (ACM-ACD) model to study the joint distribution of
the duration and price change.

This section proposes a Monte Carlo simulation method to estimate IVaR, which
is based on the AACD model. The AACD model has also been studied by Tay, Ting,
Tse and Warachka (2011) to investigate the effect of trade volume, trade direction

4xb
i and rb

i denote the duration and return series before 10:10, in order to distinguish from the
series in forecasting segment.

5x1 should be larger than time between 10:10 and the last event time before 10:10.
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and trade durations in explaining price dynamics and volatility. We use the AACD
model to forecast price movements and price durations jointly for a pre-determined
time interval and employ an intraday Monte Carlo simulation to obtain the empiri-
cal return distribution. Our method differ from the ACM-ACD model, which gener-
ates the trade duration and price change sequentially. The AACD model generates
trade duration and price change synchronously, and is more convenient to estimate.
IVaRt(p) can then be computed by the p-th quantile of the empirical distribution.
We first outline the AACD model, following by a description of the Monte Carlo
simulation methodology.

4.3.1 The AACD model

Bauwens and Giot (2003) propose the AACD model, which extends the ACD model
of Engle and Russell (1998) and allow the duration process to depend on the state
of the price process. The Asymmetric ACD model is also called two-state ACD
model; If the price has increased, the parameters of the ACD model can differ from
what they are if the price has decreased. In other words, the AACD model allows
the conditional expected duration to be depended not only on the previous duration,
but also on the previous state of the price movement. Instead of jointly modeling
trade durations and tick-by-tick price movements, in this chapter, we consider a two-
state AACD model with possible price movements of a pre-determined threshold δ ,
either upwards or downwards, and price durations jointly.

Let t0, t1, · · · , tN denote a sequence of times in which ti is the time of the ith price
event, to be defined below. Thus, xi = ti − ti−1, for i = 1,2, · · · ,N, are the intervals
between consecutive price events, called price durations. A price event occurs if the
cumulative change in the logarithmic transaction price since the last price event is
at least of a preset amount δ , called the price threshold.6 Thus, from time ti−1 to
ti, the price changes by an amount of at least δ , whether upwards or downwards.
Let yi denote the price movement direction of the ith price event, where yi may take
the values j = −1, 1 representing downward price movement and upward price
movement, respectively.

Conditional on the ith price event, there are two possible end states: yi = −1
or yi = 1. Assume x ji, j = −1,1, to be two latent variables, which are unob-
servable, representing the durations with the two possible end states, respectively.
Let ψ ji = E(x ji|Φi−1) be the conditional expected duration for latent variable x ji,
j = −1,1, with Φi−1 being the information set up to time ti−1, which not only in-
cludes the previous duration xi−1 and lagged expected duration ψ j,i−1 but also the
price-movement direction yi−1. Let

ε ji =
x ji

ψ ji
, i = 1,2, · · · ,N, (4.3.1)

6δ is usually set to obtain an average duration of 5 min.
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be the standardized price duration, for j = −1, 1. While there are two possible
end states at the end of ith price event, there is only one realized state. As in the
standard framework of a competing risk model, only the shortest duration from
the two possible durations is observed (realized). Accordingly, xi can be treated
as the outcome variable of the function xi = min(x1i, x−1,i). For instance, if an
upward price movement is observed and the realized duration is xi, then x1i = xi.
Bauwens, Giot, Grammig and Veredas (2004) find that the Logarithmic ACD, if
based on a flexible standardized duration distribution, provides a quite robust and
useful framework for the modeling of price duration processes. Following their
work, we assume that {ε1i}N

i=1 and {ε−1,i}N
i=1 are independently Weibull distributed

with unit mean and finite variance. The density function of ε j is given by

f (ε j;λ j,ϕ j) =
ϕ j

λ j

(
ε j

λ j

)ϕ j−1

exp

[
−
(

ε j

λ j

)ϕ j
]
, ε j > 0, j =−1,1, (4.3.2)

with λ j = 1/Γ(1+1/ϕ j) to ensure unit mean.
Our basic model is

logψ ji = ∑
k=−1, 1

(v jk +α jk logxi−1)Dk(yi−1)+β j logψ j,i−1, j =−1, 1, (4.3.3)

where Dk(z) = 1, if z = k and 0 otherwise. We let the expected conditional duration
to depend on not only the previous durations, but also the previous state of price
movement. For the upward price movement process, the expected conditional du-
ration ψ1i of the latent variable x1i depends on the previous realized duration xi−1

and the previous expected conditional duration ψ1,i−1 as well as the previous price-
movement state yi−1. Thus,

logψ1i =


v1,1 +α1,1 logx1,i−1 +β1 logψ1,i−1, if yi−1 = 1,

v1,−1 +α1,−1 logx−1,i−1 +β1 logψ1,i−1, if yi−1 =−1.
(4.3.4)

Similarly, for the downward price movement process, ψ−1,i can be modeled as

logψ−1,i =


v−1,1 +α−1,1 logx1,i−1 +β−1 logψ1,i−1, if yi−1 = 1,

v−1,−1 +α−1,−1 logx−1,i−1 +β−1 logψ1,i−1, if yi−1 =−1.
(4.3.5)
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Furthermore,

xi−1 =


x1,i−1, if yi−1 = 1,

x−1,i−1, if yi−1 =−1.
(4.3.6)

Combining the two-state competing risk model with the Log-ACD model yields the
asymmetric Log-ACD model.

As in the standard framework of a competing risk model, the joint conditional
bivariate probability function - probability density function (pf-pdf) for xi and yi are
given by

f (xi,yi|Φi−1) = ∏
j=−1, 1

hx ji(xi|Φi−1)
D j(yi)Sx ji(xi|Φi−1), (4.3.7)

where hx ji and Sx ji denote the conditional hazard function and conditional survival
function of x ji, with the form:

hx ji(xi|Φi−1) =−
ϕ j

ψ jiλ j

(
xi

ψ jiλ j

)ϕ j−1

, (4.3.8)

Sx ji(xi|Φi−1) = exp

{
−
(

xi

ψ jiλ j

)ϕ j
}
. (4.3.9)

The duration that is realized (observed) contributes to the joint conditional pf-
pdf given by equation (4.3.9) via the conditional density function, whereas the unre-
alized duration contributes to it via the conditional survival function. For example,
if a upward price movement state is observed at ti, the conditional bivariate pf-pdf
of the pair {xi,yi = 1} is given by:

f (xi,yi = 1|Φi−1) =hx1i(xi|Φi−1)Sx1i(xi|Φi−1)Sx−1,i(xi|Φi−1)

= fx1i(xi|Φi−1)Sx−1,i(xi|Φi−1).

(4.3.10)

Therefore, if the duration xi ends up with an upward price movement (yi = 1), xi

contributes to the pf-pdf via: (1) the conditional density of x1i evaluated at xi,
i.e. fx1i(xi|Φi−1) and (2) the conditional probability that the duration x−1,i ended
up with downward price movement is longer than the realized duration xi, i.e.
Sx−1,i(xi|Φi−1).

Assuming the Weibull distribution for ε ji, for j = −1, 1, the log-likelihood
function can be derived as:

logL(Θ)=−
N

∑
i=1

(
∑

j=−1, 1

(
xi

ψ jiλ j

)ϕ j

− log

(
∑

j=−1, 1
D j(yi)

ϕ j

ψ jiλ j

(
xi

ψ jiλ j

)ϕ j−1
))

,

(4.3.11)
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and the parameter vector Θ can be estimated by maximizing the log-likelihood.

4.3.2 Intraday Monte Carlo simulation

We now describe our Monte Carlo simulation procedure used for computing the
IVaR based on high-frequency data. The estimated AACD model will be used to
simulate the price events and event times for the pre-set intervals. For illustration,
suppose we want to compute the IVaR between 10:10 - 10:45, the initial value of
x0, ψ−1,0, ψ10, and y0 are calculated using the information before 10:10. First,
we collect the price-event information between 9:30 - 10:10 and then compute the
price duration series {xb

i }m
i=1 and price-movement direction series {yb

i }m
i=1 during

9:30 - 10:10 according to the pre-determined threshold δ .7 Suppose the last event
occurs at 10:08:32. Second, calculate the {ψb

ji}m
i=1 by equation (4.3.3). Third, set

the initial values of x0, ψ−1,0, ψ10, and y0 to be xb
m, ψb

−1,m, ψb
1m and yb

m respectively.
We also set t0 to be 10:08:32 and p0 to be the price occurs at 10:08:32. Finally, the
simulation algorithm is summarized as follows:

1. For i = 1, set the initial value as describe above and obtain ψ j1, for j =−1,1.

2. For j =−1, 1, draw two values of ε ji from independent Weibull distributions
with shape parameters ϕ1 and ϕ−1 respectively.

3. Compute x ji = ψ ji ε ji and ψ j,i+1 using equation (15), for j =−1,1.

4. Set yi = j and xi = min{x−1,i,x1i}.

5. Compute ti = ti−1 + xi, and log pi =


log pi−1 +δ , if yi = 1,

log pi−1 −δ , if yi =−1.

6. Set i = i+ 1 and iterate Steps 2, 3, 4 and 5 until ti exceeds the pre-set time
intervals to forecast.

Note that the first simulated duration should be larger than 88 seconds (the dif-
ference between time 10:10:00 and 10:08:32), otherwise, another price event has to
be generated as the starting observation. Let t1, · · · , tn denote a sequence of times
in which ti is the time of the ith forecasted event time as illustrated in Figure 4.1.
The return δ from time t0 to t1 is split into two parts. The part contributing to the
interval 10:10 - 10:45, denoted as δ1, is linearly approximated as proportional to
the fraction within 10:10 - 10:45. The same procedure applies to the last simulated
price event, the return contributing to the forecasted interval is denoted as δn. The
simulated returns are computed as r = δ1 + log pn−1 − log p1 +δn. Then we repeat
the whole procedure 5000 times to obtain an empirical distribution of the returns,

7xb
i and yb

i denote the duration and return series before 10:10, in order to distinguish them from
the data in the estimation period.
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and the absolute value of the p-quantile will be computed as IVaR(p). Note that, if
some news hits the market before 10:10 and triggers a price event after 10:08:32,
this will have impact on the initial value for the simulation. Thus, a shorter simu-
lated duration x1 may occur and may result in a larger IVaR. In practice, the starting
time and ending time of the IVaR interval could be any time of the day. Since our
method takes account of news happening before the interval of the IVaR, we name
it “near” real-time IVaR.

4.4 IVaR backtesting

To evaluate the IVaR forecast capabilities of our model, we will perform an out-of-
sample backtesting analysis. Christoffersen (1998) points out that the problem of
determining the accuracy of a VaR model can be reduced to the problem of deter-
mining whether the hit sequence, [It(α)]t=T

t=1 , where

It(α) =


1, if rt <−IVaRt(α)

0, otherwise
, (4.4.1)

satisfies two properties: unconditional coverage property and independence prop-
erty,8

1. Unconditional coverage property - The probability of realizing a loss in ex-
cess of the reported VaR, VaRα , is 100α%, i.e. Pr(It(α) = 1) = α . If viola-
tion occurrence (the failure rate) deviate from 100α% significantly, the model
should be considered problematic;

2. Independence property - while the unconditional property places a restriction
on how often VaR violations may occur, the independence property places
restrictions on the ways in which these violations may occur. VaR violations
observed at two different dates for the same coverage rate must be distributed
independently.

4.4.1 Kupiec test

Kupiec (1995) focuses exclusively on the property of unconditional coverage, a
proportion of failures (POF) test is proposed, which examines how many times a
financial institution’s VaR is violated over a given span of time at VaR level of α .
If the IVaR estimates are accurate, the failure rate α̂ should be approximately equal

8Conditional coverage property is satisfied if both unconditional coverage property and indepen-
dence property are fulfilled.
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to α . Under the null hypothesis that the model is correct, the Kupiec test statistic
takes the form

LRPOF = 2[log((1− α̂)T−I(α)α̂ I(α))− log((1−α)T−I(α)α I(α))], (4.4.2)

where

α̂ =
1
T

I(α) =
1
T

T

∑
t=1

It(α), (4.4.3)

and T is the sample size. Under the null hypothesis, LRPOF is asymptotically χ2

distributed with one degree of freedom. If the value of the LRPOF statistic exceeds
the critical value of the χ2

1 distribution, the null hypothesis is rejected and the model
is deemed inappropriate.

4.4.2 Dynamic quantile test

Engle and Manganelli (2004) suggest using a linear regression model that links
current violation to past violations. If the IVaR forecast is correct, the violations
should not be serially correlated. Let Hitt(α) = It(α)−α be the de-meaned process
on α associated with It(α),

Hitt(α) =


1−α, if rt <−IVaRt(α),

−α, otherwise.
(4.4.4)

Consider the following linear regression model:

Hitt(α) = ω +
K

∑
k=1

βkHitt−k(α)+δVaRt(α)+ εt , (4.4.5)

where εt is an i.i.d. process. The null hypothesis of conditional coverage corre-
sponds to the joint nullity of the coefficients βk and δ as well as the constant ω ,
i.e.,

H0 : ω = δ = β1 = · · ·= βK = 0, (4.4.6)

where β1 = · · · = βK = δ = 0 reflects the independence hypothesis, ω = 0 re-
flects the unconditional coverage hypothesis. Indeed, under the null hypothesis
E[Hitt(α)] = E(εt) = 0, which implies that Pr[It(α) = 1] = E[It(α)] = α . The joint
nullity test of all coefficients, including the constant, therefore corresponds to a con-
ditional coverage test. The LR statistic or the Wald statistic can then be used to test
the simultaneous nullity of these coefficients. If we let Ψ = (ω ,δ ,β1, . . . ,βK)

′ be
the vector of the K +2 parameters in this model and let Z be the matrix of explana-

92



tory variables of equation (4.4.6), then the Wald statistic DQCC associated with a
test of conditional coverage is

DQCC =
Ψ̂′Z′ZΨ̂
α(1−α)

D−→ χ2(K +2) (4.4.7)

Following Engle and Manganelli (2004)’s framework, we use 5 lags (K = 5) in this
chapter.

4.4.3 GMM duration-based test

Under the null that IVaR forecasts are correctly specified, the violations should
occur at random time intervals. Suppose the duration between two violations is
defined as

di = ti − ti−1, (4.4.8)

where ti denotes the violation number i. The duration between violations of the IVaR
should be completely unpredictable. Under the conditional convergence hypothesis,
the duration variable di follows a geometric distribution with parameter α and a
probability mass function given by

f (d;α) = α(1−α)d−1, d ∈ N. (4.4.9)

Christoffersen and Pelletier (2004) and Haas (2005) independently propose back-
testing statistics employing the properties of the geometric distribution, and call
them duration-based backtests. However, some limitations of their test resulted in
the lack of popularity among practitioners. For example, these tests exhibit low
power for realistic backtesting sample size. Recently, Bertrand, Gilbert, Christophe
and Sessi (2011) propose an GMM duration-based backtest which tackles these is-
sues.

The expectation of some particular orthonormal polynomials associated with the
geometric distribution is equal to 0, and these polynomials are used as special mo-
ment conditions to test for the geometric distribution. The orthonormal polynomials
M j+1(d,α) associated to the geometric distribution with success probability α can
be defined by the following recursive relationship:

M j+1(d,α)=
(1−α)(2 j+1)+α( j−d +1)

( j+1)
√

1−α
M j(d,α)−

(
j

j+1

)
M j−1(d,α), ∀d ∈N

(4.4.10)
for any order j ∈ N, with M−1(d,α) = 0 and M0(d,α) = 1.9

If the true distribution of d is a geometric distribution with success probability

9Please see details in Bertrand, Gilbert, Christophe and Sessi (2011).
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α , it follows that
E[M j(d;α)] = 0 j ∈ N. (4.4.11)

The GMM duration-based backtest procedure exploits these moment conditions.
More precisely, we define {d1, . . . ,dN} as a sequence of N durations between IVaR
violations, computed from the sequence of the hit variables {It(α)}. Under the
conditional coverage assumption, the distributions of di, i = 1, ...,N, are i.i.d. and
have a geometric distribution with a success probability equaling to the coverage
rate α . Hence, the null of conditional convergence can be expressed as follows:

H0,CC : M j(d;α)] = 0, j = {1, . . . ,m}, (4.4.12)

where m denotes the number of moment conditions.
We denote JCC(m) as the conditional convergence test statistic associated with

the first m orthonormal polynomials. Assume that the duration process is stationary
and ergodic. Under the null hypothesis of conditional coverage, we have

JCC(m) =

(
1√
N

N

∑
i=1

M(di;α)

)T (
1√
N

N

∑
i=1

M(di;α)

)
D−→ χ2(m). (4.4.13)

where M(di;α) denotes a (m,1) vector whose components are the orthonormal
polynomials M j(di;α), for j = 1, . . . ,m. In this chapter, we consider 5 moment
conditions (m = 5).

Kupiec’s test is probably the first and the most popular test to evaluate VaR
performance, it only focuses on the unconditional coverage property and leaves the
independence property on the air. DQ test is also widely used as an evaluation tool
for VaR models, since it is easy to implement. The GMM duration-based test is
the most recent test, and it tackles the sample size problem existed for the duration-
based backtests. In this chapter, we use the Kupiec test, DQ test and GMM duration-
based test to evaluate the IVaR performance.

4.5 Data

The data used in this chapter were extracted and compiled from the TAQ database
provided through the Wharton Research Data Services. We downloaded the follow-
ing variables from the Consolidated Trade (CT) file: date, time, price, and trade
size. We obtained data for all stocks that were components of the S&P 500 index
over 3 different periods and were traded on the New York Stock Exchange (NYSE).
Period 1 covers the 2008 global financial crisis, from 2008/09/01 to 2008/12/31,
which is a period of bearish market with prices generally falling. Period 2 is from
2010/01/01 to 2010/04/30, which is a post-financial crisis period. Period 3 is a more
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recent period, from 2012/01/01 to 2012/04/30. We excluded the days with trading
time less than 2/3 of the total trading time (9:30-16:00) for each stock. For each
period, the stocks with stock splits are excluded, and stocks with less than 80 trad-
ing days are also excluded. Table 4.2 summarizes some key statistics for our stock
sample. In Period 3, there are 497 stocks which stayed as a member of the S&P
500 index, out of which 107 stocks were either not traded on the NYSE or had less
than 80 trading days. There were two stocks with stock splits during this period.
After excluding the stocks that do not meet our selection criteria, 388 stocks remain
for investigation in Period 3. We select these 3 periods (during and after the 2008
global financial crisis) to evaluate the IVaR models under various different market
environments. Furthermore, we short-list 10 stocks with large capitalization and
trade intensities for reporting convenience. These are Exxon Mobil Corporation
(XOM), General Electric (GE), Procter & Gamble Co. (PG), Merck (MRK), John-
son & Johnson (JNJ), AT & T (T), Chevron (CVX), JP Morgan (JPM), Wal Mart
(WMT), IBM (IBM), and Pfizer (PFE). We also obtained data for these 10 stocks
from 2008/01/01-2010/12/31 for further study, which is detailed later.

With the growing development of high-frequency trading, the probability of
multiple trades with the same time stamp is increasing. As illustrated in the intro-
duction, transactions can be done within a second and there are multiple trades with
the same time stamp, unless we can access Millisecond Trade and Quote (MTAQ)
database. We combine the trades with the same time stamp using the size weighted
method. We consider three ways of filtering noise. First, we sample the tick data at
large regularly-spaced (say, 30-min) intervals to reduce the effect of microstructure
noise. The sampled data are then fitted to Giot’s method after deseasonalizing the
return series. Second, tick data are thinned using volume duration. The thinned
duration and return series are then modeled using the DDP method. Third, tick data
are thinned by price duration. The price change direction and duration series are
then jointly modeled by the AACD model.

The sample size of different stocks in different periods is different, although
there are at least 80 trading days for each stocks. We use 21 days as the estimation
period and employ the estimated models to forecast the next day’s price movements
and hence IVaR. We then move the estimation period by including one day forward
and excluding the first day to keep the estimation length to be 21 days. We repeat
this procedure for the whole sample. Thus, there are at least 59 (80 − 21) days and
59×13 30-min intervals, and at most 62 (83 − 21) days and 62×13 30-min intervals
in Period 1.

4.5.1 Duration Seasonality Adjustment

To take into account the time-of-day effect, Engle and Russell (1998) suggest com-
puting diurnally-adjusted durations by dividing the raw durations by a seasonal de-
terministic factor. This factor can be jointly estimated using maximum likelihood
method or by regressing the calendar-time durations on the time-of-day variables
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using a cubic spline function. However, as criticized in Wu (2012) and Tse and
Dong (2012), the duration adjusted method is dependent on the specific smoothing
method, and one also need to decide which time point best represents the duration.
Wu (2012) and Tse and Dong (2012) propose a method for diurnally adjusting the
intraday periodicity through time transformation.10

The theoretical underpinning of diurnal adjustment through time transformation
is that the unconditional distribution of the duration process should be evenly dis-
tributed throughout the trading day under the assumption of no intraday periodicity.
Therefore, for the diurnally-adjusted price durations, the price events should occur
evenly across the trading day; and similarly for the diurnally-adjusted volume dura-
tions, the trading volume should be distributed evenly across the trading day. Let the
strictly increasing time points t0, t1, · · · , t23400 separately denote 9:30:00, 9:30:01,
· · · , 16:00:00. Let n1, · · · ,n23400 (n0 = 0) and v1, · · · ,v23400 (v0 = 0) denote the to-
tal number of price events and total volume traded at time 9:30:00, 9:30:01, · · · ,
16:00:00, respectively, over all trading days in the sample. We compute

Ntk =
k

∑
i=0

ni, k = 0,1, · · · ,23400, and NT =
23400

∑
i=0

ni,

Vtk =
k

∑
i=0

vi, k = 0,1, · · · ,23400, and VT =
23400

∑
i=0

vi.

The two functions are further smoothed by linear interpolation in the neighborhood
of tk if nk = 0 or vk = 0. The time-transformation function Q̃(tk) and Q̂(tk) are then
computed as

Q̃(tk) =
Ntk
NT

, k = 0,1, · · · ,23400,

Q̂(tk) =
Vtk
VT

, k = 0,1, · · · ,23400.

The diurnally transformed time t̃k and t̂k in accordance with Q̃(tk) and Q̂(tk) are then
given by

t̃k = 23400Q̃(tk) = 23400
[

Ntk
NT

]
, k = 0,1, · · · ,23400.

t̂k = 23400Q̂(tk) = 23400
[

Vtk
VT

]
, k = 0,1, · · · ,23400.

The diurnally transformed duration of any two calendar-time points ti and t j is cal-
culated as

t̃i − t̃ j = 23400[Q̃(ti)− Q̃(t j)], (4.5.1)

10Named time change method in Wu (2012).
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t̂i − t̂ j = 23400[Q̂(ti)− Q̂(t j)]. (4.5.2)

The two time transformations with respect to Q̃(·) and Q̂(·) are named TTM1 and
TTM2 for short, respectively. In this chapter, we employ TTM1 to compute the di-
urnal adjustment of price durations for the AACD model. Also, we adopt the TTM2
method for the adjustment of volume duration for the DDP method. The most im-
portant advantage of the time transformation method is that the switch between
calendar time and diurnally-adjusted time can be easily performed. Given any two
calendar-time points ti < t j, the diurnally-adjusted duration between these two time
points can be computed by equation (4.5.1) and equation (4.5.2). Likewise, given
any two diurnally-adjusted time points t̃i < t̃ j (or t̂i < t̂ j), the corresponding duration
in calendar time is

Q̃−1
(

t̃ j

23400

)
− Q̃−1

(
t̃i

23400

)
(4.5.3)

where Q̃−1 is the inverse function of Q̃. This facilitates the simulation of the AACD
approach and DDP method. For example, the simulated durations from the AACD
approach are all diurnally-adjusted. However, the IVaR (or return distribution) must
be specified in calendar time. Time transformation methods are convenient to use,
as the calendar time and diurnally-adjusted time can be easily converted from one
another.

Figure 4.2 shows the average price durations and Figure 4.3 shows the volume
durations for the 10 selected stocks during period 2008/01/01 - 2010/12/31, respec-
tively. We set the price threshold δ and volume threshold v̄ so as to obtain an av-
erage duration of about 5 min. Average durations over 30-minute regularly-spaced
intervals are calculated and then smoothed using cubic splines to obtain the sea-
sonal factor. As we can see, there exist significant intraday periodicity patterns for
both raw price durations and raw volume durations. However, after we adjust the
price and volume durations using the TTM1 and TTM2 methods, there is no clear
intraday periodicity for the price and volume durations.

4.5.2 Volatility Seasonality Adjustment

When it comes to intraday returns and the associated volatility modeling, intra-
day volatility seasonality is a crucial factor that must be taken into account. For
regularly-spaced returns, we assume a deterministic seasonality factor ϕ(ti) to de-
seasonalize the intraday returns, like in equation (4.2.2). In this chapter, we con-
sider two methods to calculate ϕ(ti). Firstly, we calculate 30-min squared returns,
and move the 30-min window 5 min forward until the last 30-min interval in each
trading day. The deterministic seasonality factor ϕ(ti) is computed by averaging
the 30-min squared returns and then smoothed employing cubic splines. Secondly,
we compute the intraday variance by the integrating conditional variance (ICV)
method proposed by Tse and Yang (2012). The high-frequency volatility (over a
day or shorter intervals) is captured by integrating the instantaneous conditional re-
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turn variance per unit time obtained from the ACD models, called the ACD-ICV
method. The ACD-ICV estimate has clear advantage in capturing volatility over
short intervals such as 15 min or 30 min. We estimate the intraday variance over
30-min intervals by the ACD-ICV method. The intraday seasonality factor is then
calculated as the average of 30-min intraday variance and then smoothed using cubic
splines. The deterministic seasonality computed using squared returns and ACD-
ICV method are named ϕ1(ti) and ϕ2(ti), respectively. Giot’s method with ϕ1(ti)
and ϕ2(ti) employee are subsequently named G1 and G2 method, respectively. Fig-
ure 4 shows the deterministic seasonality factor ϕ1(ti) and ϕ2(ti) for the 10 selected
stocks. As we can see, both ϕ1(ti) and ϕ2(ti) exhibit a U-shape and ϕ2(ti) is much
smoother than ϕ1(ti). The patterns are analogous to what has been found in previous
studies.

We also consider two methods of estimating the deterministic seasonality factor
of intraday volatility φ(ti) in the DDP model. Firstly, similar to Dionne, Duch-
esne and Pacurar (2009) but use 30-min squared returns, and then move the 30-min
window 5 min forward until the last 30-min in each trading day. We denote this sea-
sonality factor by φ1(ti), which is the same as ϕ1(ti) in Giot’s method. Second, since
the returns in the DDP method are sampled using volume duration, another way is to
model the variance per duration. Figure 4.5 shows the average variance and average
number of volume events for the 13 30-min regularly-spaced intervals over all trad-
ing days for period period 2008/01/01 - 2010/12/31. We can see that the intraday
variance is at its highest level after the market opens, and then gradually decreases
to its lowest level around 12:30-13:00. Subsequently it gradually increases until the
market closes. In contrast, the average number of volume events exhibit a different
pattern. Specifically, it is higher after the market opens, and gradually decreases to
its lowest level around 12:30-13:00. As investors close their positions before market
closes, the average number of volume events reaches its highest level at the market
close. As hi in equation (4.2.11) is the variance of the returns per volume duration,
we assume the deterministic seasonality factor φ2(ti) to be the variance per duration.
It is measured by the intraday variance estimated using ACD-ICV over 30-min in-
terval divided by the number of volume events over that interval and then smoothed
using cubic splines. Figure 4.6 presents the deterministic seasonality φ2(ti) for the
10-listed stocks in period 01/01/2008 - 31/12/2010. We can see that the variance
per duration is high during the first several hours after the market opens and is low
during the time towards the market close. We name the DDP method employing
φ1(ti) and φ2(ti) by DDP1 and DDP2, respectively.

In this chapter, we consider the AACD, DDP1, DDP2, G1 and G2 methods for
the estimation of IVaR.
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4.6 Empirical Results

We set the price threshold δ and volume threshold v̄ to obtain an average duration
of about 5 min in the estimation sample. For the G1 and G2 methods, the intraday
returns are sampled at 30-min intervals in order to obtain 30-min IVaR estimates.

Table 4.3 presents the non-overlapping consecutive 30-min IVaR backtesting re-
sults of the AACD approach for the 3 different periods. The left-hand panel shows
the p-values of the Kupiec test for 10 stocks with IVaR at the 5%, 2.5% and 1%
levels, the middle panel shows the p-values of the DQ test of Engle and Manganelli
(2004) and the right-hand panel presents the p-values of the GMM duration-based
test of Bertrand, Gilbert, Christophe and Sessi (2011). Bolded entry denotes a fail-
ure of the IVaR model at the 95% confidence level, since the p-values are less than
0.05. Tables 4.4 through 4.7 present the backtesting results of the DDP1, DDP2,
G1 and G2 methods, respectively. We select these 10 large-cap stocks for reporting
convenience. The backtesting results of other stocks are summarized in Table 4.8.

Table 4.8 summaries the 30-min IVaR backtesting results of all 5 models for
all selected stocks traded on the NYSE. The figure in the table is the percentage
of stocks with IVaR backtesting p-values larger than 0.05 under each backtesting
model. For the Kupiec test at IVaR level 5%, there are 93.67% out of 379 stocks
with p-value larger than 0.05 in Period 1. However, the ratios are 63.59%, 84.96%,
52.77% and 66.23% for DDP1, DDP2, G1 and G2, respectively. Bolded entries
present the highest percentages and italic entries present the second highest per-
centages. We can see that IVaR estimated by the AACD approach performs the
best, while the DDP2 method is the second best. The DDP2 method performs better
than DDP1 method under all the cases, which indicates that φ2(ti) works better than
φ1(ti) as the deterministic intraday seasonality factor. The G2 method performs bet-
ter than the G1 method in all the cases, which maybe due to the better performance
of the ACD-ICV method as an estimate of intraday variance. We also see that the
figures decrease as the IVaR levels decrease for both the G1 and G2 methods, which
is due to the continuous-distribution assumption of the regularly-spaced intraday
returns and the modeling of its associated volatility. Introducing irregularly-spaced
information to the modeling of intraday return and its associated volatility, as in the
DDP method, has alleviated the problem to a certain extent. However, the AACD
approach, without doubt, has made significant improvements over the DDP meth-
ods.

To examine the intraday pattern of IVaR, we compute the mean of IVaR over
each of the 13 intervals from 9:30 to 15:30 for the 10 selected stocks over the three
sample periods. Figure 4.7 presents the intraday average IVaR at 5% level. To avoid
jamming the figures, only the estimates of the AACD, DDP2 and G2 methods are
presented. In particular, there is an “IVaR smile”, with IVaR being the lowest in
the 11:00-14:30 interval for most stocks. The three measures trace each other very
well, however, with little difference between the first several and last several 30-min
intervals. IVaR at the 2.5% and 1% levels share similar intraday patterns with some
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quantitative difference. Also, the lower IVaR level is associated with the higher
IVaR value.

We further examine the percentages of the different IVaR methods in different
30-min intervals of the day. To this effect, we focus on the 10 selected stocks over
the period 2008/01/01 to 2010/12/31. The results for the first two and last two 30-
min intervals of each day are shown in Table 4.9. The entries present the number of
stocks (out of 10) with IVaR backtesting p-values larger than 0.05. It can be seen
that the numbers are the largest for the AACD approach. Other 30-min intervals
are also computed and the backtesting results are not presented here. IVaR by the
AACD approach performs well against the other two methods.

Indeed, IVaR can be computed for any time horizon once the AACD and DDP
models have been estimated without requiring new sampling and estimation when
the time horizon changes, due to the flexibility of irregularly-spaced information.
Table 4.10 summaries the 60-min IVaR backtesting results of the AACD, DDP1
and DDP2 models for all selected stocks traded on the NYSE, the AACD approach
perform the best among all the models.11

To further examine the effect of δ on the estimation of IVaR through AACD
model, we perform a robustness check by varying the target average duration. Our
robustness check shows that the AACD approach is not sensitive to the choice of
the price range δ , provided that the price events sampled are not too infrequent.

Overall, our results show that IVaR estimated through the AACD approach is
the most accurate among all the methods considered.

4.7 Conclusion

In this chapter, we propose a new method of computing the IVaR using high-
frequency transaction data. Intraday directional price movements and price dura-
tions are jointly modeled by employing the AACD model. We adopt an intraday
Monte Carlo simulation approach to estimate IVaR, which enables us to forecast
high-frequency returns for any arbitrary interval. In our setup, price durations yield
the consecutive steps in time while the price movements allow us to simulate the
corresponding returns. Regularly-spaced intraday returns are simply the sum of the
price movements simulated conditional on the given horizon. We also modify the
DDP method of Dionne, Duchesne and Pacurar (2009) by filtering noise employing
volume durations.

Using high-frequency data of all the S&P 500 component stocks traded on the
NYSE over three different periods, our results show that the IVaR estimates com-
puted using the AACD approach track closely to the DDP and Giot methods. IVaR
backtesting results show that the AACD approach performs the best over other
methods, based on the results on backtesting p-values. Our robustness check shows

11The first 15 min and last 15 min of each day are excluded, the remaining 6 hours are split into 6
60-min intervals each day.
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that the AACD approach is not sensitive to the choice of the price range δ , provided
that the price events sampled are not too infrequent.
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Table 4.1: Summary statistics for tick price movements and trade durations.

Code XOM GE PG JNJ T CVX JPMWMT IBM PFE

No. of days 757 757 757 757 757 757 757 757 757 757

Frequency (%) of price movements
5 ticks up or more 1.05 0.08 0.55 0.46 0.12 1.75 0.46 0.38 2.99 0.03
4 ticks up 0.77 0.06 0.45 0.36 0.13 1.19 0.54 0.35 1.89 0.02
3 ticks up 1.59 0.18 1.08 0.89 0.39 2.44 1.17 0.87 3.58 0.08
2 ticks up 3.94 0.87 3.55 2.83 1.60 5.64 3.12 2.73 6.81 0.54
1 ticks up 14.27 11.29 16.92 14.41 12.74 16.04 13.96 14.21 13.58 11.45
0 tick, no price change 56.81 75.01 54.97 62.07 70.04 45.78 61.52 62.98 42.23 75.72
1 tick down 14.27 11.30 16.82 14.48 12.71 16.14 13.92 14.16 13.64 11.49
2 tick down 3.91 0.88 3.57 2.81 1.61 5.65 3.12 2.73 6.86 0.53
3 tick down 1.58 0.18 1.09 0.88 0.39 2.45 1.18 0.87 3.56 0.08
4 tick down 0.76 0.06 0.45 0.36 0.13 1.19 0.54 0.35 1.88 0.03
5 ticks dowm or more 1.06 0.09 0.55 0.46 0.12 1.73 0.47 0.38 2.97 0.03

statistics of trade durations
No. of trades1 21295176841117111236119741312823872133411077411280
No. of trades2 8208 6313 5692 5285 5294 6296 8458 6204 5366 5161
Avg duration per trade1 1.10 1.32 2.09 2.08 1.95 1.78 0.98 1.75 2.17 2.07
Avg duration per trade2 2.85 3.71 4.11 4.43 4.42 3.72 2.77 3.77 4.36 4.53
Avg trade size 310 867 283 299 491 221 392 341 201 890

Notes: Price movement of 1 cent is the standardized to 1 tick. Trade duration denotes
the time between two consecutive transactions. The sample period is from 2008/01/01
to 2010/12/31.
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Table 4.2: Summary of the components of the S&P 500 index stocks.

Period N1 N2 N3 N4 D1 D2 T1 T2

Period 1: 2008/09/01 - 2008/12/31 480 101 0 379 80 83 1000 12350
Period 2: 2010/01/01 - 2010/04/30 493 106 0 387 81 82 493 7322
Period 3: 2012/01/01 - 2012/04/30 497 107 2 388 80 82 333 4841

Notes: N1 denotes the number of stocks that stayed as a component of the S&P 500
index and traded on the NYSE for each entire sample period. N2 denotes the number
of stocks with less than 80 trading days during each entire sample period. N3 denotes
the number of stocks with stock splits during each entire sample period. N4 denotes
the number of stocks remaining for our study. D1 denotes the minimum trading days
among all sampled stocks during each sample period. D2 denotes the maximum
trading days among all sampled stocks during each sample period. T1 denotes the
minimum average transactions per day among all the selected stocks. T2 denotes the
maximum average transactions per day among all selected stocks.
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Table 4.3: 30-min IVaR backtesting results for the AACD approach.

Kupiec test Dynamic quantile test Duration based test
IVaR level 5% 2.5% 1% 5% 2.5% 1% 5% 2.5% 1%

Period 1: 2008/09/01 - 2008/12/31

XOM 0.9613 0.6214 0.7011 0.9587 0.9787 1.0000 0.8097 0.3136 0.8908
GE 0.0349 0.0380 0.7439 0.2676 0.2640 0.6173 0.0863 0.1118 0.9210
PG 0.4794 0.9730 0.1113 0.8585 0.9819 0.9990 0.8644 0.9127 0.3033
JNJ 0.7849 0.9730 0.1934 0.5917 0.7029 0.3286 0.2960 0.8432 0.4576
T 0.3813 0.6214 0.1113 0.9722 0.6148 0.9976 0.7442 0.7484 0.3711
CVX 0.3813 0.6214 0.4450 0.9528 0.9872 1.0000 0.5025 0.2162 0.9304
JPM 0.7044 0.8501 0.7085 0.1678 0.9884 1.0000 0.3569 0.6715 0.6020
WMT 0.8327 0.7934 0.4450 0.5018 0.9978 0.9897 0.5013 0.6611 0.8450
IBM 0.8327 0.6214 0.9830 0.9157 0.9355 1.0000 0.8682 0.6173 0.6983
PFE 0.8327 0.6808 0.5080 0.7364 0.9007 0.9629 0.4734 0.7169 0.2538

Period 2: 2010/01/01 - 2010/04/30

XOM 0.9546 0.7912 0.0976 0.8544 0.9917 0.9529 0.6293 0.9248 0.1648
GE 0.3459 0.4811 0.4777 0.9891 0.8972 0.9993 0.0298 0.1461 0.5036
PG 0.6625 0.6268 0.3006 0.9953 0.8893 0.5086 0.8759 0.7114 0.6920
JNJ 0.5460 0.3577 0.0247 0.5482 0.7638 0.4280 0.1501 0.2211 0.1011
T 0.1411 0.6733 0.7085 0.8218 0.9726 0.9752 0.5299 0.9862 0.6464
CVX 0.8268 0.3577 0.3006 0.6919 0.8934 0.9960 0.3299 0.5844 0.5044
JPM 0.1045 0.0797 0.1769 0.3424 0.5204 0.9508 0.1191 0.2383 0.3577
WMT 0.1045 0.0312 0.1769 0.7778 0.0614 0.4157 0.2031 0.2077 0.4285
IBM 0.3930 0.2577 0.0506 0.2145 0.7394 0.0008 0.6551 0.4929 0.0559
PFE 0.7867 0.6268 0.4777 0.0048 0.0211 0.0000 0.0791 0.2281 0.1444

Period 3: 2012/01/01 - 2012/04/30

XOM 0.7044 0.3683 0.4717 0.4980 0.9812 0.9959 0.4520 0.5193 0.6991
GE 0.8268 0.1216 0.0976 0.9994 0.6866 0.8565 0.4530 0.3423 0.2987
PG 0.1872 0.0797 0.0976 0.1408 0.0276 0.0000 0.0203 0.0322 0.0306
JNJ 0.3354 0.0419 0.0877 0.7669 0.7889 0.7116 0.5458 0.2174 0.2768
T 0.2440 0.1216 0.7085 0.1733 0.0056 0.0079 0.2719 0.2264 0.6373
CVX 0.3930 0.1216 0.3006 0.8152 0.8744 0.9926 0.2197 0.4069 0.5406
JPM 0.3930 0.2577 0.0976 0.9962 0.9986 0.6137 0.5191 0.6302 0.2597
WMT 0.1872 0.3577 0.0021 0.2683 0.5770 0.0002 0.1461 0.3099 0.0215
IBM 0.6262 0.0419 0.9429 0.7229 0.4096 0.9970 0.6314 0.1838 0.7302
PFE 0.1411 0.3577 0.7085 0.0469 0.9165 1.0000 0.2152 0.3228 0.3550

Notes: This table presents the p-values for the Kupiec test, the Engle-Manganelli DQ test
using 5 lags with the current IVaR as explanatory variables, and the GMM duration-based
test for conditional coverage with 5 moment conditions.
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Table 4.4: 30-min IVaR backtesting results for the DDP1 method.

Kupiec test Dynamic quantile test Duration based test
IVaR level 5% 2.5% 1% 5% 2.5% 1% 5% 2.5% 1%

Period 1: 2008/09/01 - 2008/12/31

XOM 0.5889 0.1424 0.4450 0.3587 0.1667 0.1425 0.4971 0.0092 0.4965
GE 0.3672 0.0013 0.0025 0.0006 0.0000 0.0000 0.0451 0.0140 0.0088
PG 0.9102 0.2913 0.7011 0.0157 0.1053 0.2372 0.0676 0.0525 0.3424
JNJ 0.1732 0.0044 0.0004 0.0015 0.0000 0.0000 0.0251 0.0128 0.0127
T 0.6658 0.3989 0.5080 0.0485 0.0361 0.9739 0.1473 0.1560 0.1509
CVX 0.3813 0.4654 0.9830 0.1822 0.8853 0.4300 0.0612 0.9556 0.9119
JPM 0.3930 0.1216 0.0247 0.0008 0.0003 0.0291 0.0230 0.0319 0.0279
WMT 0.2960 0.8489 0.9830 0.3438 0.0364 0.2387 0.6648 0.9063 0.8999
IBM 0.5889 0.7934 0.9830 0.9986 0.9948 1.0000 0.9390 0.6622 0.8910
PFE 0.4555 0.1415 0.1934 0.0650 0.1708 0.1428 0.2057 0.3669 0.4668

Period 2: 2010/01/01 - 2010/04/30

XOM 0.7044 0.7912 0.7085 0.7399 0.1125 0.2558 0.4318 0.0779 0.4776
GE 0.3124 0.0018 0.0003 0.0014 0.0000 0.0001 0.1696 0.0260 0.0157
PG 0.7867 0.7912 0.4777 0.4443 0.8923 0.9470 0.8949 0.7249 0.4143
JNJ 0.8268 0.0187 0.0050 0.0060 0.0004 0.0079 0.2193 0.0791 0.0274
T 0.0263 0.0034 0.0003 0.0008 0.0009 0.0001 0.0788 0.0602 0.0218
CVX 0.5900 0.0507 0.0247 0.2978 0.0188 0.0432 0.1946 0.2232 0.1250
JPM 0.1411 0.1798 0.0506 0.1829 0.0009 0.0001 0.1660 0.0711 0.0669
WMT 0.3930 0.0797 0.0114 0.0739 0.0296 0.0000 0.3525 0.2982 0.0795
IBM 0.2440 0.0507 0.3006 0.0845 0.1886 0.7303 0.6648 0.2314 0.3696
PFE 0.7044 0.8501 0.0506 0.1164 0.4061 0.0011 0.9300 0.3837 0.0364

Period 3: 2012/01/01 - 2012/04/30

XOM 0.4399 0.5103 0.2619 0.5974 0.9456 0.9996 0.7257 0.6151 0.7282
GE 0.1872 0.0797 0.0114 0.1509 0.1883 0.0027 0.4645 0.1801 0.0853
PG 0.2440 0.0797 0.0050 0.0000 0.0000 0.0000 0.0327 0.0180 0.0196
JNJ 0.2023 0.0150 0.0215 0.0983 0.0113 0.0207 0.5063 0.0687 0.1148
T 0.9154 0.3577 0.0976 0.3826 0.2430 0.0937 0.9040 0.6316 0.1426
CVX 0.3930 0.6268 0.3006 0.4468 0.8554 0.1818 0.1179 0.7724 0.2741
JPM 0.9154 0.3577 0.3006 0.5589 0.4966 0.4271 0.7374 0.7466 0.3016
WMT 0.7044 0.4811 0.0976 0.2330 0.4451 0.2784 0.2626 0.0215 0.1586
IBM 0.8700 0.3189 0.2781 0.0036 0.0182 0.1122 0.0646 0.3449 0.4347

Notes: This table presents the p-values for the Kupiec test, the Engle-Manganelli DQ test
using 5 lags with the current IVaR as explanatory variables, and the GMM duration-based
test for conditional coverage with 5 moment conditions.
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Table 4.5: 30-min IVaR backtesting results for the DDP2 method.

Kupiec test Dynamic quantile test Duration based test
IVaR level 5% 2.5% 1% 5% 2.5% 1% 5% 2.5% 1%

Period 1: 2008/09/01 - 2008/12/31

XOM 0.0818 0.0241 0.1113 0.1405 0.6361 0.9990 0.0150 0.0470 0.3941
GE 0.4555 0.2913 0.0282 0.0002 0.0000 0.0000 0.0811 0.0741 0.0333
PG 0.9613 0.3989 0.7439 0.0365 0.2532 0.0528 0.0995 0.1754 0.4373
JNJ 0.1732 0.0137 0.1934 0.0011 0.0000 0.0000 0.0251 0.0144 0.0285
T 0.2960 0.2239 0.4450 0.9650 0.8967 0.9880 0.5422 0.5751 0.5465
CVX 0.9613 0.8489 0.7011 0.4931 0.9985 1.0000 0.2923 0.8358 0.5994
JPM 0.5900 0.2577 0.4777 0.1047 0.2932 0.6874 0.0082 0.0681 0.1637
WMT 0.3813 0.7934 0.5080 0.5113 0.3226 0.0000 0.2206 0.5794 0.1172
IBM 0.1647 0.2239 0.1113 0.9802 0.9871 0.9989 0.1254 0.5251 0.1044
PFE 0.7075 0.7934 0.7011 0.7917 0.5511 0.2295 0.9855 0.8511 0.8671

Period 2: 2010/01/01 - 2010/04/30

XOM 0.6625 0.5103 0.4777 0.8028 0.4685 0.0000 0.4600 0.0470 0.0184
GE 0.5460 0.4811 0.0114 0.0051 0.0134 0.2883 0.0299 0.4282 0.0709
PG 0.3459 0.2518 0.4777 0.1292 0.9934 0.9906 0.1389 0.0169 0.1286
JNJ 0.7867 0.3577 0.0506 0.1308 0.5252 0.3164 0.1993 0.2366 0.0857
T 0.2440 0.0507 0.0506 0.1687 0.3001 0.7414 0.3771 0.2182 0.1973
CVX 0.2440 0.2577 0.3006 0.0520 0.2187 0.6385 0.1374 0.2668 0.5422
JPM 0.2440 0.1798 0.0247 0.1866 0.1990 0.0291 0.0470 0.4528 0.0667
WMT 0.5460 0.7912 0.3006 0.9130 0.2038 0.5537 0.4149 0.9550 0.5556
IBM 0.9154 0.4811 0.9801 0.5859 0.8038 0.4815 0.7607 0.5652 0.6628
PFE 0.3459 0.3577 0.1769 0.9206 0.1774 0.1377 0.5553 0.6649 0.3358

Period 3: 2012/01/01 - 2012/04/30

XOM 0.0456 0.3683 0.4717 0.6935 0.9938 0.9988 0.0557 0.3423 0.7712
GE 0.4858 0.1798 0.9801 0.8921 0.8985 0.9853 0.6944 0.1770 0.6820
PG 0.3459 0.1798 0.1769 0.0275 0.0002 0.3615 0.0226 0.0190 0.0934
JNJ 1.0000 0.9091 0.9429 0.9754 0.9868 1.0000 0.6724 0.8957 0.2363
T 0.1010 0.9683 0.7085 0.7009 0.8416 0.4599 0.2385 0.8959 0.4540
CVX 0.8268 0.2577 0.0976 0.7914 0.7194 0.1340 0.2992 0.6149 0.2468
JPM 0.1978 0.2518 0.7349 0.9700 0.9668 0.3584 0.5637 0.2793 0.8092
WMT 0.9546 0.8501 0.0247 0.9866 0.8188 0.0004 0.8461 0.0180 0.0177
IBM 0.1239 0.5579 0.9429 0.3016 0.7351 0.7736 0.2069 0.1992 0.9269
PFE 0.7044 0.9683 0.7085 0.7884 0.7806 1.0000 0.5365 0.7257 0.2633

Notes: This table presents the p-values for the Kupiec test, the Engle-Manganelli DQ test
using 5 lags with the current IVaR as explanatory variables, and the GMM duration-based
test for conditional coverage with 5 moment conditions.
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Table 4.6: 30-min IVaR backtesting results for the G1 method.

Kupiec test Dynamic quantile test Duration based test
IVaR level 5% 2.5% 1% 5% 2.5% 1% 5% 2.5% 1%

Period 1: 2008/09/01 - 2008/12/31

XOM 0.3813 0.4654 0.9830 0.9492 0.9248 0.0415 0.7550 0.0639 0.1571
GE 0.5554 0.0941 0.0010 0.0356 0.0445 0.0002 0.0763 0.2024 0.0303
PG 0.4794 0.2913 0.0569 0.1754 0.0873 0.0498 0.4198 0.1952 0.0960
JNJ 0.0240 0.0006 0.0000 0.0000 0.0000 0.0000 0.0180 0.0140 0.0070
T 0.9613 0.0941 0.0025 0.4810 0.0120 0.0004 0.7637 0.0306 0.0115
CVX 0.0080 0.0848 0.2441 0.2050 0.8440 0.9948 0.0009 0.1239 0.2514
JPM 0.1045 0.0187 0.0008 0.1714 0.2012 0.0032 0.0516 0.0405 0.0212
WMT 0.7849 0.0380 0.0001 0.0732 0.0687 0.0000 0.2584 0.1081 0.0180
IBM 0.9613 0.0941 0.0059 0.7044 0.2715 0.0001 0.2894 0.1697 0.0332

Period 2: 2010/01/01 - 2010/04/30

XOM 0.6625 0.3577 0.0506 0.9778 0.9773 0.3206 0.0869 0.8030 0.0940
GE 0.5900 0.1798 0.0114 0.5810 0.1728 0.0001 0.2569 0.1041 0.0440
PG 0.9154 0.2577 0.0050 0.4729 0.0439 0.0001 0.0074 0.4131 0.0505
JNJ 0.3930 0.1216 0.0050 0.1882 0.0069 0.0001 0.0864 0.0702 0.0326
T 0.0050 0.0000 0.0000 0.0044 0.0000 0.0000 0.0394 0.0123 0.0069
CVX 0.2440 0.0312 0.0114 0.6651 0.0467 0.0339 0.6544 0.1037 0.1224
JPM 0.0263 0.0000 0.0000 0.0007 0.0000 0.0000 0.0174 0.0089 0.0047
WMT 0.3124 0.1216 0.0050 0.7959 0.5335 0.0004 0.5759 0.3969 0.0612
IBM 0.0381 0.0109 0.0000 0.0225 0.0001 0.0000 0.0748 0.0335 0.0095
PFE 0.8268 0.6268 0.0976 0.3539 0.0933 0.0157 0.0603 0.2220 0.0629

Period 3: 2012/01/01 - 2012/04/30

XOM 0.7044 0.4811 0.0506 0.3512 0.9618 0.9463 0.7854 0.1750 0.2291
GE 0.8268 0.0187 0.0506 0.9871 0.4352 0.5974 0.4121 0.1376 0.1943
PG 0.1411 0.0061 0.0003 0.0017 0.0000 0.0000 0.0501 0.0123 0.0091
JNJ 0.5177 0.0670 0.0215 0.8912 0.6972 0.6127 0.8465 0.2525 0.1177
T 0.3930 0.3577 0.7085 0.3632 0.5469 0.5367 0.7673 0.5479 0.4142
CVX 0.1411 0.0009 0.0000 0.8281 0.1368 0.0000 0.3332 0.0488 0.0125
JPM 0.0263 0.0005 0.0001 0.0059 0.0000 0.0000 0.1519 0.0352 0.0107
WMT 0.4858 0.4811 0.0114 0.5905 0.2876 0.0003 0.4169 0.0058 0.0251
IBM 0.8700 0.5741 0.2781 0.5571 0.3065 0.9633 0.8726 0.7628 0.4917
PFE 0.8268 0.1798 0.0050 0.3321 0.0003 0.0029 0.4251 0.2175 0.0483

Notes: This table presents the p-values for the Kupiec test, the Engle-Manganelli DQ test
using 5 lags with the current IVaR as explanatory variables, and the GMM duration-based
test for conditional coverage with 5 moment conditions.
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Table 4.7: 30-min IVaR backtesting results for the G2 method.

Kupiec test Dynamic quantile test Duration based test
IVaR level 5% 2.5% 1% 5% 2.5% 1% 5% 2.5% 1%

Period 1: 2008/09/01 - 2008/12/31

XOM 0.6658 0.0941 0.0059 0.6677 0.0002 0.0000 0.2147 0.0667 0.0384
GE 0.0698 0.0013 0.0010 0.0601 0.0001 0.0000 0.1486 0.0143 0.0154
PG 0.0498 0.0078 0.0000 0.0000 0.0000 0.0000 0.0130 0.0210 0.0112
JNJ 0.0007 0.0000 0.0000 0.0000 0.0000 0.0000 0.0114 0.0066 0.0045
T 0.1732 0.0380 0.0004 0.1554 0.0004 0.0000 0.5065 0.0235 0.0062
CVX 0.1302 0.0231 0.0004 0.0668 0.0065 0.0000 0.0665 0.0405 0.0131
JPM 0.0050 0.0002 0.0000 0.0000 0.0000 0.0000 0.0109 0.0072 0.0073
WMT 0.5554 0.0607 0.0001 0.2963 0.0766 0.0000 0.7399 0.1072 0.0125
IBM 0.0698 0.0607 0.0059 0.1518 0.0213 0.0000 0.3636 0.2960 0.0612
PFE 0.2909 0.0024 0.0000 0.0005 0.0000 0.0000 0.0338 0.0153 0.0077

Period 2: 2010/01/01 - 2010/04/30

XOM 0.7867 0.6733 0.4777 0.9991 0.9982 0.9998 0.4281 0.9049 0.1174
GE 0.7867 0.2577 0.0114 0.8612 0.0086 0.0001 0.0136 0.0682 0.0470
PG 0.6625 0.3577 0.1769 0.6679 0.9935 0.9741 0.3235 0.5303 0.3029
JNJ 0.9546 0.4811 0.0976 0.6915 0.5927 0.2678 0.1255 0.5848 0.0244
T 0.0760 0.0187 0.0021 0.2024 0.9014 0.3536 0.1676 0.0742 0.0189
CVX 0.0760 0.0507 0.4777 0.0781 0.2332 0.9974 0.2758 0.2155 0.1641
JPM 0.1872 0.0001 0.0000 0.6299 0.0000 0.0000 0.1768 0.0137 0.0075
WMT 0.4858 0.0507 0.0050 0.9958 0.2415 0.0005 0.7779 0.1955 0.0341
IBM 0.3930 0.1216 0.3006 0.8456 0.6062 0.9971 0.7090 0.4077 0.5029
PFE 0.5460 0.6268 0.4777 0.9999 0.9076 0.6725 0.8762 0.1582 0.6658

Period 3: 2012/01/01 - 2012/04/30

XOM 0.9546 0.4811 0.3006 0.9466 0.9942 0.9957 0.6433 0.5743 0.5602
GE 0.5900 0.1216 0.0008 0.9220 0.7401 0.0283 0.4485 0.3661 0.0341
PG 0.3930 0.0109 0.0008 0.0359 0.0001 0.0001 0.2868 0.0501 0.0158
JNJ 0.8690 0.2265 0.2781 0.8654 0.5849 0.9966 0.8650 0.5568 0.5595
T 0.5460 0.1216 0.0976 0.3596 0.1798 0.2662 0.4640 0.2263 0.3012
CVX 0.2440 0.0034 0.0050 0.9347 0.1497 0.0011 0.1777 0.0731 0.0559
JPM 0.9546 0.3577 0.1769 0.9997 0.9955 0.9828 0.9828 0.7562 0.3112
WMT 0.7044 0.0109 0.0021 0.8163 0.0186 0.0000 0.9247 0.0675 0.0143
IBM 0.6177 0.5579 0.6734 0.9989 0.9646 0.9996 0.3542 0.9307 0.4476
PFE 0.6625 0.6733 0.4777 0.9981 0.9857 0.6037 0.2632 0.2876 0.7819

Notes: This table presents the p-values for the Kupiec test, the Engle-Manganelli DQ test
using 5 lags with the current IVaR as explanatory variables, and the GMM duration-based
test for conditional coverage with 5 moment conditions.
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Table 4.8: 30-min IVaR backtesting results for all three periods.

Kupiec test Dynamic quantile test Duration based test
IVaR level 5% 2.5% 1% 5% 2.5% 1% 5% 2.5% 1%

Period 1 for 379 stocks
AACD 93.67 92.08 95.78 93.67 93.40 89.97 86.54 92.35 96.31
DDP1 63.59 61.48 56.73 37.47 39.58 38.79 58.05 60.42 65.44
DDP2 84.96 78.63 80.74 72.82 72.56 64.91 63.59 71.50 78.89
G1 52.77 27.70 13.98 45.38 30.61 16.62 64.12 47.76 22.69
G2 66.23 40.90 22.69 55.15 41.69 27.44 65.96 50.66 34.56

Period 2 for 387 stocks
AACD 92.76 86.82 81.65 92.25 86.56 79.59 82.95 84.24 81.40
DDP1 68.48 52.45 43.15 47.03 38.50 31.78 60.41 53.49 44.70
DDP2 86.05 74.68 60.72 80.88 66.93 53.49 66.47 65.89 54.01
G1 57.36 20.41 6.72 60.72 31.52 12.40 58.40 35.66 13.70
G2 72.87 41.34 14.73 74.42 46.77 23.77 63.57 49.10 24.81

Period 3 for 388 stocks
AACD 93.81 93.04 89.69 93.56 90.98 81.44 90.98 93.04 93.30
DDP1 80.41 69.33 57.22 57.22 50.00 41.49 82.73 79.12 70.36
DDP2 93.04 91.24 80.93 89.43 79.38 67.53 82.99 88.66 85.05
G1 78.09 53.09 32.47 79.12 60.31 39.18 85.82 73.71 47.42
G2 88.92 67.01 41.24 86.86 67.27 52.58 89.95 81.70 60.82

Notes: Summary of 30-min IVaR backtesting results for all selected stocks in three
different sample periods. The figures are the percentages of stocks with IVaR back-
testing p-value larger than 0.05 over each period. In each column, the bold figures
represent the highest percentage and the italic figures represent the second largest.
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Table 4.9: IVaR 30-min backtesting summary of the 10 selected stocks.

Kupiec test Dynamic quantile test Duration based test
IVaR level 5% 2.5% 1% 5% 2.5% 1% 5% 2.5% 1%

9:30-10:00
AACD 6 5 6 6 6 6 7 7 7
DDP2 5 4 3 6 5 4 5 6 5
G2 0 0 0 2 0 0 1 0 0

10:00-10:30
AACD 10 9 10 10 8 8 9 9 10
DDP2 8 9 10 10 9 9 8 9 10
G2 10 6 2 9 8 5 9 8 5

15:00-15:30
AACD 4 9 9 10 10 10 6 10 9
DDP2 8 8 8 10 10 10 8 9 8
G2 4 6 10 10 9 9 5 8 10

15:30-16:00
AACD 9 8 8 9 9 9 9 8 9
DDP2 8 9 8 10 9 8 7 9 9
G2 6 3 2 7 5 1 4 4 2

Notes: Entry of figures are the number of stocks with IVaR backtesting p-
value larger than 0.05 for different time intervals in sample period 2008/01/01-
2010/12/31.
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Table 4.10: 60-min IVaR backtesting summary for all 3 periods.

VaR level Kupiec test Dynamic quantile test Duration based test
5% 2.5% 1% 5% 2.5% 1% 5% 2.5% 1%

Period 1 for 379 stocks
AACD 88.92 76.78 76.25 82.59 73.88 60.16 89.71 83.91 62.80
DDP1 48.81 42.74 51.98 37.99 33.77 26.65 54.88 48.28 33.77
DDP2 66.75 59.37 62.27 58.84 50.13 36.68 66.23 63.06 43.80

Period 2 for 387 stocks
AACD 90.44 79.84 70.54 90.96 82.43 73.39 89.66 87.86 71.83
DDP1 76.23 65.12 50.13 69.25 60.47 47.55 72.61 66.41 43.93
DDP2 82.69 67.70 58.40 81.65 72.35 56.85 75.45 74.16 50.90

Period 3 for 388 stocks
AACD 93.56 92.01 81.70 92.01 88.66 76.55 92.53 93.56 81.44
DDP1 83.25 76.80 64.95 81.19 68.81 59.02 90.21 86.08 69.07
DDP2 92.53 89.43 80.67 92.78 85.57 71.13 92.53 93.56 78.35

Notes: Summary of 60-min IVaR backtesting results for all selected stocks in three
different sample periods. The figures are the percentages of stocks with IVaR back-
testing p-value larger than 0.05 over each period. In each column, the bold figures
represent the highest percentage.
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Figure 4.1: Illustration of intraday Monte Carlo simulation procedure.
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Figure 4.2: Average raw price durations & diurnally adjusted price durations for period
2008/01-2010/12.
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Figure 4.3: Average raw volume durations & diurnally adjusted volume durations for pe-
riod 2008/01-2010/12.
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Figure 4.4: The deterministic intraday variance seasonality ϕ(ti) for period 2008/01-
2010/12.
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Figure 4.5: The deterministic intraday variance seasonality and the intraday seasonality of
volume event numbers for period 2008/01-2010/12.
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Figure 4.6: The deterministic intraday variance seasonality φ2(ti) for period 2008/01-
2010/12.
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Figure 4.7: 5% level IVaR smile for 3 periods.
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Chapter 5 Summary of Conclusions

We have extended the ACD-ICV method proposed by Tse and Yang (2012) to esti-
mate stock volatility over longer intervals such as a month in the chapter 2. Estima-
tion of low-frequency volatility is important for studies involving macroeconomic
data that are available only monthly or quarterly. In addition, returns over longer
intervals are less susceptible to the contamination of noise over short intervals and
may be preferred in studies on asset pricing. Our MC study suggests that price
events defined by return of about 0.15% to 0.35% are appropriate for the ACD-
ICV method. Based on the transaction data, the ACD-ICV method outperforms the
RV method in our MC experiments. On the other hand, if daily data are used, the
GARCH method based on aggregating the daily estimates of conditional variance
is superior to the RV method, which is widely used in the literature. Our empirical
results using ten NYSE stocks show that the ACD-ICV, RV and GARCH estimates
track each other quite closely. The RV estimates, however, have larger fluctuations
and exhibit occasionally extreme volatility estimates. Co-movements of volatility
across different stocks are highest according to the ACD-ICV estimates. Our em-
pirical study on VIX and the S&P500 index shows that VIX is a more successful
predictor of future volatility if volatility is estimated by the ACD-ICV method than
the RV method.

Chapter 3 proposed to model the aggregate trade volume of stocks in a quote-
driven market using a compound Poisson distribution. In our model trades may be
initiated by informed or uninformed traders, differentiated by their motivation of
trade. We assume that the aggregate volume of each group of traders follow a com-
pound Poisson distribution, with the parameters for the distribution of trades due to
informed traders dependent on some information variables. We use two approaches
to estimate the model. First, we use tick imbalance as proxy for information vari-
able. Conditional on the tick imbalance, MLE method is used to estimate the model;
Second, we treat the information variable random and unobservable, GMM method
is used to estimate the model. We then calibrate the model and propose measures
of relative intensity of informed trading based on trade frequency and trade volume.
Our model treats volume endogenously and does not assume a priori that volume
and volatility are related. Our empirical analysis of the daily volatility estimates
of 50 NYSE stocks confirm that trade frequency dominates trade volume and trade
size in affecting volatility. Yet trade volume and trade size have incremental infor-
mation for volatility beyond that contained in trade frequency. Tick imbalance is an
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appropriate information proxy under our compound Poisson distribution assump-
tion. Our results also show that informed trading volume increase volatility, while
uninformed trading volume reduce volatility. However, for both informed and unin-
formed traders, the disaggregated effect of trade frequency is to increase volatility.
The converse effects of liquidity traders on volatility remains the future research.

Chapter 4 proposed a new method of computing the IVaR using high-frequency
transaction data. Intraday directional price movements and price durations are
jointly modeled by employing the AACD model. We adopt an intraday Monte Carlo
simulation approach to estimate IVaR, which enables us to forecast high-frequency
returns for any arbitrary interval. In our setup, price durations yield the consecu-
tive steps in time while the price movements allow us to simulate the corresponding
returns. Regularly-spaced intraday returns are simply the sum of the price move-
ments simulated conditional on the given horizon. We also modify the DDP method
of Dionne, Duchesne and Pacurar (2009) by filtering noise employing volume du-
rations. Using high-frequency data of all the S&P 500 component stocks traded
on the NYSE over three different periods, our results show that the IVaR estimates
computed using the AACD approach track closely to the DDP and Giot methods.
IVaR backtesting results show that the AACD approach performs the best over other
methods, based on the results on backtesting p-values. Our robustness check shows
that the AACD approach is not sensitive to the choice of the price range δ , provided
that the price events sampled are not too infrequent.
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