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Abstract

Three Essays on Bayesian Econometrics

Xiaobin Liu

My dissertation consists of three essays which contribute new theoretical results to

Bayesian econometrics.

Chapter 2 proposes a new Bayesian test statistic to test a point null hypothe-

sis based on a quadratic loss. The proposed test statistic may be regarded as the

Bayesian version of the Lagrange multiplier test. Its asymptotic distribution is ob-

tained based on a set of regular conditions and follows a chi-squared distribution

when the null hypothesis is correct. The new statistic has several important advan-

tages that make it appealing in practical applications. First, it is well-defined under

improper prior distributions. Second, it avoids Jeffrey-Lindley’s paradox. Third, it

always takes a non-negative value and is relatively easy to compute, even for mod-

els with latent variables. Fourth, its numerical standard error is relatively easy to

obtain. Finally, it is asymptotically pivotal and its threshold values can be obtained

from the chi-squared distribution.

Chapter 3 proposes a new Wald-type statistic for hypothesis testing based on

Bayesian posterior distributions. The new statistic can be explained as a posterior

version of Wald test and have several nice properties. First, it is well-defined under

improper prior distributions. Second, it avoids Jeffreys-Lindley’s paradox. Third,

under the null hypothesis and repeated sampling, it follows a c2 distribution asymp-

totically, offering an asymptotically pivotal test. Fourth, it only requires inverting

the posterior covariance for the parameters of interest. Fifth and perhaps most im-

portantly, when a random sample from the posterior distribution (such as an MCMC



output) is available, the proposed statistic can be easily obtained as a by-product of

posterior simulation. In addition, the numerical standard error of the estimated pro-

posed statistic can be computed based on the random sample. The finite-sample

performance of the statistic is examined in Monte Carlo studies.

Chapter 4 proposes a quasi-Bayesian approach for structural parameters in finite-

horizon life-cycle models. This approach circumvents the numerical evaluation of

the gradient of the objective function and alleviates the local optimum problem. The

asymptotic normality of the estimators with and without approximation errors is de-

rived. The proposed estimators reach the efficiency bound in the general methods of

moment (GMM) framework. Both the estimators and the corresponding asymptotic

covariance are readily computable. The estimation procedure is easy to parallel so

that the graphic processing unit (GPU) can be used to enhance the computational

speed. The estimation procedure is illustrated using a variant of the model in Gour-

inchas and Parker (2002)
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Chapter 1 Introduction

In many practical appliations, the maximum likelihood estimator (MLE) or the clas-

sical extremum is adopted to obtained the estimator of interest and afterwards we

do the inference based on the estimated results. However, in many cases, the MLE

or the classical extremum estimators may be too difficult to obtain computationally.

One typical example is the entire class of non-linear and non-Gaussian state space

models because of their likelihood function is very hard to calculate numerically,

making the MLE nearly impossible to obtain. Not surprisingly, Bayesian Markov

chain Monte Carlo (MCMC) methods have emerged as the leading estimation tool

to deal with non-linear and non-Gaussian state space models. Besides, there are

many other examples in economics where the classical extremum estimators are

subject to the curse of dimensionality in computation and some numerical prob-

lems. To deal with these problem, the Bayesian MCMC methods are also widely

used.

Chapter 2 and Chapter 3 develop approachs to test a point null hypothesis based

on the Bayesian posterior distribution. Hypothesis testing plays a fundamental role

in making statistical inference in empirical applications. Testing a point null hy-

pothesis is important for checking statistical evidence from data to support or to

be against a particular theory because theory often can be reduced to a testable hy-

pothesis. In many cases, the posterior distribution of parameters is available in the

form of a random sample (such as MCMC sample). So that Chapter 2 and Chapter

3 propose two different statistics for the point-null hypothesis problem when the

posterior distribution of parameters is available.

The statistic in Chapter 2 is equivalent to the LM statistic asymptotically. But
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the one in Chapter 3 can be understood as the posterior version of the well-known

Wald statistic that has been used widely in practical applications. These two statis-

tics shares some desirable properties. First, they are well-defined under improper

prior distributions. Second, they avoids Jeffreys-Lindley’s paradox. Third, their

asymptotic distribution is a c2 distribution under the null hypothesis and repeated

sampling, so that the threshold values are easy to obtain. Fourth, their NSE can be

easily obtained. Fifth, compare with the classic Bayes factors, they are relatively

easy to compute, they are all by-products of the posterior sampling.

In particular, the statistic in Chapter 3 is much easier to compute as it is only

based on the posterior mean and posterior variance of the parameters of interest,

which implies only posterior sampling for the alternative hypothesis is needed. At

last, the statistic in Chapter 3 can be used to test hypotheses that imposes nonlinear

relationships among the parameters of interest, for which the BF is difficult to use.

In Chapter 4, I propose a quasi-Bayesian estimator is introduced for structural

parameters in finite-horizon life-cycle models. The asymptotic normality of the

estimator is derived when an analytical solution for the model exists. When the

policy functions are not analytically available, it is shown that if the approximation

errors caused by numerical solving vanish fast enough, the estimator remains to be

asymptotically normal. Further, it is shown that the estimator reaches the efficiency

bound in the GMM framework. In the proposed method, the usual optimization

procedure is converted into a sampling procedure, thereby avoiding the numerical

evaluation for the gradient of objective function and alleviating the local optimum

problem. The estimator and associated asymptotic covariance can be computed

simultaneously. The estimation procedure is also easy to parallelize, facilitating a

GPU-based and adaptive algorithm to enhance computational efficiency.
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Chapter 2 A Bayesian Chi-Squared Test for

Hypothesis Testing

2.1 Introduction

This paper is concerned with statistical testing of a point null hypothesis after a

Bayesian Markov chain Monte Carlo (MCMC) method has been used to estimate

the models. Testing for a point null hypothesis is prevalent in economics although

its importance is debatable. In the meantime, Bayesian MCMC methods have found

more and more applications in economics because they make it possible to fit in-

creasingly complex models, including latent variable models (Shephard, 2005), dy-

namic discrete choice models (Imai, Jain and Ching, 2009) and dynamic general

equilibrium models (DSGE) (An and Schorfheide, 2007).

In the Bayesian paradigm, the Bayes factor (BF) is the gold standard for Bayesian

model comparison and Bayesian hypothesis testing (Kass and Raftery 1995; Geweke,

2007). Unfortunately, the BF is not problem-free. First, the BF is sensitive to the

prior and subject to Jeffreys-Lindley’s paradox; see for example, Kass and Raftery

(1995), Poirier (1995), Robert (1993, 2001). Second, the calculation of the BF for

hypothesis testing generally requires the evaluation of marginal likelihood which

is a marginalization over the unknown quantities. In many cases, the evaluation of

marginal likelihood is difficult. Not surprisingly, alternative strategies have been

proposed to test a point null hypothesis in the Bayesian literature. These methods

can be classified into two classes.

In the first class, refinements are made to the BF to overcome the theoretical
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and computational difficulties. For example, to reduce the influence of the prior

on the BF, one may split the data into two parts, a training sample and a sample

for statistical analysis. The training sample is used to update the non-informative

prior and to obtain a new proper informative prior, as in the fractional BF (O’Hagan,

1995). In practice, however, this strategy is not always satisfactory because it relies

on an arbitrary division of the data. To alleviate this difficulty, Berger and Perrichi

(1996) proposed the so-called intrinsic BF which is based on the minimal training

sample that results in proper posteriors. In general, the minimal training sample

is not unique. Hence, the intrinsic BF is obtained by averaging the partial BFs

calculated from all possible minimal training samples. Unfortunately, the intrinsic

BF is computationally demanding, especially for latent variable models. O’Hagan

(1995) discussed properties of the fractional and the intrinsic BFs.

In the second class, instead of refining the BF methodology, several interesting

Bayesian approaches have been proposed for hypothesis testing based on the deci-

sion theory. For example, Bernardo and Rueda (2002, BR hereafter) showed that the

BF for the Bayesian hypothesis testing can be regarded as a decision problem with

a simple zero-one discrete loss function. However, the zero-one discrete function

requires the use of non-regular (not absolutely continuous) prior and this is why the

BF leads to Jeffreys-Lindley’s paradox. BR further suggested using a continuous

loss function, based on the well-known continuous Kullback-Leibler (KL) diver-

gence function. As a result, it was shown in BR that their Bayesian test statistic

does not depend on any arbitrary constant in the prior. However, BR’s approach

has some disadvantages. First, the analytical expression of the KL loss function re-

quired by BR is not always available, especially for latent variable models. Second,

the test statistic is not a pivotal quantity. Consequently, BR had to use subjective

threshold values to test the hypothesis.

To deal with the computational problem in BR in latent variable models, Li and

Yu (2012, LY hereafter) proposed a new test statistic based on the Q function in the

Expectation-Maximization (EM) algorithm of Dempster, et al. (1977). LY showed
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that the new statistic is well-defined under improper priors and easy to compute

for latent variable models. Following the idea of McCulloch (1989), LY proposed

to choose the threshold values based on the Bernoulli distribution. However, like

the test statistic proposed by BR, the test statistic proposed by LY is not pivotal.

Moreover, it is not clear if the test statistic of LY can resolve Jeffreys-Lindley’s

paradox.

Based on the difference between the deviances, Li, Zeng and Yu (2014, LZY

hereafter) developed another Bayesian test statistic for hypothesis testing. This test

statistic is well-defined under improper priors, free of Jeffreys-Lindley’s paradox,

and not difficult to compute. Moreover, its asymptotic distribution can be derived

and one may obtain the threshold values from the asymptotic distribution. Unfortu-

nately, in general the asymptotic distribution depends on some unknown population

parameters and hence the test is not pivotal.

In the present paper, we propose an asymptotically pivotal Bayesian test statistic,

based on a quadratic loss function, to test a point null hypothesis within the decision-

theoretic framework. The new statistic has the several nice properties that makes it

appeal in practice after the models are estimated by Bayesian MCMC methods.

First, it is well-defined under improper prior distributions. Second, it is immune

to Jeffreys-Lindley’s paradox. Third, it is easy to compute. The main computa-

tional effort is to get the first derivative of the likelihood function with respect to the

parameters. For latent variable models, the first derivative can be easily evaluated

from the MCMC output with the help of the EM algorithm. Fourth, its numerical

standard error (NSE) can be relatively easy to obtain. Finally, the asymptotic distri-

bution of the test statistic follows the chi-squared distribution and hence the test is

asymptotically pivotal.

Under a set of regularity conditions, we show that if the null hypothesis is cor-

rect our test statistic is asymptotically equivalent to the Lagrange multiplier (LM)

statistic, a very popular test statistic in the frequentist’s paradigm for testing a point

null hypothesis. However, our proposed test has several important advantages over

6



the LM test. First, it can incorporate the prior information to improve statistical

inference. Second, the implementation of the LM test requires maximum likelihood

(ML) estimation of the model under the null hypothesis. For some models, such as

latent variable models and DSGE models, it is generally hard to do ML and, hence,

to compute the LM statistic. Bayesian MCMC has been used to fit models with in-

creasing complexity. The proposed test is the by-product of the Bayesian posterior

output and hence easier to implement than the LM test. Third, unlike the LM test

that can take a negative value in finite sample, our test always takes a nonnegative

value. Finally, unlike the LM test, the new test does not need to invert any matrix.

This advantage is useful when the dimension of the parameter space is high .

The paper is organized as follows. Section 2 reviews the Bayesian literature on

testing a point null hypothesis from the viewpoint of the decision theory. Section 3

develops the new Bayesian test statistic, establishes its asymptotic properties, dis-

cusses how to compute it and its NSE from the MCMC outputs. Section 4 illustrates

the new method by using three real examples in economics and finance. Section 5

concludes the paper. Appendix collects the proof of all the theoretical results and

the derivation of the test statistic in the examples.

2.2 Bayesian Hypothesis Testing under Decision The-

ory

2.2.1 Testing a point null hypothesis

Let the observable data, y=(y1,y2, · · · ,yn)0 2Y. A probability model M ⌘ {p(y|q ,y)}

is used to fit the data. We are concerned with a point null hypothesis testing prob-

lem which may arise from the prediction of a particular theory. Let q 2 denote a

vector of p-dimensional parameters of interest and y 2 a vector of q-dimensional
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nuisance parameters. The problem of testing a point null hypothesis is given by

8
><

>:

H0 : q = q 0

H1 : q 6= q 0

. (2.2.1)

The hypothesis testing may be formulated as a decision problem. It is obvious

that the decision space has two statistical decisions, to accept H0 (name it d0) or to

reject H0 (name it d1). Let {L [di,(q ,y)], i = 0,1} be the loss function of statis-

tical decision. Hence, a natural statistical decision to reject H0 can be made when

the expected posterior loss of accepting H0 is sufficiently larger than the expected

posterior loss of rejecting H0, i.e., when

T(y,q 0) =
Z

Q

Z

Y
{L [d0,(q ,y)]�L [d1,(q ,y)]} p(q ,y|y)dqdy > c � 0,

where T(y,q 0) is a Bayesian test statistic; p(q ,y|y) is the posterior distribution

with some given prior p(q ,y); c is a threshold value. Let 4L [H0,(q ,y)] =

L [d0,(q ,y)]�L [d1,(q ,y)] be the net loss difference function which can gen-

erally be used to measure the evidence against H0 as a function of (q ,y). Hence,

the Bayesian test statistic can be rewritten as

T(y,q 0) = EJ |y (4L [H0,(q ,y)]) .

2.2.2 A literature review

The BF is defined as the ratio of the two marginal likelihood functions, namely,

BF01 =
p(y|M0)

p(y|M1)
,

8



where M0 := {p(y|q 0,y),y 2Y} is the model under the null; M1 :=M is the model

under the alternative. The two marginal likelihood functions are defined as

p(y|M0) =
Z

Y
p(y|q 0,y)p(y|q 0)dy,

p(y|M1) =
Z

Q

Z

Y
p(y|q ,y)p(y|q)p(q)dqdy.

The BF corresponds to the use of the zero-one discrete loss function, namely,

4L [H0,(q ,y)] =

8
><

>:

�1 if q = q 0

1 if q 6= q 0

,

and in this case, with c = 0, we

Reject H0 iff BF01 =

R
Y p(y|q 0,y)p(y|q 0)dyR

Q
R

Y p(y|q ,y)p(y|q)p(q)dqdy
< 1.

Remark 2.2.1. The BF has several disadvantages. If the Jeffreys or the reference

prior (Jeffreys, 1961) is used to reflect the objectiveness, the BF is not well-defined

since it depends on an arbitrary constant (BR, 2002). In addition, if a proper prior

with a large spread is used to represent the prior ignorance, the BF has a tendency

to favor the null hypothesis, giving rise to Jeffreys-Lindley’s paradox; see Poirier

(1995), Robert (1993, 2001). Moreover, for many models in economics, such as

latent variable models and the DSGE models, the marginal likelihood and, hence,

the BF are very difficult to evaluate; see Han and Carlin (2001) for a good review

of methods for calculating the BF from the MCMC output.

BR (2002) suggested using a continuous loss function based on the KL diver-

gence,

KL[p(x),q(x)] =
Z

p(x) log
p(x)
q(x)

dx, (2.2.2)

where p(x) and q(x) are any two regular probability density functions (pdf). The

9



corresponding Bayesian test statistic is:

TBR (y,q 0) = EJ |y (min{KL [p(y|q ,y), p(y|q 0,y)] ,KL [p(y|q 0,y), p(y|q ,y)]}) .

(2.2.3)

Remark 2.2.2. It is shown in BR (2002) that TBR (y,q 0) is well-defined under im-

proper distributions. This is an important advantage over the BF. However, the

BR test is not without its problems. First, the KL divergence function often does

not have a closed-form expression. Consequently, TBR (y,q 0) may be difficult to

compute. Second, BR suggested choosing threshold values based on the normal

distribution to implement the test. Unfortunately, the choice of the normal distribu-

tion and, hence, the threshold values is subjective and lacks of rigorous statistical

justifications. A different distribution will lead to different threshold values.

To alleviate the computational problems of TBR (y,q 0) in the context of latent

variable models, LY (2012) proposed a new loss difference function, based on the

Q function used in the EM algorithm (Dempster, Laird and Rubin, 1977). Let

z = (z1,z2, · · · ,zn)0 denote the latent variables and x = (y0,z0)0. Let p(y|J) and

p(x|J) (:= p(y,z|J)) be the observed data likelihood function and the complete

data likelihood function, respectively. The relationship between these two likeli-

hood functions is

p(y|J) =
Z

p(y,z|J)dz.

For any J 1 and J 2, the Q function is:

Q (J 1|J 2) = Ez|y,J 2
[log p(y,z|J 1)] .

Compared with the observed data likelihood function p(y|J), the Q function is

easier to evaluate in latent variable models. In particular, when the analytical ex-

pression of p(y|J) is not available, the Q function can be easily approximated from

10



the MCMC output via,

Q (J 1|J 2)⇡
1
G

G

Â
g=1

log p
⇣

y,z(g)|J 1

⌘
,

where {z(g),g = 1,2, · · · ,G} are the effective MCMC draws from the posterior dis-

tribution p(z|y,J 2). Let J 0 = (q 0,y). LY (2012) defined a new continuous net

loss difference function as:

4L (J ,J 0) = {Q(J ,J)�Q(J 0,J)}+{Q(J 0,J 0)�Q(J ,J 0)} ,

and proposed a Bayesian test statistic as:

TLY (y,q 0) = EJ |y [4L (J ,J 0)] .

Remark 2.2.3. It is shown in LY (2012) that the test statistic, TLY (y,q 0), is well-

defined under improper priors and also easy to compute. However, this test statistic

has some practical disadvantages. First, like the test statistic of BR, some threshold

values have to be specified. Following the idea of McCulloch (1989), LY (2012)

proposed to choose threshold values based on the Bernoulli distribution. Unfortu-

nately, the choice of the Bernoulli distribution is arbitrary. If another distribution is

used, the threshold values will be different. Second, it is not clear whether this test

statistic is immune to Jeffreys-Lindley’s paradox.

Aiming to alleviate Jeffreys-Lindley’s paradox, LZY (2014) developed an alter-

native Bayesian test statistic based on the Bayesian deviance. The net loss function

and the test statistic are given, respectively, by

4L [H0,(q ,y)] = 2log p(y|q ,y)�2log p(y|q 0,y),

TLZY (y,q0) = 2
Z

[log p(y|q ,y)� log p(y|q 0,y)] p(q ,y|y)dqdy. (2.2.4)

TLZY can be understood as the Bayesian version of the likelihood ratio test.

11



However, for latent variable models, the likelihood function p(y|q ,y) generally is

not available in closed-form. To achieve computational tractability, under some reg-

ularity conditions, LZY (2014) gave an asymptotically equivalent form for TLZY (y,q0),

i.e.,

T⇤
LZY (y,q 0) = 2D+2

⇥
log p(q̄ , ȳ)� log p(ȳ|q 0)

⇤
�2

Z
log p(q |y)p(J |y)dJ

�

�
h

p+q� tr[�L(2)
0n (ȳ)V22(J̄)]

i
,

where J̄ = (q̄ , ȳ)0 is the posterior mean of J under H1, J̄ ⇤ = (q 0, ȳ)0, J̄ b = (1�

b)J̄ ⇤+bJ̄ , for b2 [0,1], S(x|J)= ∂ log p(x|J)/∂J , D=
R 1

0

n
(q̄ �q0)0

h
Ez|y,J̄b

�
S1(x|J̄b)

�io
db

the subvector of S(x|J) corresponding to q , V22(J̄) = E[(y � ȳ)(y � ȳ)0|y,H1],

the submatrix of V (J̄) corresponding to y, and L(2)
0n (y)= ∂ 2 log p(y,y|q 0)/∂y∂y 0.

Remark 2.2.4. As shown in LZY (2014), T⇤
LZY (y,q 0) appeals in four aspects. First,

it is well-defined under improper priors. Second, it does not suffer from Jeffreys-

Lindley’s paradox and, hence, can be used under non-informative vague priors.

Third, it is easy to compute. Furthermore, for latent variable models, T⇤
LZY (y,q 0)

only involves the first and the second derivatives which is easy to evaluate from the

MCMC output with the help of the EM algorithm. Finally, LZY (2014) derived the

asymptotic distribution of T⇤
LZY (y,q 0). When q and ȳ are orthogonal, the asymp-

totic distribution is determined by the chi-squared distribution. In this case the test

is asymptotically pivotal and the thresholds can be obtained form the asymptotic

distribution. Unfortunately, in general the test is not asymptotically pivotal because

the asymptotic distribution depends on some unknown population parameters.

12



2.3 Bayesian Hypothesis Testing Based on a Quadratic

Loss

2.3.1 The test statistic

To deal with the non-pivotal problem, in this section, we develop a new Bayesian

test statistic for hypothesis testing. The new statistic shares all the nice features

of the LZY statistic. First, it is motivated from the decision-theoretic perspective.

Second, it is well-defined under improper prior distributions. Third, it is immune to

Jeffreys-Lindley’s paradox. Fourth, it is easy to compute. However, unlike the LZY

statistic, the new statistic is asymptotically pivotal and the threshold can be easily

obtained from its asymptotic distribution.

To fix the idea, let

s(J) =
∂ log p(y|J)

∂J
,C(J) = s(J)s(J)0,

where s(J) is the score function and J =(q ,y). We define a quadratic loss function

as:

4L [H0,J ] = (q � q̄)0Cqq (J̄ 0)(q � q̄), (2.3.1)

where Cqq (J) is the submatrix of C(J) corresponding to q and is semi-positive

definite, J̄ 0 = (q 0, ȳ0) is the Bayesian estimator of J under H0, q̄ is the Bayesian

estimator of q under H1. Based on this quadratic loss, we propose the following

Bayesian test statistic:

T(y,q 0) =
Z

4L [H0,J ]p(J |y)dJ =
Z
(q � q̄)0Cqq (J̄ 0)(q � q̄)p(J |y)dJ ,

(2.3.2)

where p(J |y) is the posterior distribution of J under H1.

Remark 2.3.1. Clearly T(y,q0) depends on the posterior distribution directly. The

prior information only influences the test statistic via the posterior distribution.
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Remark 2.3.2. Since the posterior distribution p(J |y) is independent of an arbi-

trary constant in the prior distributions, both s(J) and Cqq (J̄ 0) are independent of

the arbitrary constant. As a result, T(y,q0) is well-defined under improper priors.

Remark 2.3.3. Under some regular condition, we will show in Theorem 2.3.1 below

that the proposed test converges to the c2 distribution and hence it is not subject to

Jeffreys-Lindley’s paradox, at least when the sample size is large. To see how it can

avoid Jeffreys-Lindley’s paradox, consider the example discussed in LZY (2014).

Let y ⇠ N(q ,s2) with a known s2 and we test the null hypothesis H0 : q = 0. Let

the prior distribution of q be N(µ,t2) with µ = 0. LZY showed that the posterior

distribution of q is N(µ(y),w2) with

µ(y) = s2µ + t2y
s2 + t2 ,w2 =

s2t2

s2 + t2 ,

and BF is

BF10 =
1

BF01
=

s
s2

s2 + t2 exp


t2y2

2s2(s2 + t2)

�
.

As t2 !+•, BF10 ! 0, suggesting the test always supports H0, whether or not H0

holds true, giving rise to Jeffreys-Lindley’s paradox. On the other hand, it is easy

to show that

Cqq (J̄ 0) =
y2

s4 , and T(y,0) = y2

s4

Z
(q � q̄)2 p(q |y)dq =

w2y2

s4 .

As t2 !+•, µ(y)! y, w2 ! s2, and, hence, T(y,0)! y2/s2 which is distributed

as c2(1) when H0 is true. Consequently, our proposed test statistic is immune to

Jeffreys-Lindley’s paradox.

Remark 2.3.4. To calculate T(y,q0), the first derivatives of the observed-data like-

lihood function must be evaluated. For most latent variable models, the first deriva-

tives are difficult to evaluate directly because the observed-data likelihood function

is not available in closed-form. There are several approaches to calculate the first

derivatives from the MCMC output.
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First, the first derivatives can be approximated using the EM algorithm in con-

nection with the data augmentation technique. For any J and J ⇤
in the support

space of J , it was shown in Dempster et al. (1977) that

s(J) =
∂ log p(y|J)

∂J
=

∂Q(J |J̃)

∂J
|J̃=J =

Z ∂ log p(y,z|J)

∂J
p(z|y,J)dz.

Hence, based on the MCMC output, the first derivative can be approximated by:

s(J)⇡ 1
G

G

Â
g=1

(
∂ log p(y,z(g)|J)

∂J

)
,

where {z(g),g = 1,2, · · · ,G} are effective MCMC draws from the posterior distribu-

tion p(z|y,J) due to the use of data augmentation.

Second, for the dynamic state space models, more efficient approaches are avail-

able to compute the first derivatives. For example, for Gaussian linear state space

models the Kalman filter is computationally very efficient for computing the first

derivatives (Harvey, 1989). For non-Gassuian nonlinear state space models, the

particle filter is an efficient approach for computing the first derivatives. See, for

example, Poyiadjis, et al (2011) and Doucet and Shephard (2012) for recent contri-

butions in using the particle filter to approximate the score functions. Doucet and

Johansen (2011) gives an excellent review of the literature on the particle filter.

Remark 2.3.5. It is known that the BF is the ratio of two marginal likelihoods. For

model M (corresponding to either the null hypothesis or the alternative hypothesis),

as shown in Chib (1995) based on Bayes’ theorem, the log-marginal likelihood may

be calculated by

log p(y|J ,M)+ log p(J |M)� log p(J |y,M), (2.3.3)

where p(y|J ,M) is the observed likelihood function, p(J |M) is the prior distri-

bution, and p(J |y,M) is the posterior distribution, J is an appropriately selected

high density point in the estimated model. Chib (1995) suggested using the posterior
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mean, J̄ .

The second term is the log prior density which is easy to calculate. The third

quantity, p(J |y,M), is the posterior density and only known up to a constant. Based

on the Gibbs sampler and the Metropolis-Hastings algorithm, Chib (1995) and Chib

and Jeliazkov (2001) proposed methods to approximate p(J |y,M). These methods

are generally applicable to a wide class of models. When the parameter J is high-

dimensional, however, estimating p(J |y,M) is computationally demanding. The

first term, p(y|J ,M), is easy to evaluate when it has an analytical expression. For

many models, including the dynamic latent variable models, however, the first term,

p(y|J ,M), is marginalized over the latent variables such as z, that is,

p(y|J ,M) =
Z

p(y,z|J ,M)dz =
Z

p(y|z,J ,M)p(z|J ,M)dz

Often integration is of high-dimension and has to be evaluated numerically. Unfor-

tunately, mimicking the strategy in Remark 3.4 by averaging p(y,z(m)|q ,M) over the

effective draws {z(g),g= 1,2, · · ·G} from p(z|q ,M) is numerically unstable because

the expectation is taken with respect to the prior distribution. Whereas, computing

s(J) in Remark 3.4 is taken with respect to the posterior distribution. All these

problems make it difficult to evaluate the marginal likelihood log p(y|M) and BF. To

calculate T (y,q 0), the main computational effort is to evaluate the first derivatives

of log p(y|J ,M), which can be achieved by the EM algorithm, the Kalman filter or

the particle filter, as remarked earlier. Thus, there is a computational advantage in

the proposed test over the BF.

Since T(y,q0) is calculated from the MCMC output, it is important to assess the

NSE for measuring the magnitude of simulation error. When the observed likeli-

hood function p(y|J) has a closed-form expression, the first derivative and Cqq (J̄ 0)

are also available analytically. Let

f (q) = (q � q̄)0Cqq (J̄ 0)(q � q̄).
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Then, we have

T(y,q 0) = EJ |y [ f (q)|y] , bT(y,q 0) =
1
G

G

Â
g=1

f
⇣

q (g)
⌘
,

where q (g),g= 1,2, · · · ,G are random draws from the posterior distribution p(J |y).

If q (g),g = 1,2, · · · ,G are independent random samples, it can be shown that

Var
⇣
bT(y,q 0)

⌘
=Var

 
G�1

G

Â
g=1

f
⇣

q (g)
⌘!

=
1
G

Var
⇣

f
⇣

q (g)
⌘⌘

.

A consistent estimator of Var
⇣

f
⇣

q (g)
⌘⌘

is given by

G�1
G

Â
g=1

⇣
f
⇣

q (g)
⌘
� bT(y,q 0)

⌘⇣
f
⇣

q (g)
⌘
� bT(y,q 0)

⌘0
.

If q (g),g = 1,2, · · · ,G are dependent random samples, following Newey and West

(1987), a consistent estimator of Var
⇣
bT(y,q 0)

⌘
is

1
G

"
W0 +

q

Â
k=1

✓
1� k

q+1

◆�
Wk +W0

k
�
#
, (2.3.4)

where

Wk = G�1
G

Â
g=k+1

⇣
f
⇣

q (g)
⌘
� bT(y,q 0)

⌘⇣
f
⇣

q (g)
⌘
� bT(y,q 0)

⌘0
,

and q is a positive integer at which the autocorrelation tapers off. In the applications,

we set q = 10.

When the observed likelihood function p(y|J) does not have an analytical ex-
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pression, another approach for assessing the NSE is given below. Note that

T(y,q 0) =
Z �

q � q̄
�0Cqq

�
J̄ 0
��

q � q̄
�

p(J |y)dJ

=
Z

tr
h�

q � q̄
�0Cqq

�
J̄ 0
��

q � q̄
�i

p(J |y)dJ

= tr

Cqq

�
J̄ 0
�Z �

q � q̄
��

q � q̄
�0 p(J |y)dJ

�
,

and that

sq (J) =
Z ∂ log p(y,z|J)

∂q
p(z|y,J)dz.

We can estimate sq
�
J̄0
�

by

bh1 =
1
G

G

Â
g=1

∂ log p
⇣

y,z(g)|J̄ 0

⌘

∂q
=

1
G

G

Â
g=1

h(g)1

where {z(g),g = 1,2, · · · ,G} are efficient random draws from p
�
z|J̄ 0,y

�
. Further-

more, we get

Z �
q � q̄

��
q � q̄

�0 p(J |y)dJ ⇡ bH2 =
1
G

G

Â
g=1

⇣
q (g)� q̄

⌘⇣
q (g)� q̄

⌘0
=

1
G

G

Â
g=1

H(g)
2 .

Then, we have

bT(y,q 0) = tr
⇣
bh1bh

0
1bH2

⌘
.

Following the notations of Magus and Neudecker (2002) about matrix deriva-

tives, let

bh2 = vech
⇣
bH2

⌘
, h(g)2 = vech

⇣
H(g)

2

⌘
, bh =

⇣
bh
0
1,bh

0
2

⌘0
.

Note that the dimension of bh1 is p ⇥ 1 and the dimension of bh2 is p⇤ ⇥ 1, p⇤ =

p(p+1)/2. Hence, we have

∂ bT(y,q 0)

∂bh
= vec(Ip)

0

"✓⇣
bh
0
1bH2

⌘0
⌦ Ip

◆
∂bh1

∂bh
+
⇣
bH 0

2 ⌦bh1

⌘ ∂bh
0
1

∂bh
+
⇣

Ip ⌦bh1bh
0
1

⌘ ∂ bH2

∂bh

#

= vec(Ip)
0

"⇣
bH 0

2
bh1 ⌦ Ip + bH 0

2 ⌦bh1

⌘ ∂bh1

∂bh
+
⇣

Ip ⌦bh1bh
0
1

⌘ ∂ bH2

∂bh

#
.
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where Ip is the p-dimensional identity matrix and

∂bh1

∂bh
=

∂
⇣
bh
0
1

⌘

∂bh
= [Ip,0p⇥p⇤ ] ,

∂ bH2

∂bh
=

2

40p2⇥p,

 
∂ bH2

∂bh2

!

p2⇥p⇤

3

5=

"
0p2⇥p,

∂vec(bH2)

∂bh2 p2⇥p⇤

#
.

By the Delta method,

Var
⇣
bT(y,q 0)

⌘
=

∂ bT(y,q 0)

∂bh
Var

⇣
bh
⌘ ∂ bT(y,q 0)

∂bh

!0

.

Again, following Newey and West (1987), a consistent estimator can be given by

Var(bh) = 1
G

"
W0 +

q

Â
k=1

✓
1� k

q+1

◆�
Wk +W0

k
�
#
,

where

Wk = G�1
G

Â
g=k+1

⇣
h(g)�bh

⌘⇣
h(g)�bh

⌘0
.

Remark 2.3.6. Based on (2.3.3), Chib (1995) provided a method to calculate the

NSE for estimating log p(J |y,M). When log p(y|J ,M) is available in closed-form,

the NSE of the estimate of log p(y|M) is the same as that of log p(J |y,M) because

both p(y|J ,M) and p(J |M) can be computed without incurring simulation errors.

However, when p(y|J ,M) does not have a closed-form expression, it has to be cal-

culated by a simulation-based method (such as the EM algorithm or the particle

filters) and there will be the NSE for estimating it. In this case, it will be diffi-

cult to obtain the NSE of log p(y|J ,M). Relative to log p(J |y,M) whose order of

magnitude is often Op(1), log p(y|J ,M) is typically Op(n) so that log p(y|J ,M) is

dominant in log p(y|M). Consequently, one cannot ignore the NSE of log p(y|J ,M)

when calculating the NSE of log p(y|M). As a result, it will be very difficult to ob-

tain the NSE of the estimate of log p(y|M) and hence that of the BF. The ease with

which one can calculate the NSE of the estimate of T(y,q 0) is another important

advantage of the proposed test over the BF.
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2.3.2 The threshold value

To implement the proposed test, a threshold value, c, has to be specified, i.e.,

Accept H0 if T(y,q 0) c; Reject H0 if T(y,q 0)> c.

This section obtains the asymptotic distribution of the test statistic under H0 and

establishes the link between the test statistic and the LM test. To do so, following

LZY (2014), we first impose a set of regularity conditions.

Assumption 1: There exists a finite sample size n⇤, so that, for n > n⇤, there is a

local maximum at bJ (i.e., posterior mode) such that L(1)
n ( bJ) = 0 and L(2)

n ( bJ) is neg-

ative definite, where Ln(J) = log p(J |y), L(1)
n (J) = ∂ log p(J |y)/∂J , L(2)

n (J) =

∂ 2 log p(J |y)/∂J∂J 0.

Assumption 2: The largest eigenvalue ln of �L�(2)
n ( bJ) goes to zero when n !

•.

Assumption 3: For any e > 0, there exists an integer N and some d > 0 such

that for any n > max{N,n⇤} and J 2 H( bJ ,d ) = {J : ||J � bJ || d}, L(2)
n (J) exists

and satisfies

�A(e) L(2)
n (J)L�(2)

n ( bJ)�Ep+q  A(e),

where Ep+q is an identity matrix and A(e) is a positive semi-definite symmetric

matrix whose largest eigenvalue goes to zero as e ! 0.

Assumption 4: For any d > 0, as n ! •,

Z

W�H( bJ ,d )
p(J |y)dJ ! 0,

where W is the support space of J .

Assumption 5: The likelihood function under both the null hypothesis and the

alternative hypothesis is regular so that the standard ML theory can be applied.

Furthermore, if the null hypothesis is true, let J 0 = (q 0,y0) be true value of J , as
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n ! •, for any null sequence kn ! 0, so that,

sup
||J�J0||<kn

n�1||I(J)� I(J 0)||
p�! 0,

where I(J) = ∂ 2 log p(y|J)/∂J∂J 0.

Remark 2.3.7. In the literature, Assumptions 1-4 have been used to develop the

Bayesian large sample theory; see, for example, Chen (1985). Assumption 5 is a

fundamental regularity condition for developing the standard ML theory. Based on

these regularity conditions, LZY (2014) showed that

J̄ = E [J |y,H1] =
Z

J p(J |y)dJ = bJ +op(n�1/2),

V ( bJ) = E
h
(J � bJ)(J � bJ)

0 |y,H1

i
=�L�(2)

n ( bJ)+op(n�1).

When the null hypothesis holds, we also have

ȳ0 = E [y|y,H0] =
Z

y p(y|y,q 0)dy = by0 +op(n�1/2),

V0(by0) = E
⇥
(y � by0)(y � by0)

0|y,H0
⇤
=�L�(2)

0n (by0)+op(n�1),

where L(2)
0n (y0) = log p(y|q 0,y)/∂y∂y 0|y=y0

and by0 is the local maximum of

log p(y|y,q 0) under H0.

Lemma 2.3.1. Let

J(J) = I�1(J).

When the null hypothesis is true, and J 0 = (q 0,y0) is the true value of J , for any

consistent estimator J̃ of J , we have

I(J 0) = Op(n),I(J̃) = I(J 0)+op(n) = Op(n),

J(J 0) = Op(n�1),J(J̃) = J(J 0)+op(n�1) = Op(n�1).

Lemma 2.3.2. Let bJ 0 = (q 0, by0) be the posterior mode of J under the null hypoth-
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esis. Under Assumptions 1-5 and when the null hypothesis is true, we have

s( bJ 0) = Op(n1/2),s(J̄ 0) = Op(n1/2),C( bJ 0) = Op(n),

C(J̄ 0) =C( bJ 0)+op(n) = Op(n).

Let the LM statistic (Breusch and Pagan, 1980) be

LM = sq ( bJ m0)
h
�Jqq ( bJ m0)

i
sq ( bJ m0),

where bJ m0 = (q 0, bym0) is the ML estimator of J under the null hypothesis, sq (J)

is the score function corresponding to q , Jqq (J) is the submatrix of J(J) corre-

sponding to q .

Theorem 2.3.1. Under Assumptions 1-5, we can show that

T(y,q 0) = sq ( bJ 0)
h
�L�(2)

n,qq (
bJ)
i

sq ( bJ 0)+op(1), (2.3.5)

where L�(2)
n,qq is the submatrix of L�(2)

n (J) corresponding to q . Furthermore, when

the null hypothesis is true and the likelihood dominates the prior, we have

T(y,q 0) = LM+op(1)
d! c2(p). (2.3.6)

Remark 2.3.8. From Equation (2.3.6), T(y,q 0) may be regarded as the Bayesian

version of the LM statistic. However, the LM test is a frequentist test which is based

on ML estimation of the model in the null hypothesis whereas our test is a Bayesian

test which is based on the posterior quantities of the models under both the null

hypothesis as well as the alternative hypothesis.

Remark 2.3.9. In Theorem 2.3.1, we can see that under the null hypothesis, the

asymptotic distribution of T(y,q 0) always follows the c2 distribution and, hence, is

independent of the nuisance parameters. This suggests that the new test is asymp-

totically pivotal, a property that compares favorably with the use of the subjective
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threshold values as in BR (2002) and LY (2012).

Remark 2.3.10. When the likelihood dominates the prior, the posterior mode, bJ ,

reduces to the ML estimator of J under the alternative hypothesis, and the posterior

mode, bJ 0 = (q 0, by0), reduces to the ML estimator of J under the null hypothesis.

From Equation (2.3.5), we can see that

T(y,q 0)= sq ( bJ 0)
h
�L�(2)

n,qq (
bJ)
i

sq ( bJ 0)+op(1)=�sq ( bJ 0)
h
Jqq ( bJ)

i
sq ( bJ 0)+op(1).

If the null hypothesis is false, according to the standard ML theory, we get

J(J 0) = J( bJ)+op(n�1) 6= J( bJ 0)+op(n�1).

except that J(J) is independent on J . This is because, under the alternative, bJ is a

consistent estimator of J whereas bJ 0 is not.

T(y,q 0) = �sq ( bJ 0)
0Jqq ( bJ)sq ( bJ 0)+op(1)

6= �sq ( bJ 0)
0Jqq ( bJ 0)sq ( bJ 0)+op(1)

= LM+op(1).

Remark 2.3.11. T(y,q 0) can incorporate the prior information to improve statis-

tical inference when the sample size is small. This property is shared by the BF

but not by the LM test. To illustrate the idea, consider a simple example, where

y1, ...,yn ⇠ N(q ,s2) with a known variance s2 = 1. The true value of q is set at

q0 = 0.25. The prior distribution of q is set as N(µ0,t2). The simple point null

hypothesis is H0 : q = 0. It can be shown that

2logBF10 =
(nȳt2 +µ0s2)2

(s2 + t2)(s2t2)
+ log

s2

nt2 +s2 ,

T(y,q0) =
t2s2

nt2 +s2


nȳ
s2 +

µ0

t2

�2
,LM =

nȳ2

s2 ,

where ȳ= 1
n Ân

i=1 yi. When n�!•, T(y,q0)�!LM and the asymptotic distribution
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for both T(y,q0) and LM is c2(1). Let us consider the case that corresponds to an

informative prior N(0.25,10�4) and compare it to the case that corresponds to a

non-informative prior N(0,104). Table 1 reports 2logBF10, T (y,q0), and LM when

n= 10,100,1000,10000 under these two priors. It can be seen that both the BF and

the new test depend on the prior (although the BF tends to choose the wrong model

under the vague prior even when the sample size is very large) while the LM test is

independent of the prior. When n = 10, T(y,q0) correctly rejects the null hypothesis

when the prior is informative but fails to reject it when the prior is vague. In this

case, the LM test fails to reject the null hypothesis under both priors.1

Table 2.1: Comparison of 2 logBF10, T(y,q0), and LM

Prior N(0.25,10�4) N(0,104)
n 10 100 1000 10000 10 100 1000 10000

2logBF10 624.69 643.11 753.13 2601.01 -11.56 -13.45 -15.87 -18.16
T(y,q0) 624.13 636.81 684.81 1300.98 0.025 13.03 59.84 676.49

LM 0.025 13.03 59.84 676.49 0.025 13.03 59.84 676.49

Remark 2.3.12. It is well known that the BF is conservative compared to the like-

lihood ratio test; see, for example, Edwards et al. (1963), Kass and Raftery (1995),

Li, et al (2014). Our test is also less conservative than the BF since it is asymptot-

ically pivotal. To illustrate this property, we consider the example in Remark 3.12

of Li, et al (2014). Let y1, ...,yn ⇠ N(q ,1). The prior distribution of q can be set

as N(0,t2). We want to test the simple point null hypothesis H0 : q = 0. Suppose

ȳ = 1
n Ân

i=1 yi =
p

6.634897/n so that the critical level of the LM test is always kept

at 99%. In this case, it can be shown that 2logBF10 =
nt2

nt2+1(
p

nȳ)2� log(nt2+1),

T(y,q0) =
nt2

nt2+1(
p

nȳ)2 and LM= (
p

nȳ)2. According to Fisher’s scale, we have

1To implement the LM test,we use the following Fisher’s scale. Let a be the critical level and
P = 1�a . If P is between 95% and 97.5%, the evidence for the alternative is “moderate”; between
97.5% and 99%, “substantial”; between 99% and 99.5%, “strong”; between 99.5% and 99.9%, “very
strong”; larger than 99.9%, “overwhelming”. To implement the BF we use Jeffreys’ scale instead. If
logBF10 is less than 0, there is “negative” evidence for the alternative; between 0 and 1, “not worth
more than a bare mention”; between 1 and 3, “positive”; between 3 and 5, “strong”; larger than 5,
“very strong”.
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“strong” evidence for the alternative hypothesis based on the LM test. Table 2 re-

ports 2logBF10, T(y,q0), LM when t = 1. It can be seen that the BF finds the

evidence for the alternative hypothesis to be “positive” when n = 10. The evidence

turns to be “not worth more than a bare mention” when n = 100, but to “negative”

when n= 1000,10000. This result is consistent with the conservative property of the

BF relative to the LM test. In the meantime, our test statistic is slightly more con-

servative than the LM test although the difference is smaller and the two statistics

converge to each other as the sample size grows. When the user is conservative and

has a highly informative prior, we caution against the idea of basing the hypothesis

testing solely on the proposed test.

Table 2.2: Comparison of 2 logBF10, T(y,q0), and LM when the prior distribution
of q is N(0,1) and ȳ =

p
6.634897/n so that the critical level of LM is always 99%.

n 10 100 1000 10000
2logBF10 3.63383 1.95408 -0.28049 -2.57621
Decision positive not worth mention negative negative
T(y,q0) 6.03170 6.56920 6.62830 6.63420

LM 6.63490 6.63490 6.63490 6.63490

The implementation of the LM test requires the ML estimation of the null model.

When it is hard to do the ML estimation, it will be difficult to calculate the LM

statistic. This is the case for many models that involve latent variables. However, as

long as the Bayesian MCMC methods are applicable, our test can be implemented.

Moreover, our method offers two additional advantages over the LM test, which we

explain below.

Remark 2.3.13. We have shown that when the alternative hypothesis is correct,

our test statistic is not close to the LM test. In this case, our test continues to take a

nonnegative value whereas the LM test can take a negative value. This is because,

in our test, the weight matrix Cqq (J̄ 0) remains at least semi-positive definite so that

T(y,q 0) is not negative. When q 0 is further away from the true value of q , sq (J̄ 0)
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and Cqq (J̄ 0) will be further way from zero. Consequently, T(y,q 0) will be larger so

that it can discriminate H0 against H1. Whereas, when q 0 is further away from the

true value of q , the weight matrix �J( bJ m0) in the LM statistic may not be positive

definite. This may cause some difficulties in using the LM test.

To illustrate the remark, consider the following example where yt ⇠N(0,s2), t =

1,2 · · · ,n, and the true value of s2 is 0.1. We would like to test

H0 : s2 = 1,H1 : s2 6= 1.

In this case, we have

I(J) = I(s2) =
∂ 2 log p(y|s2)

∂s2∂s2 =
n

2s4 �
Ân

t=1 y2
t

s6 .

When n is large enough, we know that Ân
t=1 y2

t /n ⇡ 0.1 and, hence,

I( bJ m0) = I(s2 = 1) =
n
2
�

n

Â
t=1

y2
t =

n
2

✓
1�2Ân

t=1 y2
t

n

◆
⇡ 0.4n > 0,

�J( bJ m0) =
1

�I( bJ m0)
=� 1

0.4n
< 0.

Consequently, the LM statistic is negative. Whereas, for our statistic, we have

Cqq (J̄ 0) =
1
4

 
n�

n

Â
t=1

y2
t

!2

, s̄2 =
Z

s2 p(s2|y)ds2,

T(y,s2 = 1) =
Z
(s2 � s̄2)2Cqq (J̄ 0)p(s2|y)ds2.

Hence, the proposed test does not suffer from the same problem as the LM test.

Remark 2.3.14. The implementation of the LM test requires the inversion of �I(J 0).

When the dimension of J is high, such an inversion may be numerically challenging.

Whereas, to calculate T(y,q 0), one does not need to invert any matrix.
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2.4 Empirical Illustrations

In this section, we illustrate the proposed test statistic using three popular examples

in economics and finance. The first example is a simple linear regression model

where the BF and our proposed test statistic both have analytical expressions. We

hope to compare them and pay particular attention to their sensitivity with respect

to the prior. The second example is a probit model. In this example, the observed

data likelihood is available in closed-form, facilitating the comparison of the BF,

the LM and our proposed test. We consider both the joint and individual point

null hypothesis tests. The third example is a stochastic conditional duration (SCD)

model, where the duration is latent. In this example, the analytical expression of the

observed data likelihood does not exist so that the implementation of the LM test is

very difficult. Hence, we only compare the BF and our proposed test. However, it

is difficult to compute the NSE of the BF in this example.

2.4.1 Hypothesis testing in linear regression models

The first example is the simple linear regression model:

yi = a +bxi + ei, ei ⇠ i.i.d. N
�
0,s2� , i = 1, ...,n. (2.4.1)

We would like to test H0 : b = b0 against H1 : b 6= b0. Assume that the prior

distributions for (a,b ) and s2 are normal and inverse gamma, respectively,

(a,b )0 ⇠ N
�
µ̃,s2Ṽ

�
, s2 ⇠ IG(a,b),

where µ̃ =
�
µa ,µb

�0, Ṽ = diag
�
Va ,Vb

�
.

The marginal likelihood for the model under H0 is given by

p(y|M0)=
baG

�
a+ n

2
�

(2p)
n
2 G(a)

r
1

nVa +1


b+

1
2

✓
(y�b0x)0 (y�b0x)+ µ2

a
Va

� µ⇤
a

V ⇤
a

◆��(a+ n
2)
,
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where V ⇤
a = Va

nVa+1 , µ⇤
a =V ⇤

a

⇣
Ân

i=1 (yi �b0xi)+
µa
Va

⌘
=V ⇤

a

⇣
i 0 (y�b0x)+ µa

Va

⌘
with

n⇥1 vector i = (1, ...,1)0. The marginal likelihood for the model under H1 is given

by

p(y|M1) =
ba
p

|V ⇤|G
�
a+ n

2
�

(2p)
n
2 G(a)

p
|Ṽ |


b+

1
2
�
(µ̃)0Ṽ�1µ̃ +y0y� (µ⇤)0V ⇤�1µ⇤�

��(a+ n
2)
,

where V ⇤ =
�
Ṽ�1 +X 0X

��1, µ⇤ = V ⇤ �Ṽ�1µ̃ +X 0y
�
, X = (i ,x). The derivation

is given in Appendix .1.4. Hence, in this simple model, BF10 = p(y|M1)/p(y|M0)

has an analytical expression. Furthermore, the analytical expression of the proposed

statistic can be given by

T(y,b0) =
2sV ⇤

22
n �2

Cqq
�
J̄ 0
�
,

where Cqq
�
J̄ 0
�
= 1

s̄4
0
[x0 (y�ā0i �b0x)]2, s̄4

0 =
�
s̄2

0
�2, ā0 and s̄2

0 are the posterior

means of a and s2 under H0, n = 2a+n, s= 1
n
⇥
b+ 1

2
�
(µ̃)0Ṽ�1µ̃ +y0y� (µ⇤)0V ⇤�1µ⇤�⇤

and V ⇤
22 is the submatrix of V ⇤ corresponding to b . The derivation is also given in

the same Appendix.

We now analyze a model in Brooks (2008, Page 40) where the return on a spot

price is linked to the return on a futures price, i.e.,

D log(st) = a +bD log( ft)+ et , et ⇠ i.i.d.N(0,s2),

where D log(st) is the log-difference of the spot S&P500 index and D log( ft) is the

log-difference of the S&P500 futures price, and b captures the optimal hedge ratio.

We would like to test if b = b0 = 1.

The hyperparameters are set at

µa = 0,Va = 103, µb = 0, a = 0.001, b = 0.001.

In addition, we allow the prior variance of b , Vb , to vary so that we can examine how
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the prior influences the BF and T(y,b0). Since both the priors and the likelihood

function are in the Normal-Gamma form, we can directly draw samples from their

posterior joint distributions under H0 and H1. In particular, 35,000 random draws

are sampled from the posterior distributions for Bayesian statistical inference.

Table 3 reports logBF10, T(y,b0), the posterior means and the posterior standard

errors of all the parameters under H1 for different values of Vb . From Table 3,

we observe that the posterior quantities of all three parameters are robust to Vb .

However, logBF10 is very sensitive to Vb . In particular, logBF10 decreases as Vb

increases. When the prior variance Vb is moderate, logBF10 is more than 0 and

tends to reject the null hypothesis. When Vb is sufficiently large, logBF10 is less

than 0 and does not reject the null hypothesis. This observation clearly demonstrates

that the BF is subject to Jeffreys-Lindley’s paradox. On the contrary, T(y,b0) takes

nearly identical values with different Vb . Therefore, T(y,b0) is immune to Jeffreys-

Lindley’s paradox. The asymptotic distribution of T(y,b0) under H0 is c2(1), and

the 99.9 percentile of c2(1) is 10.83. T(y,b0) is much larger than 10.83 in all cases,

suggesting that the null hypothesis is rejected under the 99.9% probability level.

To investigate the sensitivity of our proposed test statistic and BF, Table 4 re-

ported logBF10, T (y,b0), the posterior mean and the posterior standard error of

all the parameters under different values of (a,b) given the prior hyperparameters

(µa = 0,Va = 103, µb = 0,Vb = 1012). The results clearly show the sensitivity of

the BF to the prior because the BF values change the sign. In the contrast, our test

statistic does not change a lot and always supports the alternative hypothesis.

2.4.2 Hypothesis testing in discrete choice models

The probit model is widely used to analyze binary choice data. In this section, we fit

the probit model to a dataset originally used in Mroz (1987). Since the observed data

likelihood in the probit model is available in closed-form, we can directly compute

the proposed Bayesian test statistic T(y,q0) based on the MCMC output. Also, the

LM test can be easily obtained.
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Table 2.3: logBF10, T(y,b0), the posterior means and standard errors of J under
H1

Vb = 0.1 Vb = 100 Vb = 105 Vb = 1022 Vb = 1025 Vb = 1035

logBF10 14.7354 11.2948 7.8409 -11.7311 -15.1849 -26.6979
T(y,q 0) 14.9596 15.1693 15.1696 15.1696 15.1696 15.1696

b̄ 0.1220 0.1232 0.1248 0.1243 0.1236 0.1233
SE(b̄ ) 0.1331 0.1338 0.1334 0.1347 0.1343 0.1337

ā 0.3603 0.3633 0.3587 0.3655 0.3634 0.3622
SE(ā) 0.4438 0.4445 0.4423 0.4449 0.4477 0.4435

s̄2 12.5972 12.5792 12.5790 12.5621 12.5741 12.5817
SE(s̄2) 2.2913 2.2768 2.2941 2.2693 2.2785 2.2936

Table 2.4: logBF10, T(y,b0), the posterior means and standard errors of J under
different hyperparameters pairs (a,b)

(0.001,0.001) (0.1,0.1) (0.1,0.01) (1,0.1) (2,0.001)
logBF10 -0.21813 -0.17002 -0.16703 0.29718 0.81978
T(y,q 0) 15.2158 15.2628 15.2635 15.8318 16.3386

b̄ 0.12378 0.12378 0.12378 0.12291 0.12295
SE

�
b̄
�

0.13399 0.1338 0.13378 0.13249 0.13056
ā 0.35948 0.35948 0.35948 0.36327 0.36223

SE (ā) 0.13399 0.1338 0.13378 0.13249 0.13056
s̄2 12.5948 12.5584 12.5556 12.2152 11.84

SE
�
s̄2� 2.2909 2.2805 2.28 2.1805 2.0787

30



Table 2.5: Bayesian and ML estimates and their standard errors

Bayesian Method ML Method
Posterior Mean Posterior SE Estimate SE

J0 0.2576 0.5125 0.2701 0.5086
J1 �1.2146⇥10�2 4.8169⇥10�3 �1.2024⇥10�2 4.8398⇥10�3

J2 0.1323 2.5451⇥10�2 0.1309 2.5254⇥10�2

J3 0.1242 1.8706⇥10�2 0.1233 1.8716⇥10�2

J4 �1.9⇥10�3 6.0366⇥10�4 �1.8871⇥10�3 6⇥10�4

J5 �5.3083⇥10�2 8.4437⇥10�3 �5.2853⇥10�2 8.4772⇥10�3

J6 -0.8752 0.1187 -0.8683 0.1185
J7 3.7766⇥10�2 4.2809⇥10�2 3.6005⇥10�2 4.3477⇥10�2

In the probit model, we take the married women’s labor force participation (inl f )

as the binary dependent variable (y) and nwi f einc,educ,exper,expersq,age,kedslt6,

and kidsge6 are taken as independent variables; see Wooldridge (2002) for detailed

explanation of these variables. The latent variable representation of the model is

given by

z=J0+J1nwi f einc+J2educ+J3exper+J4expersq+J5age+J6kedslt6+J7kidsge6+e,

where z is the latent variable, e follows a standard normal distribution, and inl f

takes value 1 if z > 0, and 0 otherwise.

Proper but vague priors are used for all the regression coefficients. Specifically,

each element of J is assumed to follow the normal distribution with mean 0 and

variance 108. In this example, we test a joint point null hypothesis and an individual

point null hypothesis. In particular, we test whether exper and expersq have the

joint explanatory power for y and whether kidsge6 has the explanatory power for y.

Hence, the null hypothesis is J7 = 0 in the individual test and J3 = J4 = 0 in the

joint test.

Following Koop (2003), 35,000 draws are obtained using the Gibbs sampler

under H0 and H1 with the first 10,000 samples discarded as burning-in samples.

The convergence of Markov chains is monitored using the statistic of Heidelberger
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and Welch (1983). The parameter estimates and their corresponding standard errors

under H1 for both the Bayesian method and the ML method are reported in Table

2.5. For the Bayesian method, we report the posterior means and the posterior

standard errors. For the ML method, we report the ML estimates and the asymptotic

standard errors. Clearly, the difference between the two sets of results is small.

Since T(y,q0) does not have a closed-form expression, we can obtain its esti-

mate, bT(y,q0), from the MCMC outputs. The estimate and the NSE (in the bracket)

are reported in Table 2.6. Since the observed likelihood function has an analytical

expression, the LM test can be easily obtained and is reported in Table 2.6. In ad-

dition, the estimator of logBF10 and its NSE are also reported in Table 2.6. The

details about the derivation of these statistics are given in Appendix .1.5.

For the individual test, the asymptotic distribution of T(y,q 0) under H0 is c2 (1)

whose 95 percentile is 3.8415. According to bT(y,q0) and the LM statistic, the hy-

pothesis J7 = 0 cannot be rejected, suggesting that kidsge6 does not have a signif-

icant explanatory power on y. Furthermore, these two values are very close to each

other, consistent with the result in Theorem 3.1. What is more, the BF also strongly

support the null hypothesis, reinforcing the conclusion drawn from the other two

statistics. The NSEs of the new test and \logBF10 are of smaller order of magnitude

than the corresponding statistics.

For the joint test, the asymptotic distribution of T(y,q 0) under H0 is c2 (2)

whose 99.99 percentile is 18.42. bT(y,q0) is much larger than 18.42, suggesting

that the null hypothesis is rejected under the 99.99% probability level. Similarly,the

LM statistic is much larger than the 99.99 percentile of c2 (2) and rejects the null

hypothesis. The BF also strongly supports the alternative hypothesis. The three

statistics all provide the “strong” evidence that exper and expersq have the joint

explanatory power on y. Furthermore, the difference between bT(y,q0) and the LM

statistic is significant. It suggests that these two test statistics may differ signif-

icantly when the null hypothesis is not held, consistent with Remark 3.10. The

NSEs of the new test and \logBF10 are of smaller order of magnitude than the corre-
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Table 2.6: The proposed test statistic, the LM test statistic, \logBF10, and the numer-
ical standard errors of the proposed test statistic and \logBF10 (in the bracket)

H0 bT(y, q0) LM \logBF10
J7 = 0 0.6805 (0.0204) 0.6861 -12.1454 (0.0226)
J3 = J4 = 0 126.7931 (3.7603) 99.088 21.9721 (0.021)

sponding statistics.

2.4.3 Hypothesis testing in stochastic conditional duration mod-

els

The third example is a simple extension of the stochastic conditional duration (SCD)

model of Bauwens and Veredas (2004) given by

8
>>>>>><

>>>>>>:

dt = exp(jt)et et ⇠ Exp(1) ,

jt = fjt�1 +a + x0tb +set et ⇠ N (0,1) ,

j1 ⇠ N
✓

a+x01b
1�f , s2

1�f 2

◆
,

for t = 1, ...,T . In this model, dt is the adjusted duration; jt is the latent variable

which is potentially serially correlated and |f | is assumed to be less than 1; b =

(b1,b2)
0, x0t = (Pt�1,VOLt�1), where Pt�1 is the price of the underlying stock at

time t �1 and VOLt�1 is the trading volume of the stock at time t �1; et and et are

independent random errors.

The data, collected from the TAQ database, are the time intervals (durations)

between transactions for IBM between September 3, 1996 and September 30, 1996.

Following Bauwens and Veredas (2004), the transaction data before 9:30 and after

16:00 are excluded and the simultaneous trades are treated as one single transaction.

As a result, we are left with 17,103 raw durations.

Following Engle and Russell (1998), we adjust the raw durations using the daily

season factor Y(ti) which is assumed to be a cubic spline with each node being the
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Table 2.7: The posterior means and posterior standard errors of all the parameters
under the three null hypotheses and the alternative hypothesis for the SCD model

Parameter a f s2 b1 b2
Hypothesis Mean SE Mean SE Mean SE Mean SE Mean SE

H1 .1147 .0364 .9473 .0061 .0209 .0028 -.1105 .0363 -.0099 .0015
H0 : b1 = b2 = 0 -.0052 .0014 .9523 .0059 .0204 .0028 - - - -

H0 : b1 = 0 .0039 .0018 .9498 .0049 .0204 .0023 - - -.0093 .0015
H0 : b2 = 0 .0849 .0354 .9504 .0055 .0208 .0025 -0.0904 .0356 - -

average duration on each half hour from 9:30 to 16:00, i.e.,

dti =
Dti

Y(ti)
,

where Dti is the raw durations. Similar adjustments are also made to the prices and

the volumes. We first test whether or not the price and the traded volume at time

t�1 have a joint impact on the duration at time t, i.e., b1 = b2 = 0. Furthermore, we

also test whether the individual effect is significant or not, i.e., b1 = 0 and b2 = 0.

Because the observed-data likelihood function is not available in closed-form,

it is very hard to calculate the LM statistic even for the model under the null hy-

pothesis. However, since the complete-data likelihood function has an analytical

expression, the data augmentation technique facilitates the Bayesian MCMC esti-

mation of the models. As a result, the proposed statistic is easy to calculate and the

detailed derivation of bT(d,q 0) is reported in Appendix .1.6. The prior distributions

for parameters are given as follows,

f = 2f⇤ �1, f⇤ ⇠ Beta(1,1), s2 ⇠ IG(0.01,0.01) ,

�
a,b 0�0 |s2 ⇠ N

�
0,100⇥s2I3

�
.

where I3 is 3⇥ 3 identity matrix. 55,000 MCMC draws are obtained with the first

15,000 being treated as the burn-in samples. Again, we use the statistic of Heidel-

berger and Welch (1983) to check the convergence of all the chains. The posterior

means and posterior standard errors of all the parameters under the three null hy-

potheses and the alternative hypothesis are reported in Table 2.7.
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Table 2.8: The proposed test statistic, \logBF10, their computing time (in seconds),
and the numerical standard errors of the proposed test statistic (in the bracket)

b1 = b2 = 0 b1 = 0 b2 = 0
bT(d,q 0) 17.8312(0.6262) 2.3209(0.2979) 14.8087(0.4107)
Time for bT(d,q 0)(s) 4116.1709 4634.9620 3840.8727
\logBF10 17.9863 0.8196 18.9603

Time for logBF10(s) 6889.1324 6913.0687 6510.5200

Table 2.8 reports the values of the new statistic and the BF and the computing

time (in seconds) of the new test in the three cases. For hypotheses b1 = b2 = 0

and b2 = 0, bT(d,q 0) strongly reject the null hypothesis, even under the 99.9%

probability level. This is consistent with the BFs, which also strongly support the

model under H1. For hypothesis b1 = 0, the BF does not find strong evidence for

the alternative hypothesis with “not worth more than a bare mention” evidence. Our

proposed statistic also fails to reject the null hypothesis at the 95% probability level.

Finally, from Table 2.8, we can show that the new statistic takes less time to

compute than the BF. Moreover, the NSEs of the new test are of a smaller order

of magnitude than the corresponding statistics. However, the NSEs of the BFs are

difficult to obtain because the log-likelihood is not available in closed-form for the

SCD model.

2.5 Conclusion

In this paper, we have proposed a new Bayesian test statistic to test a point null

hypothesis based on a quadratic loss function. Under the null hypothesis and a

set of regularity conditions, we show that our test is asymptotically equivalent to

frequentist’s LM test and follows a chi-squared distribution asymptotically. The

proposed method is illustrated using a simple linear regression model, a discrete

choice model and a stochastic conditional duration model.

The main advantages of the proposed test statistic are as follows. Relative to

the BF, (i) it is well-defined under improper prior distributions; (ii) it is immune to

Jeffreys-Lindley’s paradox; (iii) it is easy to compute, even for the latent variable
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models; (iv) its asymptotic distribution is pivotal so that the threshold values are

easy to obtain; (v) its NSE can be easily obtained. Relative to the LM test, (i) it can

incorporate the prior information to improve hypothesis testing when the sample

size is small; (ii) it does not suffer from the problem of taking negative values; (iii)

it does not need to invert any matrix.
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Chapter 3 A Posterior-Based Wald-Type Statis-

tic for Hypothesis Testing

3.1 Introduction

This paper develops an approach to test a point null hypothesis based on the Bayesian

posterior distribution. The statistic can be understood as the posterior version of the

well-known Wald statistic that has been used widely in practical applications. The

Wald statistic is often based on the maximum likelihood estimator (MLE) or the

classical extremum estimators (denoted by bq ) of the parameter(s) of interest (de-

noted q ). Typically one kind of squared difference between bq and q is shown

to follow a c2 distribution asymptotically under the null hypothesis, producing an

asymptotically pivotal test.

However, in many practical applications, the MLE or the classical extremum

estimators may be too difficult to obtain computationally. For example, for the entire

class of non-linear and non-Gaussian state space models, the likelihood function is

very hard to calculate numerically, making the MLE nearly impossible to obtain.

Not surprisingly, Bayesian MCMC methods have emerged as the leading estimation

tool to deal with non-linear and non-Gaussian state space models. There are many

other examples in economics where the classical extremum estimators are subject

to the curse of dimensionality in computation and some numerical problems. To

circumvents this problem, Chernozhukov and Hong (2003) introduced a class of

quasi-Bayesian methods that allow users to employ MCMC to simulate a random

sequence of draws such that the marginal distribution of the sequence is the same as

37



the quasi-posterior distribution of parameters.

The central question we ask in this paper is how to test a point null hypothesis

with the posterior distribution of parameters being available. Testing a point null

hypothesis is important for checking statistical evidence from data to support or

to be against a particular theory because theory often can be reduced to a testable

hypothesis. In many cases, the posterior distribution of parameters is available in

the form of a random sample (such as MCMC sample).

Broadly speaking, there are three posterior-based methods available in the liter-

ature for hypothesis testing. The first one is the Bayes factor (BF) which compares

the posterior odds of the two competing theories corresponding to the null and alter-

native hypotheses (Kass and Raftery, 1995). Unfortunately, BFs are subject to a few

theoretical and practical problems. First, BFs are not well-defined under improper

priors. Second, BFs are subject to Jeffreys-Lindley’s paradox. That is, they tend

to choose the null hypothesis when a very vague prior is used for parameters in the

null hypothesis; see Kass and Raftery (1995), Poirier (1995). Third, the calculation

of BFs generally involves evaluation of marginal likelihood. In many cases, eval-

uation of marginal likelihood is difficult. Several strategies have been proposed in

the literature to address some of these difficulties. For example, to deal with the

first two problems, when calculating BFs one may use a highly informative prior

which is data-dependent. To make it data-dependent, one may split the data into

two parts, one as a training set, the other for statistical analysis. The training data

can be used to update a prior (whether it is improper or vague) to generate a proper

informative prior which is subsequently used to analyze the remaining data. See the

fractional BF of O’Hagan (1995), and the intrinsic BF of Berger (1985). To address

the computational problem, one can use the methods of Chib (1995) and Chib and

Jeliazkov (2001) to compute BFs.

The second posterior-based method is to use credible intervals for point iden-

tified parameters and credible sets for partially identified parameters. This line of

approaches has drawn a great deal of attentions among econometricians and statis-
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ticians in recent years; see Chernozhukov and Hong (2003), Moon and Schorfheide

(2012), Norets and Tang (2013), Kline and Tamer (2016), Liao and Simoni (2015),

Chen, et al (2016). Except Chernozhukov and Hong (2003), all the other studies fo-

cus in developing credible sets in partially identified models. Most of these studies

justify credible sets using large-sample theory under repeated sampling.

The third method is based on the statistical decision theory. The idea begins

with Bernardo and Rueda (2002, BR hereafter) where they demonstrated that the

BF can be regarded as a decision problem with a simple zero-one loss function

when it is used for point hypothesis testing. It is this zero-one loss that leads to

Jeffreys-Lindley’s paradox. BR further suggested using the continuous Kullback-

Leibler (KL) divergence function as the loss functions to replace the zero-one loss.

Subsequent extensions include Li and Yu (2012), Li, Zeng and Yu (2014) and Li,

Liu and Yu (2015, LLY hereafter) where different continuous loss functions or net

loss functions were used. The justification of these extensions is made by large-

sample theory under repeated sampling.

In this paper, following the third line of approach, we propose a Wald-type statis-

tic for hypothesis testing based on posterior distributions. The new statistic is well-

defined under improper prior distributions and avoids Jeffreys-Lindley’s paradox.

It is asymptotically equivalent to the Wald statistic under the null hypothesis, and

hence, follows a c2 distribution asymptotically. It is a by-product of posterior sim-

ulation, requiring almost no coding effort and little computational cost.

The paper is organized as follows. Section 2 reviews existing posterior-based

statistics for hypothesis testing in the statistical decision framework. Section 3 de-

velops the new statistic and establishes its large-sample theory. Section 4 explains

how to implement the proposed test for an important class of models – latent vari-

able models – where posterior analysis is routinely used. Section 5 investigates

finite-sample properties of the proposed statistic using simulated data. Section 6

gives two real-data applications of the proposed method. Section 7 concludes the

paper. Appendix collects the proof of theoretical results.
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3.2 Hypothesis Testing based on Statistical Decision

It is assumed that a probability model M ⌘ {p(y|J)} is used to fit data y :=(y1, . . .yn)
0

where J :=
�
q 0,y 0�0 2 Q. We are concerned with testing a point null hypothesis

which may arise from the prediction of a particular theory. Let q 2Qq denote a vec-

tor of qq -dimensional parameters of interest and y 2Qy a vector of qy -dimensional

nuisance parameters, where Q = Qq ⇥Qy . The testing problem is given by

8
><

>:

H0 : q = q 0,

H1 : q 6= q 0.
(3.2.1)

In the statistical decision framework, hypothesis testing may be understood as

follows. There are two statistical decisions in the decision space, accepting H0

(name it d0) or rejecting H0 (name it d1). Let {L [di,q ,y], i = 0,1} be the loss

function of the statistical decision associated with di. When the expected posterior

loss of accepting H0 is sufficiently larger than the expected posterior loss of rejecting

H0, we reject H0. That is, H0 is rejected if

T (y,q 0) =
Z

QQQ
{L (d0,q ,y)�L (d1,q ,y)} p(q ,y|y)dqdy

=
Z

QQQ
4L (H0,q ,y) p(q ,y|y)dqdy

= EJ |y (4L (H0,q ,y))> c � 0,

where T (y,q 0) is a posterior-based statistic, p(q ,y|y) is the posterior distribution,

c is a threshold value, 4L (H0,q ,y) := L (d0,q ,y)�L (d1,q ,y) is the net loss

function.

BR showed that when the equal prior p(q = q 0) = p(q 6= q 0) =
1
2 is used,

c = 0, and the net loss function is taken as

DL (H0,q ,y) =

8
>><

>>:

�1, if q = q 0

1, if q 6= q 0

,
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then T (y,q 0)> 0 is equivalent to the following decision rule based on the BF: reject

H0 if

BF10 =
p(y|H1)

p(y|H0)
=

R
p(y,J)dJR

p(y,y|q 0)dy
> 1.

While the BF serves as the gold standard for model comparison after posterior

distributions are obtained for candidate models, it suffers from several theoretical

and computational difficulties when it is used to test a point null hypothesis. First,

it is not well-defined under improper priors. Second, it leads to Jeffreys-Lindley’s

paradox when a very vague prior is used. Third, BF10 requires evaluating the two

marginal likelihood functions, p(y|Hi), i = 0,1. Clearly, this involves marginaliza-

tions over y and over J . Fourth, if J is high-dimensional so that the integration is a

high-dimensional problem, calculating p(y|Hi), i = 0,1 will be difficult numerically

although there have been several interesting methods proposed in the literature to

compute the BF from MCMC output; see, for example, Chib (1995), and Chib and

Jeliazkov (2001).

In the statistical decision framework, several statistics have been proposed for

testing a point null hypothesis. Poirier (1997) developed a loss function approach

for hypothesis testing for models without latent variables. BR (2002) suggested

choosing the loss function to be the KL divergence function. The large-sample

theory of the test statistics of BR has not been developed although it is well-defined

under improper priors and can solve Jeffreys-Lindley’s paradox.1

In a recent paper, LLY (2015) proposed the following quadratic net loss function

DL (H0,q ,y)=
�
q � q̄

�0Cqq
�
J̄ 0
��

q � q̄
�
,C (J)=

⇢
∂ log p(y,J)

∂q

�⇢
∂ log p(y,J)

∂q

�0
,

where J̄ =
⇣

q̄ 0
, ȳ 0

⌘0
and J̄ 0 =

�
q 0

0, ȳ 0
0
�0 are the posterior mean under H0 and H1,

respectively, Cqq is the submatrix of C corresponding to q . The statistic correspond-
1Given that the KL function is not analytically available for most latent variable models, Li

and Yu (2012) suggested basing the loss function on the Q-function used in the EM algorithm.
However, its large-sample theory has not been developed. On the other hand, Li, Zeng and Yu
(2014) suggested using the deviance function to be the loss function. large-sample theory of the test
statistic is derived. Unfortunately, in general the asymptotic distribution depends on some unknown
population parameters and hence the test is not pivotal asymptotically.
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ing to this net loss function is given by

T LLY (y,q 0) = EJ |y (4L (H0,q ,y)) =
Z

QQQ

�
q � q̄

�0Cqq
�
J̄ 0
��

q � q̄
�

p(J |y)dJ .

(3.2.2)

Under repeated sampling, LLY showed that T LLY (y,q 0) follows a c2 distribution

asymptotically, providing an asymptotically pivotal quantity. This statistic is well-

defined under improper priors and immune to Jeffreys-Lindley’s paradox. Clearly,

T LLY (y,q 0) requires evaluating the first-order derivative of the (observed-data) like-

lihood function. In some models, especially in latent variable models, this first-order

derivative is not easy to evaluate since the observed-data likelihood function may

not have an analytical expression. Another feature of T LLY (y,q 0) is that it requires

estimating both the null model and the alternative model although, under H0, it was

shown to be asymptotically equivalent to the Lagrange Multiplier (LM) test which

requires estimating the null model only.

3.3 A Posterior Wald-type Statistic

3.3.1 The statistic based on a quadratic loss function

For any J̃ 2 Q, denote

V
�
J̃
�
= E

h�
J � J̃

��
J � J̃

�0 |y,H1

i
=
Z �

J � J̃
��

J � J̃
�0 p(J |y)dJ .

We propose the following net loss function for hypothesis testing:

4L [H0,q ,y] = (q �q 0)
0 ⇥V qq (J̄)

⇤�1
(q �q 0) ,

where V qq
�
J̃
�

is the submatrix of V
�
J̃
�

corresponding to q ,
⇥
V qq

�
J̃
�⇤�1 the

inverse of V qq
�
J̃
�
, and J̄ the posterior mean of J under H1. Then, the new test
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statistic can be defined as:

T (y,q 0)=
Z

(q �q 0)
0 ⇥V qq

�
J̄
�⇤�1

(q �q 0) p(J |y)dJ =tr
h⇥

V qq
�
J̄
�⇤�1V q (q 0)

i
,

(3.3.1)

where V q (q 0) :=
R
(q �q 0)(q �q 0)

0 p(J |y)dJ .

Remark 3.3.1. It is easy to see show that T (y,q 0) is well-defined under improper

priors. An improper prior p(J) satisfies that p(J) = a f (J) where f (J) is a non-

integrable function and a is an arbitrary positive constant. Since the posterior

distribution p(J |y) is independent of a, V qq
�
J̃
�
, being the posterior covariance

matrix of q , is also independent of a. Hence, the proposed statistic does not depend

on a.

Remark 3.3.2. To see how the new statistic can avoid Jeffreys-Lindley’s paradox,

consider the example used in LLY (2015). Let y1,y2, . . . ,yn ⇠N(q ,s2) with a known

s2, the null hypothesis be H0 : q = 0, the prior distribution of q be N(0,t2). Denote

ȳ = 1
n Ân

i=1 yi. It is easy to show that the posterior distribution of q is N(µ(y),w2)

with

µ(y) = nt2ȳ
s2 +nt2 ,w

2 =
s2t2

s2 +nt2 ,

and

2logBF10 =
nt2

nt2 +s2
nȳ2

s2 + log
s2

nt2 +s2 ,

T (y,q0) =
nt2

nt2 +s2
nȳ2

s2 +1.

Thus, when t2 ! +• (the prior information becomes more and more uninforma-

tive), logBF10 !�• which suggest that the BF supports H0 regardless how much

ȳ is. This is exactly what Jeffreys-Lindley’s paradox predicts. On the other hand,

T (y,q0) ! nȳ2

s2 + 1 as t2 ! +•. Hence, T (y,q0) is distributed asymptotically as

c2(1)+1 when H0 is true, suggesting that T (y,q0) is immune to Jeffreys-Lindley’s

paradox.
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3.3.2 Large-sample theory for T (y,q 0)

In this subsection, we establish large-sample properties for T (y,q 0) under repeated

sampling. Let yt := (y0,y1, . . . ,yt) for any 0  t  n and lt (yt ,J) = log p(yt |J)�

log p(yt�1|J) be the conditional log-likelihood for the tth observation for any 1 

t  n. When there is no confusion, we just write lt (yt ,J) as lt (J) so that the log-

likelihood function Ln(J) (:= log p(y|J) conditional on the initial observation),

can be written as Ân
t=1 lt (J). Let l( j)

t (J) be the jth derivative of lt (J) and l(0)t (J) =

lt (J). Moreover, let

s(yt ,J) :=
∂ log p(yt |J)

∂J
=

t

Â
i=1

l(1)i (J) , h(yt ,J) :=
∂ 2 log p(yt |J)

∂J∂J 0 =
t

Â
i=1

l(2)i (J) ,

st(J) := l(1)t (J) = s(yt ,J)� s(yt�1,J), ht(J) := l(2)t (J) = h(yt ,J)�h(yt�1,J),

H̄n(J) :=
1
n

n

Â
t=1

ht(J), J̄n(J) :=
1
n

n

Â
t=1

[st(J)� s̄t(J)] [st(J)� s̄t(J)]0 , s̄t(J) =
1
n

n

Â
t=1

st(J),

L [ j]
n (J) := ∂ j log p(J |y)/∂J j,Hn(J) :=

Z
H̄n(J)g(y)dy, Jn(J) :=

Z
J̄n(J)g(y)dy.

Hn(J) and Jn(J) are generally known as the Hessian matrix and the Fisher infor-

mation matrix; H̄n(J) and J̄n(J) are the empirical Hessian matrix and empirical

Fisher information matrix.

In this paper, we first impose the following regularity conditions. A similar set

of assumptions was used in Li, et al (2017).

Assumption 1: Q ⇢ Rq where q = qq +qy is compact.

Assumption 2: {yt}•
t=1 satisfies the strong mixing condition with the mixing

coefficient a (m) = O
⇣

m
�2r
r�2�e

⌘
for some e > 0 and r > 2.

Assumption 3: For all t, lt (JJJ) satisfies the standard measurability and conti-

nuity condition, and the eight-times differentiability condition on Ft
�•⇥ Q where

Ft
�• = s (yt ,yt�1, · · ·).

Assumption 4: For j = 0,1,2, for any J ,J 0 2 Q,
���l( j)

t (J)� l( j)
t
�
J 0�

��� c j
t (yt)

��J �J 0��

in probability, where c j
t (yt) is a positive random variable with supt E

���c j
t (yt)

���< •

and 1
n Ân

t=1

⇣
c j

t (yt)�E
⇣

c j
t (yt)

⌘⌘
p! 0.
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Assumption 5: For j = 0,1,2,3, there exists a function Mt(yt) such that for all

J 2 Q, l( j)
t (J) exists, supJ2Q

���l( j)
t (J)

���6 Mt(yt), and supt E kMt(yt)kr+d  M <

• for some d > 0, where r is the same as that in Assumption 2.

Assumption 6:
n

l( j)
t (J)

o
is L2-near epoch dependent with respect to {yt} of

size �1 for 0 6 j 6 1 and �1
2 for j = 2 uniformly on Q.

Assumption 7: Let J 0
n be the value that minimizes the KL loss between the

DGP and the candidate model

J 0
n = arg min

J2Q

1
n

Z
log

g(y)
p(y|J)

g(y)dy,

where
�

J 0
n
 

is the sequence of minimizers interior to Q uniformly in n. For all

e > 0,

lim
n!•

sup sup
Q\N

⇣
J 0

n,e
⌘

1
n

n

Â
t=1

�
E [lt (J)]�E

⇥
lt
�
J 0

n
�⇤ 

< 0, (3.3.2)

where N
�
J 0

n,e
�

is the open ball of radius e around J 0
n.

Assumption 8: The sequence
�

Hn
�
J 0

n
� 

is negative definite.

Assumption 9: The prior density p(J) is three-times continuously differen-

tiable, p
�
J 0

n
�
> 0 and

R
kJk2 p(J)dJ < •.

Remark 3.3.3. An important condition for the asymptotic posterior normality is the

consistency condition which means that, for each e > 0, there exists K (e)> 0 such

that

lim
n!•

P

0

B@ sup
Q\N

⇣
J 0

n,e
⌘

1
n

n

Â
t=1

⇥
lt (J)� lt

�
J 0

n
�⇤

<�K (e)

1

CA= 1; (3.3.3)

see Heyde and Johnstone (1979), Schervish (2012), Ghosh and Ramamoorthi (2003).

If Assumptions 1-7 hold true, then (3.3.3) holds, as shown in Li et al. (2017).

Remark 3.3.4. According to Li et al. (2017), if Assumptions 1-9 hold true, then for
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each e > 0, there exists K (e)> 0 such that

lim
n!•

P

0

B@ sup
Q\N

⇣ bJ m,e
⌘

1
n

"
n

Â
t=1

lt (J)�
n

Â
t=1

lt
�
J 0

n
�
#
<�K (e)

1

CA= 1, (3.3.4)

where bJ m is the posterior mode of J . Li et al. (2017) showed that this is sufficient

to ensure that the concentration condition around the posterior mode given by Chen

(1985).

Lemma 3.3.1. Let bJ be the MLE of J and N0 (d ) =
n

JJJ :
���JJJ �JJJ 0

n

��� d
o

. If

Assumptions 1-7 hold true, then for any e > 0, there exists d (e)> 0 such that

P

 
sup

N0(d (e))

���H̄n (J)� H̄n

⇣
bJ
⌘���< e

!
! 1. (3.3.5)

and

P

 
sup

N0(d (e)),kr0k=1

���1� r00H̄�1/2
n

⇣
bJJJ
⌘

H̄n (JJJ) H̄�1/2
n

⇣
bJJJ
⌘

r0

���< e

!
! 1.

where r0 is q-dimension vector.

Let Sn = �1
nH̄�1

n ( bJ) and zn= S�1/2
n

⇣
J�bJ

⌘
. Lemma 3.3.2 below gives the

order of the difference between the first k moments of the posterior distribution

of zn under H1 and those of a standard multivariate normal distribution. To estab-

lish the closeness of higher order moments between the two distribution, we have

to strengthen Assumption 9 by Assumption 9B. In Assumption 9B, the k-th order

moment of the prior distribution is assumed to be finite.

Assumption 9B: The prior density p(J) is three-times continuously differen-

tiable, p
�
J 0

n
�
> 0 and

R
kJkk p(J)dJ < • for integer some k � 1.

Lemma 3.3.2. Under Assumptions 1-8 and Assumption 9B, it can be shown that

E
h
z{k}

n |y,H1

i
= MN{k}

q +op(1),
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where E
h
z{k}

n |y,H1

i
is the k-th order moments of the posterior distribution of zn

under H1 (i.e. zn|y,H1), and MN{k}
q is the k-th order moments of a standard mul-

tivariate normal distribution with dimension q. When k = 1,2, i.e., Assumption 9

holds, we can have

J = E [J |y,H1] = bJ +op(n�1/2), (3.3.6)

V
⇣
bJ
⌘

= E
⇣

J � bJ
⌘⇣

J � bJ
⌘0

|y,H1

�
=�1

n
H̄�1

n

⇣
bJ
⌘
+op(n�1).(3.3.7)

Remark 3.3.5. Under different regularity conditions, the Bernstein-von Mises the-

orem shows that the posterior distribution converges to a normal distribution with

the MLE as its mean and the inverse of the empirical Hessian matrix evaluated at

the MLE as its covariance. Based on the Bernstein-von Mises theorem, when the

parameter is one-dimension, Ghosh and Ramamoorthi (2003) developed the same

results as Lemma 3.3.2 for the i.i.d. case. Hence, Lemma 3.3.2 extends the results

of Ghosh and Ramamoorthi (2003) in three aspects: (1) to the weakly dependent

case; (2) to the multivariate case; (3) to show that the order of the difference in

high-order moments between the posterior distribution and a normal distribution.

Remark 3.3.6. Assumptions 1-9 are weaker than those used in Li, et al. (2017)

where a high order Laplace expansion was developed. With the high order Laplace

expansion, Li, et al. (2018) derived the exact order for the difference in the first and

second moments

J̄ = E [J |y,H1] = bJ +Op(n�1), (3.3.8)

V
⇣
bJ
⌘

= E
⇣

J � bJ
⌘⇣

J � bJ
⌘0

|y,H1

�
=�1

n
H̄�1

n

⇣
bJ
⌘
+Op(n�2).(3.3.9)

Clearly, (3.3.8) and (3.3.9) are a stronger set of results than (3.3.6) and (3.3.7).

Lemma 3.3.2 is sufficient to develop large-sample properties of the proposed statis-

tic. Hence, we can relax the assumptions of Li, et al (2017).
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Let bq be the subvector of bJ corresponding to q . The Wald statistic is

Wald = n
⇣
bq �q 0

⌘0 h
�H̄�1

n,qq

⇣
bJ
⌘i�1⇣bq �q 0

⌘
, (3.3.10)

where H̄�1
n,qq

⇣
bJ
⌘

is the submatrix of H̄�1
n

⇣
bJ
⌘

corresponding to q and H̄�1
n

⇣
bJ
⌘

is

the inverse of H̄n

⇣
bJ
⌘

.

Theorem 3.3.1. Under Assumptions 1-9, we can show that, under the null hypoth-

esis,

T (y,q 0)�qq = Wald+op(1),

and

T (y,q 0)�qq
d! c2(qq ).

Remark 3.3.7. From Theorem 3.3.1, T (y,q 0)� qq may be regarded as the poste-

rior version of the Wald statistic. It shares the same asymptotic distribution as the

Wald test under the null hypothesis. However, the Wald statistic is based on the

MLE of the alternative model, whereas the proposed test is based on the posterior

mean and variance under the alternative hypothesis.

Corollary 3.3.2. Under Assumptions 1-9, we have, under the null hypothesis,

T (y,q 0)�qq = T LLY (y,q 0)+op(1)
d! c2(qq ).

Remark 3.3.8. LLY (2015) has established the relationship between T LLY (y,q 0)

and the LM test statistic, i.e., T LLY (y,q 0) =LM+op(1) under the null hypothesis.

It is noted in Engle (1984) that under the null hypothesis LM =Wald+op(1). So

Corollary 3.3.2 is the posterior version of this asymptotic equivalence between the

Wald and LM statistics.

Remark 3.3.9. Theorem 3.3.1 suggests that the asymptotic distribution of T (y,q 0)

is pivotal. To implement the proposed test, we can choose the threshold value, c, to
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be the critical value of c2(qq ) distribution, i.e.,

Accept H0 if T (y,q 0)�qq  c; Reject H0 if T (y,q 0)�qq > c.

Remark 3.3.10. It is obvious that T (y,q 0) only requires evaluating the inverse of

the submatrix of the covariance matrix corresponding to q and, thus, it is very easy

to compute. In contrast, the Wald statistic in (3.3.10) requires evaluating the inverse

of the entire empirical Hessian matrix and then use the submatrix corresponding to

q . When J is high-dimensional, this inversion is numerically more involved than

the inversion of the submatrix. For example,, consider the case where the dimension

of J is 100, but the null hypothesis involves only one of the parameters. To use the

Wald statistic, one has to evaluate the inverse of a 100⇥100 dimensional Hessian

matrix. Whereas, to use T (y,q 0), one only needs to evaluate the inverse of a scalar.

Remark 3.3.11. Compared with the Wald statistic, the proposed statistic can in-

corporate the prior information through the posterior distribution. To illustrate

the influence of prior distribution, let y1, ...,yn ⇠ N(q ,s2) with a known variance

s2 = 1. The true value of q is set at q0 = 0.10. The prior distribution of q is set as

N(µ0,t2). We wish to test H0 : q = 0. It can be shown that

2logBF10 =
s2t2

s2 +nt2

✓
nȳ
s2 +

µ0

t2

◆2
+ log

s2

s2 +nt2 ,

T (y,q0)�1 =
s2t2

s2 +nt2

✓
nȳ
s2 +

µ0

t2

◆2
,

Wald =
nȳ2

s2 ,

where ȳ = 1
n Ân

i=1 yi. When n ! •, T (y,q0)� 1�Wald
p! 0 and the asymptotic

distribution for both T (y,q0)� 1 and the Wald statistic is c2(1). Suppose two

prior distributions are used, a highly informative prior N(0.10,10�3) and a very

vague prior N(0,1050). Table 1 reports 2logBF10, T (y,q0)� 1, and Wald when

n = 10,100,1000,10000 under these two priors. It can be seen that T (y,q0)� 1

and Wald take identical values when the vague prior is used. It is consistent with

49



the prediction of our asymptotic theory. Moreover, both the BF and the new statistic

depend on the prior (although the BFs tend to choose the wrong model under the

vague prior even when the sample size is very large) while the Wald test is indepen-

dent of the prior. When n= 10,100, T (y,q0)�1 correctly rejects the null hypothesis

when the prior is informative but fails to reject it when the prior is vague under the

5% significance level. In this case, the Wald test fails to reject the null hypothesis.

Table 3.1: Comparison of 2 logBF10, T (y,q0)�1, and the Wald statistic

Prior N(0.10,10�3) N(0,1050)
n 10 100 1000 10000 10 100 1000 10000

2logBF10 9.96 11.12 20.60 93.58 -117.42 -118.50 -110.72 -38.00
T (y,q0)�1 9.96 11.22 21.30 95.98 0.01 1.23 11.32 86.03

Wald 0.01 1.23 11.32 86.03 0.01 1.23 11.32 86.03

Remark 3.3.12. Assumption 9 requires finiteness of the first and second moments

of the posterior distribution. When improper priors satisfies this assumption, Theo-

rem 3.3.1 holds. In practice, however, many improper priors do not have finite first

and second moments and hence Assumption is violated. In addition, Assumption 9

excludes the Jeffreys prior (Jeffreys, 1961) since the Jeffreys prior depends on the

sample size n. If informative priors are not available, we suggest using vague non-

informative priors (a prior with large variance spread) to implement our proposed

tests. For more details about vague noninformative priors, one can refer to Kass

and Raftery (1995).

3.3.3 Extension to hypotheses in a general form

In this subsection, we extend the point null hypothesis to the following nonlinear

form, 8
>><

>>:

H0 : R(q 0) = r

H1 : R(q 0) 6= r
, (3.3.11)

where R(·) : Qq ! Rm, m  q, and r 2 Rm. Here R is a set of m nonlinear func-

tions/restrictions. We can test for a single hypothesis on multiple parameters, as
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well as a jointly multiple hypotheses on single/multiple parameters. While this hy-

pothesis problem is in the standard form for the Wald test, it makes BFs difficult

to implement due to nonlinear relationships among parameters. To develop large-

sample properties of the proposed test, we need to impose the following assumption

on R(q).

Assumption 10: R(q) is second-order continuously differentiable with respect

to q on Q and full rank at q 0 .

For the hypothesis defined in (3.3.11), the classical Wald statistic and its asymp-

totic theory are

Wald=
h
R
⇣
bq
⌘
� r

i0
8
<

:
∂R

⇣
bq
⌘

∂q 0

h
�H̄�1

n,qq

⇣
bJ
⌘i ∂R

⇣
bq
⌘

∂q

9
=

;

�1
h
R
⇣
bq
⌘
� r

i
d! c2 (m) .

Based on the statistical decision theory, we can define the following net loss

function

DL (H0,q ,y) = (R(q)� r)0
"

∂R
�
q
�

∂q 0 V qq
�
J
� ∂R

�
q
�

∂q

#�1

(R(q)� r) ,

and introduce our test statistic as:

T (y,r) =
Z

QQQ
DL (H0,q ,y) p(J |y)dJ

=
Z

QQQ
(R(q)� r)0

"
∂R

�
q
�

∂q 0 Vqq
�
J̄
� ∂R

�
q
�

∂q

#�1

(R(q)� r) p(J |y)dJ

= tr

2

4
 

∂R
�
q
�

∂q 0 Vqq
�
J̄
� ∂R

�
q
�

∂q

!�1

V q (r)

3

5 , (3.3.12)

where V q (r) =
R
(R(q)� r)(R(q)� r)0 p(J |y)dJ .

Theorem 3.3.3. Under Assumptions 1-10, , we can show that, under the null hy-

pothesis,

T (y,r)�m = Wald+op(1)
d!c2 (m) .
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3.3.4 Calculating the proposed statistic

As noted in Sections 3.2 and 3.3, the proposed statistics are only dependent on the

posterior mean and the posterior variance of J , i.e., J and V
�
J
�
. In practice, J and

V
�
J
�

are often unknown analytically. Fortunately, when random samples from the

posterior distribution p(J |y) are obtained via posterior simulation (such as MCMC

or importance sampling), we can consistently estimate J and V
�
J
�

arbitrarily well.

Specifically, let {J [ j], j = 1,2, . . . ,J} be effective samples generated from p(J |y),

consistent estimates of J and V
�
J
�

are given by

¯̄J =
1
J

J

Â
j=1

J [ j], V̄
⇣

¯̄J
⌘
=

1
J

J

Â
j=1

⇣
J [ j]� ¯̄J

⌘⇣
J [ j]� ¯̄J

⌘0
.

By plugging ¯̄J and V̄
⇣

¯̄J
⌘

into the proposed statistics, we obtain a consistent esti-

mate of T (y,q 0) or T (y,r) as

bT (y,q 0) := tr
⇣

V̄ qq

⇣
¯̄J
⌘⌘�1

V̄ q (q 0)

�
,

bT (y,r) := tr

2

64

0

@
∂R

⇣
¯̄q
⌘

∂q 0 V̄ qq

⇣
¯̄J
⌘ ∂R

⇣
¯̄J
⌘

∂q

1

A
�1

V̄ q (r)

3

75 , (3.3.13)

where

V̄ q (q 0) =
1
J

J

Â
j=1

⇣
q [ j]�q 0

⌘⇣
q [ j]�q 0

⌘0
,

and

V̄ q (r) =
1
J

J

Â
j=1

⇣
R
⇣

q [ j]
⌘
� r

⌘⇣
R
⇣

q [ j]
⌘
� r

⌘0
.

Remark 3.3.13. Various approaches have been developed for posterior simulation.

Examples include Monte Carlo (MC) integration, important sampling, MCMC tech-

niques such as the Gibbs sampler and the Metropolis-Hastings algorithm. For more

details about posterior simulation, one can refer to Geweke (2005). All these ap-

proaches can be used to generate the random observations from p(J |y). From

(3.3.13), the proposed statistics are by-products of posterior simulation. Further-
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more, the test statistics can be applied in a variety of models.

When bT (y,q0) and bT (y,r) are calculated from posterior simulation, it is impor-

tant to obtain their numerical standard error (NSE) which measures the magnitude

of simulation errors. The following theorem provides formulae to calculate the NSE

of bT (y,q0) and bT (y,r).

Theorem 3.3.4. Let v̄1 = 1
J ÂJ

j=1 q [ j], V̄ 2 = 1
J ÂJ

j=1

⇣
q [ j]� ¯̄q

⌘⇣
q [ j]� ¯̄q

⌘0
, v̄2 =

vech(V̄ 2), v̄ = (v̄01, v̄
0
2)

0, Var (v̄) be the NSE of v̄, where vech denotes the column-

wise vectorization of a matrix. The NSE of bT (y,q 0) is given by

NSE
⇣
bT (y,q 0)

⌘
=

vuut
 

∂ bT (y, q 0)

∂ v̄

!0

Var (v̄)
∂ bT (y,q 0)

∂ v̄
,

where

∂ bT (y,q 0)

∂ v̄
=vech

�
Iqq

�0
✓⇣

(v̄1 �q 0)
0 V̄�1

2

⌘0
⌦ Iqq +V̄�1

2 ⌦ (v̄1 �q 0)

◆
∂ v̄1

∂ v̄

�
⇥
Iqq ⌦ (v̄1 �q 0)(v̄1 �q 0)

0⇤⇣V̄�1
2 ⌦V̄�1

2

⌘ ∂V̄ 2

∂ v̄

�
.

and

∂ v̄1

∂ v̄
=

∂ v̄01
∂ v̄

=
⇥
Iqq ,0qq⇥q⇤

⇤
,
∂V̄ 2

∂ v̄
=

"
0q2

q⇥qq
,

✓
∂vech(V̄ 2)

∂ v̄2

◆

q2
q⇥q⇤

#
.

Furthermore, if R(q) is second-order continuously differentiable, the NSE of

bT (y,r) is given by

NSE
⇣
bT (y,r)

⌘
=

vuut
 

∂ bT (y,r)
∂ v̄

!0

Var (v̄)
∂ bT (y,r)

∂ v̄
,
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where

∂ bT (y,r)
∂ v̄

=vech(Im)
0
⇢✓

(v̄3 � r)0
⇣

V̄ 0
4V̄ 2V̄ 4

⌘�1
◆0

⌦ Im

�
∂ v̄3
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∂ v̄1
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�
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⇥
Im ⌦ (v̄3 � r)(v̄3 � r)0
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V̄ 0

4V̄ 2V̄ 4

⌘�1
⌦
⇣

V̄ 0
4V̄ 2V̄ 4
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⇥
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V̄ 0

4V̄ 2V̄ 4

⌘

∂ v̄

9
=

; ,

v̄3 = R

 
1
J

J

Â
j=1

q [ j]

!
= R(v̄1) , V̄ 4 =

∂R
⇣

1
J ÂJ

j=1 q [ j]
⌘

∂q
=

∂R(q)
∂q

|q=v̄1
,

∂vech
⇣

V̄ 0
4V̄ 2V̄ 4

⌘

∂ v̄
=
⇣
(V̄ 2V̄ 4)

0 ⌦ Im

⌘ ∂V̄ 0
4

∂ v̄1

∂ v̄1

∂ v̄
+
⇣

V̄ 4 ⌦V̄ 0
4

⌘ ∂V̄ 2

∂ v̄

+
⇣

Im ⌦V̄ 0
4V̄ 2

⌘ ∂V̄ 4

∂ v̄1

∂ v̄1

∂ v̄
,

and the derivatives of V̄ 4 and v̄3 depend on the form of R(q).

Remark 3.3.14. Following Newey and West (1987), a consistent estimator of the

NSE of v̄ is given by

Var(v̄) =
1
J

"
W0 +

K

Â
k=1

✓
1� k

K +1

◆�
Wk +W0

k
�
#
,

where

Wk = J�1
J

Â
j=k+1

⇣
v[ j]� v̄

⌘⇣
v[ j]�bv

⌘0
.

3.4 Hypothesis Testing for Latent Variable Models

Latent variable models have found a wide range of applications in microecono-

metrics, macroeconometrics and financial econometrics; see Stern (1997), Norets

(2009), Koop and Korobilis (2009), Yu (2011). Without loss of generality, let
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y = (y1,y2, . . . ,yn)
0

denote the observed variables and z = (z1,z2, . . . ,zn)
0

the la-

tent variables. The set of parameters in the model is denoted by J . Let p(y|J)

be the likelihood function of the observed data, and p(y,z|J) be the complete-data

likelihood function. The relationship between these two likelihood functions is

p(y|J) =
Z

p(y,z|J)dz. (3.4.1)

In many latent variable models, especially dynamic latent variable models, the num-

ber of latent variables is often the same as the sample size. Hence, the integral in

(3.4.1) is high-dimensional when the sample size is large. If the integral does not

have an analytical expression, it will be very difficult to evaluate numerically. Con-

sequently, statistical inferences, including estimation and hypothesis testing, are

difficult to implement if they are based on the MLE.

In recent years, it has been documented that latent variable models can be effi-

ciently analyzed using MCMC techniques; see Geweke, et al. (2011). Let p(J) be

the prior distribution of J . To alleviate the difficulty in maximum likelihood, the

data-augmentation strategy (Tanner and Wong, 1987) is often employed where the

latent variables are treated as additional parameters. Then, the Gibbs sampler can

be used to generate random samples from the joint posterior distribution p(J ,z|y),

denoted by
n

J [ j],z[ j]
oJ

j=1
, after a burn-in phase. The Bayesian estimates of J and

the estimates of the covariance matrix can be obtained as,

¯̄J =
1
J

J

Â
j=1

J [ j], V̄
⇣

¯̄J
⌘
=

1
J

J

Â
j=1

⇣
J [ j]� ¯̄J

⌘⇣
J [ j]� ¯̄J

⌘0
.

Similarly, the proposed test can be easily computed from
n

J [ j]
oJ

j=1
and hence it is

very easy to implement.

Remark 3.4.1. As noted before, the test statistic of LLY in (3.2.2) requires the eval-

uation of the first derivative of the observed-data likelihood function. For many

latent variable model, this is difficult to evaluate when the observed-data likelihood
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function does not have a closed-form expression. In addition, it requires estimating

both the null model and the alternative model. However, the proposed test does

not require evaluating the first derivative and only estimate the model under the

alterative hypothesis. Clearly, the proposed test is easier to implement and faster to

compute.

3.5 Simulation Studies

In this section, we first design two experiments to examine the finite-sample per-

formance of the proposed test with simulated data. In the first experiment, we test

different null hypotheses in a linear regression model. This study aims to compare

the finite sample behavior between T (y,q 0) and the Wald statistic in terms of size

and power. In the second experiment, we test the point null hypothesis in a discrete

choice model. It is a simultaneous equation model with ordered probit and two-limit

censored regression. Li (2006) applied this microeconometric model to study the

relationship between high school completion and future youth unemployment.

3.5.1 Hypothesis testing in a linear regression model

The linear regression model we consider is specified as

yi = x0ib + ei,ei ⇠ N
�
0,s2� , i = 1, . . . ,n.

with xi1 = 1. Let b =
�
b 0

1,b
0
2
�0. We consider two different null hypotheses, both

concerning b 1. The first one is to test H0 : b 1 = b ⇤
1 against H1 : b 1 6= b ⇤

1. The

other is to test H0 : Rb 1 = r against H1 : Rb 1 6= r. To do Bayesian analysis, the

conjugate priors for b and s2 can be specified as the normal distribution and the

inverse gamma distribution, respectively,

b |s2 ⇠ N
�
µ0,s2V 0

�
,s2 ⇠ IG(a,b) ,
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where µ0, V 0 and a, b are hyperparameters. As a result, the posterior distributions

are available analytically.

For simplicity, we consider the case in which b =(b1,b2,b3,b4), xi =(xi1,xi2,xi3,xi4)
0,

where xi1 = 1, xi2,xi3,xi4 ⇠ N (0,1). The true parameter values used to simulate

data are given as s2 = 0.01,b1 = 0.3,b2 = 0.2,b3 = 0.1C,b4 = 0.5C for C =

0,0.1,0.3,0.5, where C is used to control the difference between the true value and

zero. The number of replications is set at 1000 while three sample sizes are con-

sidered, n = 50,100,150. Each of four null hypotheses is tested, b3 = 0, or b4 = 0,

or b3 = b4 = 0, or b3 +b4 = 0, in every replication. To make the priors vague, the

hyperparameters are specified at

µ0 = (0,0,0,0)0 ,V 0 = 1000⇥ I4,a = 0.0001,b = 0.0001,

with I4 being the 4⇥ 4 identity matrix. In each replication, we draw 5000 i.i.d.

random samples from the posterior distribution and then use the posterior samples to

compute the proposed statistic. Also computed is the Wald statistic for the purpose

of comparison. The Wald test is feasible because MLE is easy to obtain in this

application.

Table 3.2 reports the size and the power of the proposed test and the Wald test

for a nominal size of 5%. In all cases, the size distortion for the new statistic is very

small and the two tests perform similarly in terms of size. The size approaches 5%

as the sample size increases. Moreover, in all cases, the power of the proposed test is

comparable to that of the Wald statistic. As C increases, the power of the proposed

statistic approaches 100%. Similarly, as the sample size increases, the power of the

proposed statistic approaches 100%.

3.5.2 Hypothesis testing in a discrete choice model

The second model in the simulation study is a simplified version of the model of Li

(2006) where the effects of attendance on high school completion and future youth
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Table 3.2: The size and power of the proposed test and the Wald test for different
null hypothesis in a linear regression model

Empirical Size Empirical Power
C = 0 C = 0.1 C = 0.3 C = 0.5

n H0 T (y,b 10) Wald T (y,b 10) Wald T (y,b 10) Wald T (y,b 10) Wald

50

b3 = 0 4.50% 5.10% 10.40% 11.00% 55.80% 57.30% 92.00% 92.20%
b4 = 0 6.50% 7.10% 92.00% 92.5% 100% 100% 100% 100%

b3 = b4 = 0 6.60% 7.50% 88.80% 89.70% 100% 100% 100% 100%
b3 +b4 = 0 6.20% 6.70% 83.30% 84.00% 100% 100% 100% 100%

100

b3 = 0 5.50% 5.80% 20.20% 20.40% 82.00% 82.80% 99.90% 100%
b4 = 0 4.60% 5.00% 99.70% 99.70% 100% 100% 100% 100%

b3 = b4 = 0 5.70% 6.00% 99.50% 99.50% 100% 100% 100% 100%
b3 +b4 = 0 6.00% 6.20% 98.60% 98.60% 100% 100% 100% 100%

150

b3 = 0 5.30% 5.40% 24.40 24.60% 95.90% 95.90% 100% 100%
b4 = 0 5.20% 5.30% 100% 100% 100% 100% 100% 100%

b3 = b4 = 0 5.40% 5.60% 100% 100% 100% 100% 100% 100%
b3 +b4 = 0 4.20% 4.20% 99.80% 99.80% 100% 100% 100% 100%

unemployment were studied. As noted in Li (2006), the likelihood function involves

multiple integrals and discrete and censor variables. Consequently, the likelihood

function and the corresponding derivatives are not easy to evaluate. Consequently,

Li introduced a MCMC approach to do statistical analysis. We perform hypothesis

testing in the discrete choice model with latent variables.

Let zi = 1,2,3,4 denote the high school grade completed by individual i which

is by definition an ordered integer. Let yi denote the latent outcome corresponding

to zi. The first part of the model is an ordered probit defined as

8
>><

>>:

yi = b0 +b1xi + ei, ei ⇠ N
�
0,s2� ,gzi < yi < gzi+1,

g1 =�•,g2 = 0, g2 < g3 < g4,g4 = 1,g5 = •,

where i = 1, . . . ,n with n being the total number of individuals, ei is an individual

level random error term, s2 is the variance of the error term,
�

g j
 5

j=1 are the cutoff

points, xi contains some covariates which are assumed to be exogenous. For the

purpose of simulating data, we simply assume xi is univariate and xi ⇠ N (0,1).

Furthermore, let wi denote the proportion of time during which individual i is
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unemployed, ỹi is the latent outcome corresponding to wi, and ỹi is limited as,

ỹi

8
>>>>>><

>>>>>>:

 0, wi = 0,

= wi, 0 < wi < 1,

� 1, wi = 1.

Then the censored regression is,

ỹi = b̃0 + b̃1x+ ẽi, ẽi ⇠ N
�
0, s̃2� . (3.5.1)

The two error terms are correlated, that is,

0

B@
ei

ẽi

1

CA⇠ N

0

B@

0

B@
0

0

1

CA ,

0

B@
s2 s12

s12 s̃2

1

CA

1

CA := N (0,S) .

In the simulation study, the null and alternative hypotheses are,

H0 : b1 = 0,H1 : b1 6= 0.

To calculate the size and power of the proposed statistic, three sample sizes are

considered, n = 100, 250 and 500. In each case, we compute the empirical size

when b1 = 0 at a nominal size of 5%. We also compute the power when b1 = 0.1,0.2

and 0.4. The number of replications is 500. The true values of other parameters are

set at,

b0 = 1, b̃0 = 0.01, b̃1 = 0.1,S =

0

B@
1 �0.01

�0.01 0.1

1

CA ,g3 = 0.67.

These values are close to those reported in Li (2006) based on actual data.

Following Li (2006), we use the following vague priors to do Bayesian analysis,

b =
⇣

b0,b1.b̃0, b̃1

⌘0
⇠ N (0,1000⇥ I4) , S ⇠ IW (6,6⇥ I2) ,g3 ⇠ Beta(1,1) ,
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Table 3.3: The size and power of the proposed test in a discrete choice model
Empirical Size Empirical Power

b1 = 0 b1 = 0.1 b1 = 0.2 b1 = 0.4
n = 100 4.2% 11.0% 23.0% 75.8%
n = 250 5.2% 24.0% 65.0% 100%
n = 500 4.6% 49.4% 97.2% 100%

where IW denotes the inverted Wishart distribution and Beta denotes the Beta dis-

tribution.

We run MCMC to obtain 10,000 random samples. After dropping the first 4,000

samples, we treat the remaining 6,000 sample as effective draws from the posterior

distribution. Let
n

b [ j]
1

oJ

j=1
denote the effective posterior draws. From (3.3.13), the

proposed statistic can be simply calculated as

bT (y,b1 = 0) =
1
J ÂJ

j=1

⇣
b [ j]

1

⌘2

1
J ÂJ

j=1

⇣
b [ j]

1 �b 1

⌘2 ,b 1 =
1
J

J

Â
j=1

b [ j]
1 .

Other test statistics, such as BFs and the Wald statistic, are harder to obtain due to

the presence of latent variables.

The empirical size and power of the proposed test are reported in Table 3.3 for

a nominal size of 5%. It is obvious that the empirical size is close the nominal size

in all cases, even when the sample size is only 100. When b1 becomes further and

further away from 0, the power increases and approaches 100%. Furthermore, as

the sample size increase, the power increases in all cases.

3.6 Empirical Examples

We then consider two empirical studies using real data. The first model is the full

version of the discrete choice model of Li (2006). The second model is the stochas-

tic volatility model with leverage effect. For both models, it is well-known that the

observed-data likelihood function is intractable due to the presence of latent vari-

ables. As a result, the observed-data likelihood function and its derivatives are very
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difficult to evaluate and hence it is advantageous to use the proposed statistic over

existing statistics for hypothesis testing.

3.6.1 Hypothesis testing in a discrete choice model

In the first empirical study, we consider the same model and use the same data set

as in Li (2006). Let zhi denote the high school grade completed by individual i,

and yhi denote the latent outcome corresponding to zhi, where h labels the schooling

outcome. Let zhi = 1 if individual i dropped out of high school after completing the

ninth grade, zhi = 2 if he dropped out after completing the tenth grade, zhi = 3 if he

dropped out after completing the eleventh grade, and zhi = 4 if he completed high

school. An ordered probit is specified as

8
>><

>>:

yhi = b 0
hxhi + ehi, ehi ⇠ N

�
0,s2

h
�
,gzhi < yhi < gzhi+1,

g1 =�•,g2 = 0, g2 < g3 < g4,g4 = 1,g5 = •,

(3.6.1)

where xhi is a kh ⇥1 vector incorporating individual level variables, including base

year cognitive test score, parental income, parental education, number of siblings,

gender, race, county level employment growth rate between 1980 and 1982, a fourth-

order polynomial in age and a fourth-order polynomial in the time eligible to drop

out.

Furthermore, let wui represent the proportion of time when individual i is unem-

ployed, yui the latent outcome corresponding to wui, and yui is limited as,

yui

8
>>>>>><

>>>>>>:

 0, wui = 0,

= wui, 0 < wui < 1,

� 1, wui = 1.

(3.6.2)

Thus, the censored regression is,

yui = b 0
uxui + s0ih + eui,eui ⇠ N

�
0,s2

u
�
, (3.6.3)
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where xui is a ku ⇥ 1 vector incorporating observed variables, including base year

cognitive test score, parental income, parental education, number of siblings, gen-

der, race, age and a dummy variable indicating any post-secondary education.

In Equation (3.6.3), si is a 4⇥1 vector consisting of dummy variables indicating

the high school grade completed by individual i. In other words, si =(si,1,si,2,si,3,si,4)
0,

and if si,zhi = 1 then si, j = 0, j 6= zhi. Besides, h indicates the 4⇥ 1 vector of the

effect of high school completion on unemployment. For simplicity, h is assumed

to be the same across schools. This assumption is different from that in Li (2006)

although our empirical results are almost the same as those in Li. The random terms

are assumed to be correlated,

0

B@
ehi

eui

1

CA⇠ N

0

B@

0

B@
0

0

1

CA ,

0

B@
s2

h shu

shu s2
u

1

CA

1

CA= N (0,S) .

In total, there are 34 parameters in the model.

As noted in Li (2006), the MLE is difficult to obtain. Hence, the MCMC tech-

nique is implemented. We adopted the same priors as Li which are listed in the

following,

b =
�
b 0

h,b
0
u
�0 ⇠ N (0k⇥1,1000⇥ Ik) , S ⇠ IW (6,6⇥ I2) ,

h ⇠ N (0, I4) , g3 ⇠ Beta(1,1) ,

where k = kh + ku.

The dataset contains 5,238 students from 871 schools. For more details about the

data, one can refer to Li (2006). We run MCMC for 20,000 times. After dropping

the first 4,000 samples, we treat the remaining 16,000 as effective draws. Posterior

means and posterior standard errors are reported in Table 3.4, all of which are very

close to those reported in Li.

Suppose one is interested in testing that the marginal effects of father’s education

level and mother’s education level on the completion of high school can be ignored
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Table 3.4: Posterior means and posterior standard errors of parameters in a discrete
choice model of Li (2006)

E (·|Data) SE (·|Data)
High school completion yh

Constant 0.9474 0.2119
Parental income 0.0110 0.0262
Base year cognitive test 0.4413 0.0370
Father’s education 0.0456 0.0131
Mother’s education 0.0627 0.0159
Number of siblings -0.0370 0.0153
Female -0.0694 0.0534
Minority 0.3840 0.0664
County employment growth -0.0132 0.0047
Age -0.4150 0.0853
Age2 -0.1887 0.0766
Age3 -0.0333 0.0468
Age4 0.0311 0.0148
Time eligible to drop out 0.0932 0.0696
Time2 0.0905 0.0473
Time3 -0.0090 0.0106
Time4 -0.0094 0.0053

Proportion of time unemployed wu
Parental income -0.0275 0.0056
Base year cognitive test -0.0392 0.0071
Father’s education -0.0020 0.0025
Mother’s education -0.0043 0.0030
Number of siblings 0.0049 0.0034
Post-secondary education -0.0113 0.0138
Female 0.0621 0.0112
Minority 0.0826 0.0131
Age -0.0058 0.0126
Completing ninth grade(h1) 0.1925 0.0705
Completing tenth grade(h2) 0.1211 0.0530
Completing eleventh grade(h3) 0.1187 0.0492
Completing high school(h4) 0.0083 0.0416

Covariance matrix S
s2

h 0.9450 0.0914
s2

u 0.1215 0.0039
shu -0.0099 0.0191

Cutoff point
g3 0.6684 0.0220
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Table 3.5: The proposed statistic, bT LLY (y,q 0), \logBF10, the CPU time (in seconds),
and their NSEs in the discrete choice model of Li (2006).

b4 = b5 = 0
Value NSE CPU Time (seconds)†

bT (y,q 0)�1 44.39 1.59 22.54
bT LLY (y,q 0) 2502.00 89.57 39,096.79

\logBF10 5.2019 1.03 292,886.45
† The CPU time for computing each statistic is obtained from a laptop with an
Intel i5 CPU and 8 GB memory after MCMC outputs are available.

or not. The null hypothesis can be written as H0 : b4h = b5h = 0. With the MCMC

output, we can very easily compute the statistic. We also compute \logBF10 and

bT LLY (y,q 0). The three test statistics and their numerical standard errors are reported

in Table 3.5.2

According to Table 3.5, both bT (y,q 0)� 1 and bT LLY (y,q 0) take very large val-

ues, indicating that the null hypothesis is overwhelmingly rejected. This conclusion

is consistent with that by \logBF10, which strongly supports the alternative hypothe-

sis. Furthermore, their numerical standard errors are all small relative to the values

of the statistics. Finally, in spite of the same conclusion reached, the CPU time

required to compute the test statistics is vastly different. The proposed statistic is

more than 1700 times and nearly 13000 times faster to compute than bT LLY (y,q 0)

and \logBF10 after MCMC outputs are available. An additional advantage that does

not reflect in the CPU time is that the proposed statistic only needs MCMC output

from the alternative model while the other two statistics require MCMC output for

both the null and alternative models.

Hypothesis testing in a stochastic volatility model

Stochastic volatility (SV) models with leverage effect have been widely used in

finance; see Harvey and Shephard (1996) and Aı̈t-Sahalia, et al (2017). Following
2We use the marginal likelihood method of Chib (1995) to compute the BF and its NSE.
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Yu (2005), the stochastic volatility model with leverage effect is defined as,

8
>><

>>:

rt = exp(ht/2)et ,

ht+1 = µ +f (ht �µ)+set+1,h0 = µ,

with 0

B@
et

et+1

1

CA i.i.d.⇠ N

0

B@

0

B@
0

0

1

CA ,

0

B@
1 r

r 1

1

CA

1

CA ,

where rt is the return at time t, ht the latent volatility at period t. In this model, r

is the parameter that captures the leverage effect when it is negative. Hence, we test

H0 : r = 0 against H1 : r 6= 0. In this example, we use two different datasets for

hypothesis testing. For each dataset, we compute the proposed statistic, T LLY (y,q 0)

and \logBF10.3

Let
n

r [ j]
oJ

j=1
denote the effective posterior draws for r under H1. The proposed

statistic is simply calculated as

bT (y,r = 0) =
1
J ÂJ

j=1

⇣
r [ j]

⌘2

1
J ÂJ

j=1
�
r [ j]�r

�2 ,r =
1
J

J

Â
j=1

r [ j].

On the contrary, computing bT LLY (y,q 0) and \logBF10 require substantially higher

coding efforts and extra CPU time.

The first dataset consists of daily returns on Pound/Dollar exchange rates from

01/10/81 to 28/06/85 with sample size 945. The series rt is the daily mean-corrected

returns. The following vague priors are used:

µ ⇠ N (0,100) ,f ⇠ Beta(1,1) ,s�2 ⇠ G(0.001,0.001) ,r ⇠U (�1,1) .

We draw 50,000 from the posterior distribution and discard the first 20,000 as build-

in samples. Then we store every 5th value of the remaining samples as effective

random samples. The estimation results are reported in Table 3.6.
3Again we use the marginal likelihood method of Chib (1995) to compute the BF.
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Table 3.6: Posterior means of parameters in the SV model with and without leverage
effect for the Pound/Dollar returns.

H1 H0
Parameter Mean SE Mean SE

µ -0.5776 0.3487 -0.6608 0.3164
f 0.9849 0.0097 0.9793 0.0127
r -0.0941 0.1507 - -
t 0.1553 0.0243 0.1618 0.0360

Table 3.7: The proposed statistic, bT LLY (y, q 0), \logBF10, the CPU time (in seconds),
and the NSEs of the first two statistics for the Pound/Dollar returns.

bT (y,q 0)�1 bT LLY (y,q 0) \logBF10
Value 0.3893 0.2883 -10.1235
NSE 0.0255 0.2028 -

CPU Time (seconds) 0.9411 549.0631 3,701.2241

Table 3.7 reports the proposed statistic, bT LLY (y,q 0) and \logBF10 and the NSEs

for the first two statistics. Since the observed-data likelihood function is expen-

sive to compute, the NSE of BF is too difficult to obtain and not report. \logBF10

strongly supports the null hypothesis, that is, the SV model without leverage effect.

bT LLY (y,q 0) takes a very small value, suggesting that we cannot reject the null hy-

pothesis. When the null hypothesis is true, we know that T (y,q 0)�1 d! c2 (1). It

can be found that bT (y,q 0)� 1 is very closed to bT LLY (y,q 0), also suggesting that

we cannot reject the null hypothesis. Finally, our proposed statistic has a smaller

NSE than bT LLY (y,q 0).

The second dataset contains 1,822 daily returns of the Standard & Poor (S&P)

500 index, covering the period between January 3, 2005 and March 28, 2012. We

use the same priors and method as before to estimate the model with and without

leverage effect. The estimation results are reported in Table 3.8.

The three test statistics and the NSEs for the first two statistics are reported in

Table 3.9. Contrary to the case of Pound/Dollar returns, all three statistics strongly

support the alternative hypothesis. Both bT (y,q 0)�1 and bT LLY (y,q 0) reject the null

hypothesis under the 99% significance level. Similarly, \logBF10 strongly supports

the alternative hypothesis. However, the proposed statistic is nearly 1000 times and
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Table 3.8: Posterior means of parameters in the SV model with and without leverage
effect for the S&P500 returns.

H1 H0
Parameter Mean SE Mean SE

µ -10.8800 0.1751 -11.2200 0.3349
f 0.9804 0.0039 0.9897 0.0042
r -0.7151 0.0422 - -
t 0.2057 0.0178 0.1705 0.0169

more than 6000 times faster to compute than bT LLY (y,q 0) and \logBF10 after MCMC

outputs are available.

Table 3.9: The proposed statistic, bT LLY (y, q 0), \logBF10, the CPU time (in seconds),
and the NSEs of the first two statistics for the S&P500 returns.

bT (y,q 0)�1 bT LLY (y,q 0) \logBF10
Value 286.7944 8.2419 51.9582
NSE 0.6915 0.6849 -

CPU Time (seconds) 1.2922 1,256.7768 7,785.6888

3.7 Conclusion

In this paper, a new test statistic is proposed to test for a point null hypothesis which

can be treated as the posterior version of the Wald test. Compared with existing

methods, the proposed statistic has many important advantages. First, it is well-

defined under improper prior distributions. Second, it avoids Jeffreys-Lindley’s

paradox. Third, its asymptotic distribution is a c2 distribution under the null hy-

pothesis and repeated sampling. This property is the same as the Wald statistic so

that the critical values can be easily obtained. Fourth, it is very easy to compute as it

is based on the posterior mean and posterior variance of the parameters of interest.

Fifth, it can be used to test hypotheses that imposes nonlinear relationships among

the parameters of interest, for which the BF is difficult to use. Sixth, for latent vari-

able models for which the MLE and the Wald test are more difficult to obtain, the

proposed statistic is the by-product of posterior sampling. Finally, only posterior

sampling for the alternative hypothesis is needed for the proposed statistic.
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The finite sample properties of the proposed statistic is examined in a linear

regression model and in a discrete choice model with latent variables. In the linear

regression models, the Wald statistics is feasible and compared with the proposed

test. Simulation results show that the proposed test has little size distortion even

when the sample size is small and its size and power are very similar to those of the

Wald test when a vague prior is used. In the discrete choice model, the proposed test

has little size distortion even when the sample size is small. The power increases

rapidly when the sample size increases or when the difference between the null and

alternative hypotheses increases.

We apply the method to two models using real data. The first one is a discrete

choice model and the second is a SV model. In both models there are latent vari-

ables. Due to the presence of latent variables, the Wald statistic is very difficult

to obtain and because the maximum likelihood method is difficult to use. While

both the BF and the test proposed by LLY (2015) are feasible to compute based on

MCMC output, they are much more expensive to compute than the proposed statis-

tic with longer CPU time after MCMC output is available. The empirical conclusion

obtained by these three methods is the same in both empirical applications.
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Chapter 4 Estimating Finite-Horizon Life-

Cycle Models: A Quasi-Bayesian

Approach

4.1 Introduction

Life-cycle models (also known as dynamic structural models) have been used exten-

sively in macroeconomics, labor economics, industrial organizations, demograph-

ics, household finance, and many other fields; see Pakes (1994) and Rust (1994)

for excellent reviews. The life-cycle model with finite-horizon is a subclass that

has been found to have a great number of applications. For a sample of references,

see Gourinchas and Parker (2002), Jørgensen (2017), Cagetti (2003), Browning and

Ejrnæs (2009), Kaplan and Violante (2014), Li et al. (2016), Fagereng, Gottlieb and

Guiso (2017), Koijen, Nijman and Irker (2009), and Fischer and Stamos (2013).

A popular technique used to estimate finite-horizon life-cycle models in the lit-

erature is based on the log-linearized approximations to Euler equations. However,

it has been argued that this approach can result in estimation bias; see Ludvigson

and Paxson (2001), Carroll (2001) and Jøgensen (2016). To deal with this bias,

empirical researchers have increasingly adopted the method of simulated moments

(MSM) introduced by Duffie and Singleton (1993). Gourinchas and Parker (2002),

hereafter GP, were the first to using MSM to estimate the preference parameters in

a life-cycle model. Li et al. (2016) studied optimal life-cycle housing and nonhous-

ing consumption using MSM. Fagereng, Gottlieb and Guiso (2017) applied MSM
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to estimate structural parameters and studied portfolio choice over the life-cycle. In

these papers, the estimation procedure was divided into two stages. During the first

stage, GMM or calibration was used to estimate parameters of exogenous processes

such as the income process. During the second stage the structural parameters were

estimated using MSM.

However, since MSM uses iterative optimization algorithms, there are four chal-

lenges to its use for estimating finite-horizon life-cycle models. First, the model has

to be solved numerically at each iteration. Solving finite-horizon life-cycle mod-

els is time consuming and inconvenient because of the nonstationary policy func-

tions. Second, one has to use numerical differentiation to evaluate the gradient of

the objective function for parameter updating. Numerical differentiation requires

more restrictive assumptions on the objective function and the computation is also

cumbersome. Third, due to the complexity of the models, there may exist local op-

timums. Fourth, typically two-step estimation is necessary, which complicates the

asymptotic behavior of the estimator.

The present paper develops a quasi-Bayesian method for estimating structural

parameters in finite-horizon life-cycle models during the second stage. Following

Chernozhukov and Hong (2003), hereafter CH, we build the quasi-posterior den-

sity function based on first-stage estimates and the GMM objective function. The

new estimator is obtained by minimizing the Bayesian risk function consisting of

the quasi-posterior density function and a net loss function. By doing this, the

optimization problem is converted into a sampling one, which avoids the numerical

evaluation for the gradient of the objective function and alleviates the local optimum

problem; see CH for examples where the local optimum problem was carefully ex-

plained.

The asymptotic behavior of the proposed estimator is studied in two cases. First,

when the policy functions are analytically available, the asymptotic normality of

this estimator is derived. There is a bias in the asymptotic mean that depends on

the net loss function. We also show that the estimator reaches the efficiency bound
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in the framework of GMM. When the net loss function is symmetric, the bias term

becomes zero. In particular, if the net loss function is quadratic, the estimator be-

comes the posterior mean and the associated asymptotic covariance can be approx-

imated by the posterior covariance. This is advantageous in computation since the

posterior mean and posterior covariance can be simultaneously computed from the

quasi-posterior samples.

Second, when the policy functions are not analytically available, we propose

to approximate them over a set of grid points. We show that the magnitude of ap-

proximation errors depends both on the number of grid points ( j) and the number

of observations (N). While the approximation errors associated with a numerical

method accumulate as the number of observations grows, it is found that they de-

crease as the number of grid points ( j) increases. Interestingly, the results obtained

for the case with analytical solutions still hold true in this case when the approxima-

tion errors decrease at a speed faster than the number of observations. This result

shows that, even in the presence of approximation errors, the estimation approach is

attractive from both the theoretical and computational viewpoints. In practice, most

finite-horizon life-cycle models require numerical solutions, making the proposed

estimation method useful in practical applications.

In terms of the computational effort, the new estimate requires extensive sam-

pling. It should be noted that Markov Chain Monte Carlo (MCMC) does not work

well here. This is because, to use MCMC, such as the Gibbs-sampler and Metropolis-

Hasting sampler, one needs to update samples sequentially many times and at each

updating the objective function has to be numerically evaluated. Instead of us-

ing MCMC, the importance sampling strategy is employed. The algorithm used

by Creel and Kristensen (2016) is extended to construct a proposal distribution for

important sampling. There are two computational advantages in the proposed algo-

rithm. First, it is easy to parallelize and hence GPU can be used. Second, it is made

to be adaptive to the dataset.

This paper makes four contributions to the literature. First, a quasi-Bayesian
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estimation approach is proposed for finite-horizon life-cycle models. The quasi-

Bayesian estimator has desirable properties both in terms of asymptotic behav-

ior and computation. Second, the method extends the seminal work of CH to

life-cycle models and is related to a growing strand of literature on approximate

Bayesian computation. Third, the econometric problem in the presence of approx-

imation errors caused by numerical methods is carefully studied. The results com-

plement Fernández-Villaverde, Rubio-Ramı́rez and Santos (2006), hereafter FRS,

and Ackerberg, Geweke and Hahn (2009). The present paper considers the prob-

lem in the GMM framework while FRS and Ackerberg, Geweke and Hahn (2009)

consider the problem in the likelihood setting. If an empirical researcher would

like to be agnostic about the error distribution, a GMM framework will be more at-

tractive than the full likelihood approach. Finally, the proposed adaptive algorithm

makes use of GPU to enhance computational efficiency and is applicable to other

complicated models with moment conditions.

Throughout the paper, a version of the model in GP is used for illustration, but

other types of life-cycle models can also be considered. As long as the assump-

tions listed in the paper are satisfied, the theoretical results can be applied and the

estimation algorithm remains useful.

The rest of the paper proceeds as follows. Section 2 introduces the illustrative

model in detail. Section 3 presents the first-stage estimation for parameters of the

exogenous process and the latent dynamic state variable filtering. Section 4 ex-

amines the second-stage estimation, including the definition of the estimator, the

asymptotic behavior and the related algorithm to compute the estimator. Section 5

reports results from Monte Carlo studies, including models with and without dy-

namic latent state. Section 6 concludes. Appendices contain the details of proofs,

numerical method used and other related computations.
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4.2 An Illustrative Model

Let us first define a discrete-time life-cycle model for households. Households work

until an exogenously given retirement age, Tr. At each working age, the utility

function is the constant relative risk aversion (CRRA) utility function, i.e.,

u(C;r0) =

8
>><

>>:

C1�r0
1�r0

r0 6= 1

logC r0 = 1
,

where C is the consumption level and r0 is the risk aversion. The number of

household is Nobs. By forward looking from the initial working age ti, household

i (2 {1, ...,Nobs}) chooses the level of consumption Ci,t to solve the optimization

problem

max
Ci,t

Eti

"
Tr

Â
t=ti

b t�ti
0 v(zi,t ;h0)u(Ci,t ;r0)+b Tr+1�t

0 ṼTr+1 (Mi,Tr+1,zi,Tr+1;h0,r0,k0)

#

(4.2.1)

s.t. Mi,t+1 = R(Mi,t �Ci,t)+Yi,t+1, ti  t  Tr �1, (4.2.2)

Mi,Tr+1 = R(Mi,Tr �Ci,Tr) , (4.2.3)

Ci,t 2 (0,Mi,t ] , (4.2.4)

Mi,ti given,

where the subscript t indicates that the associated variable realizes at age t and the

subscript i indicates that the variable belongs to household i, b0 the subject discount

factor, Ci,t the consumption level, Mi,t the liquid wealth, R the gross interest rate, zi,t

a vector of characteristics and v(z;h0) a shifter in utility, which can be interpreted

as a taste shifter in which the individual characteristic information z plays a role. In

many applications, v(z;h0) is a specific function that summarizes the impact of the

individual characteristics z.

The equations (4.2.2) and (4.2.3) are wealth accumulation equations before and

73



after retirement. As in GP, the income process, Yi,t+1, is assumed to follow the

following stochastic process.

Income process: Income process is defined as

8
>><

>>:

Yi,t = Pi,tei,t ,

Pi,t = GtPi,t�1Vi,t ,

ti  t  Tr, (4.2.5)

where Pi,t denotes the latent permanent component of Yi,t and Pi,Tr+1 = Pi,Tr since

there is no income at age Tr + 1, ei,t the transitory component, Gt the real gross

permanent income growth, Vi,t the permanent income shock. Specifically,

ei,t =

8
>><

>>:

µ0, with probability p0,

xi,t , with probability 1� p0,

where logxi,t
i.i.d.⇠ N

�
0,s2

e0
�
,

logVi,t
i.i.d.⇠ N

⇣
0,s2

V0

⌘
,

where µ0 can be zero or some other small values, logVi,t and logxi,t indepen-

dent across i and t. The parameters for the income process are denoted as c inc
0 =

⇣
µ0, p0,s2

e0,s2
V0,{Gt}Tr

t=tmin

⌘0
, where tmin = min1iNobs {ti}.

Characteristics information vector: The characteristics vector at age t of

household i, zi,t , can be deterministic or stochastic. The parameters involved in

zi,t are denoted as ccha
0 . According to Jøgensen (2017) and GP, researchers can

examine the impact of different characteristics such as the number of children or

family size on the marginal utility.

Retirement: When household i retires at Tr, for the tractability of the problem

(4.2.1), following GP, the retirement value function is assumed to be

ṼTr+1 (Mi,Tr+1,zi,Tr+1; h0,r0,k0) = k0v(zi,Tr+1;h0)
(Mi,Tr+1 +Hi,Tr+1)

1�r0

1�r0
,

where k0 is the motivation to retire, Mi,Tr+1 the liquid wealth at age Tr + 1, Hi,Tr+1

the illiquid wealth after retirement and Hi,Tr+1 = hPi,Tr+1, i.e., Hi,Tr+1 is proportional
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to the permanent component at Tr + 1. Since there is no income at Tr + 1, we let

Pi,Tr+1 = Pi,Tr .

The Bellman equation for model (4.2.1) is

Ṽt (Mi,t ,Pi,t ,zi,t ;q 0,c0) = max
Ci,t2(0,Mi,t]

{v(zi,t ;h0)u(Ci,t ;r0)

+b0Et
⇥
Ṽt+1 (Mi,t+1,Pi,t+1,zi,t+1;q 0,c0)

⇤ 
(4.2.6)

s.t. Mi,t+1 = R(Mi,t �Ci,t)+Yi,t+1, ti  t  Tr �1,

Mi,Tr+1 = R(Mi,Tr �Ci,Tr) ,

Ci,t 2 (0,Mi,t ] with Mi,ti given,

where c0 =
⇣�

c inc
0
�0
,
�
ccha

0
�0
,R
⌘0

, q 0 =
�
h 0

0,r0,b0,k0,h
�0 2 Q ⇢ Rd . At age Tr +

1,

ṼTr+1 (Mi,Tr+1,Pi,Tr+1,zi,Tr+1;q 0,c0) = ṼTr+1 (Mi,Tr+1,zi,Tr+1;h0,r0,k0,h) .

According to the model setup, the data that economists obtain are {Mi,t ,Ci,t ,Yi,t ,zi,t}Tr+1
t=ti

for household i. Therefore, for the Bellman equation (4.2.6), economists cannot di-

rectly solve it since it involves latent state variable Pi,t , which is only observed by

household i. Thus, we instead study the ratio form of the Bellman equation (4.2.6).

The setup of the problem, combined with the retirement value function, makes

the problem homogeneous of degree 1�r0 in Pi,t . Thus, we define the normalized

value functions as follows.

Vt (mi,t ,zi,t ;q 0,c0) =
1

P1�r0
i,t

Ṽt (Mi,t ,Pi,t ;q 0,c0) ,

VTr+1 (mi,Tr+1,zi,Tr+1;q 0,c0) =
1

P1�r0
i,Tr+1

ṼTr+1 (Mi,Tr+1,zi,Tr+1;h0,r0,k0)

= k0v(zi,Tr+1;h0)
(mi,Tr+1 +h)1�r0

1�r0
.
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We also normalize the variables of household i at age t by Pi,t , denoted by low-

ercase letters, e.g., mi,t ⌘ Mi,t/Pi,t , ci,t ⌘Ci,t/Pi,t . Accordingly, the wealth accumu-

lation equations can be expressed as

mi,t+1 = (mi,t � ci,t)
R

Gt+1Vi,t+1
+ ei,t+1, ti  t  Tr �1,

mi,Tr+1 = R(mi,Tr � ci,Tr) .

The ratio-form Bellman equation (4.2.6) is

Vt (mi,t ,zi,t ;q 0,c0) = max
ci,t

{v(zi,t ;h0)u(ci,t ;r0)

+b0Et

h
(Gt+1Vi,t+1)

1�r0 Vt+1 (mi,t+1,zi,t+1;q 0,c0)
io

(4.2.7)

s.t. mi,t+1 = (mi,t � ci,t)
R

Gi,t+1Vi,t+1
+ ei,t+1, ti  t  Tr �1,

mi,Tr+1 = R(mi,Tr � ci,Tr) ,

ci,t 2 (0,mi,t ] .

Therefore, economists can solve the model (4.2.7) without the knowledge of latent

state variable Pi,t .

Remark 4.2.1. In the Bellman equation (4.2.7), the structural parameter q 0 is the

same as that in the original problem (4.2.6). We can solve the model by deriving the

analytical solutions or using numerical methods conditional on the value of q 0 and

c0. The Euler equations for problem (4.2.7) are

c�r0
i,t = b0REVi,t+1,ei,t+1,zi,t+1


v(zi,t+1;h0)

v(zi,t ;h0)
(Gt+1Vi,t+1)

�r0 c�r0
i,t+1

�
, ti  t  Tr �1,

which are necessary to derive the optimal policies at each age by backward opti-

mization. In particular, the endogenous grid method (EGM) described in detail in

Appendix .4.2 can be applied here.
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4.3 First-Stage Estimation and Latent State Filtering

Following GP and based on the discussion in the previous section, the parameters

are divided into to two parts, the nuisance parameters c0 =
⇣�

c inc
0
�0
,
�
ccha

0
�0
,R
⌘0

and structural parameters q 0. Data include a panel dataset used during the second

stage estimation,
n

Cd
i,t ,M

d
i,t ,Y

d
i,t ,z

d
i,t ,
oTr

t=ti
, i = 1, . . . ,Nobs and an additional one with

sample size J used during the first stage. In the panel dataset with Nobs households,

Cd
i,t , Md

i,t , Y d
i,t and zd

i,t are respectively the consumption level, liquid wealth, income

level and characteristic information vector of household i at age t, respectively.

At the first stage, conditional on the additional dataset, GMM or calibration is

used to estimate c , denoted as bc . The following assumption is imposed for the

first-stage estimator.

ASSUMPTION 1. In the first-stage estimation, the nuisance parameters c0 =
⇣�

c inc
0
�0
,
�
ccha

0
�0
,R
⌘0

2Y can be obtained by GMM based on the additional dataset.

The estimator bc satisfies,

p
J (bc �c0)

d! N
�
0,Sc

�
, (4.3.1)

where Sc is the covariance matrix.

Remark 4.3.1. If the calibration approach is used in the first stage, then we simply

treat bc = c0 without considering the dispersion caused by estimation, i.e., Sc = 0.

This approach is frequently used in empirical literature such as Li et al. (2016) and

Jøgensen (2017).

Define Fi,t as the information set up to age t for household i. The income process

(4.2.5) can be rewritten as

8
>><

>>:

logYi,t = logPi,t + logei,t ,

logPi,t = log bGt + logPi,t�1 + logVi,t ,

ti  t  Tr �1,
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where logei,t
i.i.d.⇠ N

�
0, ŝ2

e
�

and logVi,t
i.i.d.⇠ N

⇣
0, ŝ2

V

⌘
. This is the standard linear

state-space model with Gaussian errors so that the Kalman filter can be used to

obtain the distribution of Pi,t conditional on Fi,t and bc . When µ = 0, the observations

with zero income level can be considered as missing variables since the estimate p̂

for p0 is very small and thus zero-valued observation is rare. If µ 6= 0 and is very

small, then we can set up the threshold value to check whether there exists a shock.

Via the Kalman filter, the mean and variance of Pi,t conditional on Fi,t are obtained.

Denote the expectation of a random variable with respect to Pi,t up to the information

at age t as EPi,t (·|Fi,t).

4.4 Second-stage Estimation

4.4.1 Estimator

In this section, given bc from the frist stage, the estimator for q 0 will be constructed.

In this subsection we deal with the case in which there exists a close-form solution

for optimal policy at each age. In the next subsection we deal with the case where

optimal policies are not analytically available.

Given any generic q 2 Q and c 2 Y, the analytical solutions for the optimal

policy functions for the Bellman equation (4.2.7) is assumed to exist and denoted as

ct

⇣
md

i,t ,z
d
i,t ;q ,c

⌘
for household i at age t, where md

i,t ⌘Md
i,t/Pi,t . For economists, Pi,t

is unobservable. Hence, taking Pi,t into account, conditional on the information up

to age t, it is natural to assume that the household i chooses the optimal consumption

level according to

Ct

⇣
Md

i,t ,z
d
i,t ;q ,c

⌘
= EPi,t

"
ct

 
Md

i,t

Pi,t
,zd

i,t ;q ,c

!
Pi,t

�����Fi,t

#
, (4.4.1)

where EPi,t (·|Fi,t) is the expectation with respect to Pi,t based on the filtering at the

first-stage estimation.

Remark 4.4.1. The conditional expectation of equation (4.4.1) is more natural than
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the unconditional expectation used in GP, in which the Monte Carlo method was

used based on the paths simulated from the initial working age and hence the in-

formation up to age t was discarded. Jøgensen (2017) treated the mean of logPi,t

obtained by the Kalman filter as the true value of logPi,t , which also ignored the

variance information of logPi,t . In Appendix .4.5, these two approaches are com-

pared with that based on equation (4.4.1). The evidence shows that equation (4.4.1)

is superior to the other two approaches.

In the following assumption, a moment condition is introduced.

ASSUMPTION 2. (Identification) The unique parameter q 0 is in the interior of a

compact convex subset Q of the Euclidean space Rd. For household i, assume

E
h
Cd

i,t �Ct

⇣
Md

i,t ,z
d
i,t ;q 0,c0

⌘i
=E

h
gt

⇣
Md

i,t ,z
d
i,t ;q 0,c0

⌘i

=E [gi,t (q 0; c0)] = 0, (4.4.2)

where t = ti, ...,Tr, Cd
i,t is the observed consumption level and Ct

⇣
Md

i,t ,z
d
i,t ;q 0,c0

⌘

is defined in equation (4.4.1).

Remark 4.4.2. Assumption 2 is the identification assumption of the structural pa-

rameters q 0. The assumption ensures the parameters are point-identified, which is

also adopted by Hansen (1982) and Duffie and Singleton (1993).

According to equation (4.4.2), we can have at most Tm moment conditions,

where Tm = Tr � tmin+1 and tmin = min{ti}Nobs

i=1 . Based on bc from the first stage, the

objective function is

LN (q) = LN (q ;bc) =�N
2
[lNḡN (q ;bc)]0WN (q ;bc)lNḡN (q ;bc) , (4.4.3)

where the total number of observations N = ÂTr
t=tmin Nt with Nt the sample size at
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age t from t = tmin to t = Tr,

ḡN (q ;bc) = (ḡtmin (q ;bc) , . . . , ḡTr (q ;bc))0

=

 
1

Ntmin

Ntmin

Â
i=1

gi,tmin (q ;bc) , . . . , 1
NTr

NTr

Â
i=1

gi,Tr (q ;bc)
!0

,

WN (q ;bc) =V�1
N (q ;bc) ,

where,

VN (q ;bc) =zN

Nobs

Â
i=1

lNg̃i (q ;bc) g̃i (q ;bc)0l 0
Nz 0

N

+
N
J

lNḡN,c (q ;bc)bSc ḡN,c (q ;bc)0l 0
N , (4.4.4)

in which ḡN,c ( q ;bc) is the first-order derivative of ḡN (q ; c) with respect to c ,

g̃i (q ; c) = (0, . . . ,0,gi,ti (q ; c) , . . . ,gi,Tr (q ; c))0| {z }
Tm elements

,

lN = diag

 r
Ntmin

N
, . . . ,

r
NTr

N

!
= diag

✓q
lN,tmin , . . . ,

q
lN,Tr

◆
,

zN = diag

 s
1

Ntmin

, . . . ,

s
1

NTr

!
.

The use of the weighting matrices lN and zN is because households may have dif-

ferent initial working ages.

Following CH, the quasi-Bayesian estimators (QBE), also called Laplace type

estimators (LTE), is constructed. Although the objective function in (4.4.3) is not a

probability density function, it is transformed into a proper one by

pN (q) = eLN(q)p (q)
R

Q eLN(q)p (q)dq
, (4.4.5)

where p (q) is the prior information. The pN(q) in equation (4.4.5) is called the

quasi-posterior density function. Based on pN(q), given the penalty or loss function
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rN (u), the corresponding risk function is

RN (x ) =
Z

Q
rN (q �x ) pN (q)dq . (4.4.6)

Following CH, the following assumptions are imposed on the loss function

rN (u).

ASSUMPTION 3. The loss function rN : Rd ! R+ satisfies:

(i) rN (u) = r
�p

Nu
�
, where r (u)� 0 and r (u) = 0 if and only if u = 0;

(ii) r is convex and r (h) 1+ |h|p for some p � 1;

(iii) j (x ) =
R

Rd r (u�x )e�u0audu is minimized uniquely at some t 2 Rd for any

finite a > 0.

Given the loss function rN (u), based on risk function (4.4.6), the QBE for q 0 is

defined below.

Definition 4.4.1. The QBE is the one minimizing the risk function RN (x ) in (4.4.6):

bq = arg inf
x2Q

RN (x ) . (4.4.7)

4.4.2 Asymptotic Theory for analytical Solution for Optimal Pol-

icy

In this subsection, the asymptotic behavior of the estimator bq defined in (4.4.7) is

studied. The following assumptions are imposed.

ASSUMPTION 4. The function gt

⇣
Md

i,t ,z
d
i,t ;q ,c

⌘
defined in (4.4.2) satisfies the

following conditions: (i) gt (·;q ,c) and —q gt (·;q ,c) are Borel measurable for each

q 2 Q and c 2 Y; (ii) given c 2 Y, —q gt

⇣
Md

i,t ,z
d
i,t ;q ,c

⌘
is continuously differen-

tiable on Q; (iii) —qq gt (·;q ,c) is Borel measurable for each q 2 Q and c 2 Y.
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ASSUMPTION 5. G(q ,c) = —q E
h
gt

⇣
Md

i,t ,z
d
i,t ;q ,c

⌘i
is continuous on Q and c .

G(q 0,c0) is finite and has full rank.

ASSUMPTION 6. limN!• lN = l , limN!• N/J = g for some constants l ,g 2R+,

Remark 4.4.3. Assumptions 4 and 5 are similar to those in Hansen (1982). The

assumptions on the moment vector are essential for the study of asymptotic behavior

of the estimator. Assumption 6 implies Nt is proportional to the total number of

observations N. Assumption 6 also implicates that N is proportional to the number

of households in the dataset, Nobs.

When GMM is adopted during the first stage, the following two assumptions are

imposed.

ASSUMPTION 7. The first-order derivative of gt

⇣
Md

i,t ,z
d
i,t ;q ,c

⌘
with respect to c ,

gt,c
⇣

Md
i,t ,z

d
i,t ;q ,c

⌘
satisfies the following conditions: (i) gt,c (·;q ,c) and —q gt,c (·;q ,c)

are Borel measurable for each q 2Q and c 2Y; (ii) given c 2Y, —q gt,c
⇣

Md
i,t ,z

d
i,t ;q ,c

⌘

is continuously differentiable on Q; (iii) —qq gt,c (·;q ,c) is Borel measurable for

each q 2 Q and c 2 Y.

ASSUMPTION 8. Gc (q ,c) = —cE
h
gt

⇣
Md

i,t ,z
d
i,t ;q ,c

⌘i
is continuous on Q and

c . Gc (q 0,c0) is finite and full rank.

Remark 4.4.4. Assumptions 7 and 8 are similar to Assumptions 5 and 6. They are

associated with gt,c
⇣

Md
i,t , zd

i,t ;q , c
⌘

and necessary because the estimation error

due to GMM must be taken into account. These two assumptions are not required if

the calibration is used during the first stage.

Finally, there are also some restrictions on the prior information p(q).

ASSUMPTION 9. p (q) is continuous and uniformly positive over Q

In this paper, only GMM is used during the first stage because the calibration

is a special case of GMM as explained in Remark 4.3.1. Based on the discussion
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above, we define

gi (q ; c) = (gi,tmin (q ; c) , . . . ,gi,Tr (q ; c))0| {z }
Tm elements

.

Furthermore, according to the standard assumption that households are independent

across i, we have the following lemma and theorems.

Lemma 4.4.1. Under Assumptions 5–8, VN (q ;bc) defined in equation (4.4.4) has

the following property, uniformly over Q,

VN (q ;bc) p!lE
⇥
gi (q ; c0)gi (q ; c0)

0⇤l 0

+ glE
⇥
gi,c (q ; c0)

⇤
ScE

⇥
gi,c (q ; c0)

0⇤l 0 =V (q) .

Theorem 4.4.1. Under Assumptions 1–9, for the estimator bq defined in (4.4.7),

p
N
⇣
bq �q 0

⌘
d! t +N(0,Sq ) ,

where

Sq =


G0

q l 0
⇣

lSgl 0+ glG0
cScGcl 0

⌘�1
lGq

��1
,

t = arg inf
a2Rd

⇢Z

Rd
r (a �u) f

�
u;0,G0

q l 0W (q 0)lGq
�

du
�
,

where f (·,µ,W) is the multivariate normal density with mean µ and covariance W,

Gq = —q E [gi (q 0; c0)], Gc = —cE [gi (q 0; c0)], Sg = E
⇥
gi (q 0; c0)gi (q 0; c0)

0⇤.

Remark 4.4.5. If the calibration is used during the first stage, then we have

p
N
⇣
bq �q 0

⌘
d! t +N

✓
0,
⇣

G0
q l 0 �lSgl 0��1 lGq

⌘�1
◆
.

Since there is no need to take estimation error into account, the second term in the

optimal weighting matrix disappears in the calibration.

Usually t is difficult to evaluate at q 0 since the value of q 0 is unknown. How-

ever, if we choose the quadratic loss function, according to CH and the Bayesian
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literature, the estimator in Definition 4.4.1 becomes the mean of the quasi-posterior

distribution in (4.4.5), which is called the quasi-posterior mean and defined as

q̄ = EpN [q ] =
Z

Q
q pN (q)dq . (4.4.8)

The corollary below follows Theorem 4.4.1.

Corollary 4.4.2. Under Assumptions 1–9, given rN (·) = N ·u2 and the estimator q̄

defined in (4.4.8),
p

N
�
q̄ �q 0

� d! N(0,Sq ) ,

with Sq =


G0

q l 0
⇣

lSgl 0+ glG0
cScGcl 0

⌘�1
lGq

��1
, where the variables are the

same as in Theorem 4.4.1. Meanwhile, Sq has the following property.

N ·EpN

h�
q � q̄

��
q � q̄

�0i
= Sq +op (1) .

Remark 4.4.6. From Corollary 4.4.2 with samples from pN(q), both the estima-

tor and the asymptotic covariance, which are the mean and covariance of quasi-

posterior distribution, can be simultaneously calculated. This is in contrast to ex-

tremum estimators where the estimator and the asymptotic covariance are obtained

separately.

4.4.3 Asymptotic Theory for Numerical Solution for Optimal

Policy

In most cases, there is no analytical solution for the Bellman equation (4.2.7). Nu-

merical methods are needed to solve the model inevitably introducing approxima-

tion errors. In this subsection, we develop conditions under which the results ob-

tained in the last subsection continue to hold when numerical solutions are used.

Given the values of q and c , the (infeasible) exact solution for the policy func-

tion at age t for household i is denoted as ct

⇣
md

i,t ,z
d
i,t ;q ,c

⌘
. Denote the numer-

ical approximation by c j
t

⇣
md

i,t ,z
d
i,t ;q ,c

⌘
where j is the number of grid points in
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the finite range of md
i,t based on which we can evaluate other optimal policies by

using interpolation methods. The numerical solution c j
t

⇣
md

i,t ,z
d
i,t ;q ,c

⌘
is indexed

by j because the approximation admits refinements, i.e., when j goes to infinity,

c j
t

⇣
md

i,t ,z
d
i,t ;q ,c

⌘
converges to ct

⇣
md

i,t ,z
d
i,t ;q ,c

⌘
.

With the numerical solution, neither the exact objective function (4.4.3) nor the

quasi-posterior density in (4.4.5) can be evaluated. Before we introduce our estima-

tion procedure, let us first fix some new notations.

The approximated optimal consumption level for household i at age t is

C j
t

⇣
Md

i,t ,z
d
i,t ;q ,c

⌘
= EPi,t

"
c j

t

 
Md

i,t

Pi,t
,zd

i,t ;q ,c

!
Pi,t

�����Fi,t

#
. (4.4.9)

The sample moment becomes

Cd
i,t �C j

t

⇣
Md

i,t ,z
d
i,t ;q 0,c0

⌘
=g j

t

⇣
Md

i,t , zd
i,t ;q 0, c0

⌘

=g j
i,t (q 0; c0) , (4.4.10)

for household i at age t, where t = ti, ...,Tr. Then the approximate objective function

is defined as

L j
N (q) =�N

2

h
lNḡ j

N (q ;bc)
i0

W j
N (q ;bc)lNḡ j

N (q ;bc) , (4.4.11)

where

ḡ j
N (q ;bc) =

⇣
ḡ j

tmin (q ;bc) , . . . , ḡ j
Tr
(q ;bc)

⌘0

=

 
1

Ntmin

Ntmin

Â
i=1

g j
i,tmin

(q ;bc) , . . . , 1
NTr+1

NTr+1

Â
i=1

g j
i,Tr

(q ;bc)
!0

,

W j
N (q ;bc) =

h
V j

N (q ;bc)
i�1

,
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V j
N (q ;bc) =zN

Nobs

Â
i=1

lNg̃ j
i (q ;bc) g̃ j

i (q ;bc)0l 0
Nz 0

N

+
N
J

lNḡ j
N,c (q ;bc)bSc ḡ j

N,c (q ;bc)0l 0
N , (4.4.12)

g̃ j
i (q ; c) =

⇣
0, . . . ,0,g j

i,ti (q ; c) , . . . ,g j
i,Tr

(q ; c)
⌘0

| {z }
Tm elements

.

Remark 4.4.7. Based on the approximated objective function (4.4.11), one can use

MSM to obtain the extremum estimator. If so, one must implement an iterative op-

timization algorithm in which the value and gradient of the objective function have

to be numerically evaluated for each parameter updating. These computational ef-

forts and their cost are demanding. Further, as pointed out in CH, sometimes the

maximum estimator is the local optimum, not the global one.

Based on equation (4.4.11), we can define the approximated quasi-posterior as

p j
N (q) = eL j

N(q)p (q)
R

Q eL j
N(q)p (q)dq

. (4.4.13)

Given the loss function rN (u), the risk function and estimator corresponding to the

approximated quasi-posterior is

R j
N (x ) =

Z

Q
rN (q �x ) p j

N (q)dq , (4.4.14)

bq
j
= arg inf

x2Q
R j

N (x ) . (4.4.15)

Other variables remain the same as those in the case with the analytical solution.

Following FRS and Ackerberg, Geweke and Hahn (2009), the following as-

sumption is imposed on numerical methods.

ASSUMPTION 10. For all j, c and z, over a finite range of m, c j
t (m,z; q ,c)

is continuous on m and continuously differentiable at all points except at a finite

number of points.
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Remark 4.4.8. Assumption 10 ensures the continuity of c j
t (m,z;q ,bc) at all points

and differentiability except at a finite number of points in the finite range of m.

The lack of differentiability makes it possible to use numerical methods with kinks

at a finite number of points. Such methods include the linear interpolation or the

approximation within space spanned by linear basis functions. This assumption is

satisfied naturally by most solution methods for dynamic economic models.

FRS studied the econometric problem of computed dynamic models. They

found that under some mild conditions, as the approximated policy functions con-

verged to the exact ones, the approximated likelihood also converged to the ex-

act likelihood. Meanwhile, as more data are included, a better approximation is

required. Ackerberg, Geweke and Hahn (2009) examined the impact of approxi-

mation errors on a classical estimate of a simple time series model. They found

the approximation errors are required to vanish at a certain speed as the sample size

goes to infinity. Following Ackerberg, Geweke and Hahn (2009), the approximation

error is defined as

D j = sup
q2Q,c2Y

⇢
maxz,m,t

n���c j
t (m,z;q ,c)� ct (m,z;q ,c)

��� ,

���C j
t,c (M,z;q ,c)�Ct,c (M,z;q ,c)

���
oo

. (4.4.16)

Remark 4.4.9. Unlike Ackerberg, Geweke and Hahn (2009), we do not need to

consider the approximation error associated with the first and second-order deriva-

tives of the objective function. Note that t 2 [tmin,Tr +1] and from the dataset, the

normalized wealth m and characteristic vector z are all bounded. Thus, given any

generic q and c , D j is controlled by the number of grid points j. Furthermore,

if the calibration is adopted during the first stage, we do not have to consider the

approximation error of C j
t,c (m,z;q ,c).

In accordance with Ackerberg, Geweke and Hahn (2009), the approximation

error should disappear asymptotically, i.e., j ! •, as N ! •. Given Assumptions

1–10, the following theorem hold.
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Theorem 4.4.3. Under Assumptions 1–10, for the estimator bq
j

defined in (4.4.15),

if as N ! •,

ND j ! 0,

then,
p

N
⇣
bq

j
�q 0

⌘
d! t +N(0,Sq ) ,

with

Sq =


G0

q l 0
⇣

lSgl 0+ glG0
cScGcl 0

⌘�1
lGq

��1
.

Remark 4.4.10. An approximate optimal policy for every household at every age

inevitably introduces the approximation error. As the total number of observations

increases, the error will accumulate. Theorem 4.4.3 requires that the accumulative

approximation error be smaller than the sampling error, and thus is negligible. The

detailed relationship between j and N in different numerical methods is left for

future studies.

Similarly, given the quadratic loss function, the approximated quasi-posterior

mean is defined as

q̄ j
= Ep j

N
[q ] =

Z

Q
q p j

N (q)dq . (4.4.17)

Corollary 4.4.4. Under Assumptions 1–10, given the quadratic loss function rN (·)

and the estimator q̄ j defined in (4.4.17), if ND j ! 0 as N ! •, then,

p
N
⇣

q̄ j �q 0

⌘
d! N(0,Sq ) ,

with Sq =


G0

q l 0
⇣

lSgl 0+ glG0
cScGcl 0

⌘�1
lGq

��1
, where the variables are the

same as in Theorem 4.4.1. Meanwhile, Sq has the following property.

N ·Ep j
N


N
⇣

q � q̄ j
⌘⇣

q � q̄ j
⌘0�

= Sq +op (1) , (4.4.18)

where Ep j
N

is the expectation with respect to p j
N (q).
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Theorem 4.4.3 and Corollary 4.4.4 are important because they show that when

the approximation errors disappears at a speed faster than the total number of obser-

vations, the approximated estimator shares the desirable properties of the estimator

when policy functions are analytically available.

This result is related to that in FRS and Ackerberg, Geweke and Hahn (2009)

with two differences. First, both papers focus on the likelihood inference, whereas

the estimation framework is GMM in the present paper. Second, the disappearance

rate in Theorem 4.4.3 is also different. In Ackerberg, Geweke and Hahn (2009), a

static simple time series model is studied and the rate of the approximation errors

is required to be faster than the square root of the time span, i.e., o
⇣

T 1/2
⌘

. The

present paper focuses on the life-cycle model with finite horizon and the speed of

the approximation error is required to be faster than the total number of the obser-

vations, i.e., o(N).

Remark 4.4.11. Theorem 4.4.3 and Corollary 4.4.4 show that only the approxima-

tion error of c j
t

⇣
md

i,t ,z
d
i,t ;q ,bc

⌘
and C j

t,c

⇣
Md

i,t ,z
d
i,t ;q ,bc

⌘
need to be considered. If the

calibration is used at the first stage, the approximation error of C j
t,c

⇣
Md

i,t ,z
d
i,t ;q ,bc

⌘

can be ignored. However, if an optimization approach is used, other types of approx-

imation errors, such as those in calculating the first- and second-order derivatives

of the objective function, require careful attention, which may be very complicated

and difficult to control in practice.

Remark 4.4.12. Equation (4.4.18) can be used to compute the asymptotic covari-

ance. On the one hand, it is the by-product of samples from the approximated quasi-

posterior distribution. On the other hand, it avoids numerical evaluations of Gq and

Gc .

4.4.4 Estimation

The theoretical results in previous subsections are attractive. However, sampling

from the quasi-posterior distribution remains a difficult problem. The MCMC method
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does not work well here since it requires sampling sequentially many times and nu-

merically evaluating the objective function at each updating. Instead of MCMC, im-

portance sampling is used together with GPU to enhance the computational speed.

In practice, it is very hard to find a good proposal distribution for the impor-

tance sampling. Direct sampling from the prior can be computationally inefficient.

Recognizing this problem, we adapt the algorithm proposed in Creel and Kristensen

(2016) to estimate finite-horizon life-cycle models. The algorithm for the estima-

tion is summarized in Algorithms 1 and 2. Both algorithms request a great number

of quasi-posterior density evaluations. The usual CPU time will be high. Thanks to

the availability of GPU, we can solve the model numerically given a great number

of parameter values and do the interpolation in parallel.

In Algorithm 1, d and exp(L) are close to zero. They are threshold values for

the search of area and selection of particles with significant quasi-posterior density

values, respectively. Specifically, steps 10–24 ensure that the shrinking sampling

area is sufficiently narrow given K1 and d , and that they are adaptive to differ-

ent datasets. Besides, step 25 selects particles in S with significant quasi-posterior

density values, denoted as S̃. Step 26–29 uniformly draw K particles from S̃ and

construct the proposal distribution for important sampling, which is a mixture of

normal distributions.

In Algorithm 2, when K3 ! •, b̄q ! q̄ , \Var (q)!Var (q), where Var (q) is the

quasi-posterior covariance with respect to pN (q), since

b̄q =
ÂK3

k=1 w(k)q (k)

ÂK3
k=1 w(k)

!
Z

Q
q pn (q)dq = q̄ ,

\Var (q) =
1

ÂK3
k=1 w(k)

K3

Â
k=1

w(k)
⇣

q (k)� b̄q
⌘⇣

q (k)� b̄q
⌘0

!
Z

Q
qq 0pn (q)dq + q̄ q̄ 0

⌘
Z

Q

�
q � q̄

��
q � q̄

�0 pN (q)dq .
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Algorithm 1 Construction of Proposal Distribution
1: Input: The number of samples K1, the selected number of particles K2, the

covariance for the random perturbation S, the tolerance level d , the threshold
value L, the number of component in proposal distribution K.

2: Set up i = 0
3: for k = 1 to K1 do
4: Draw q i

k ⇠ p (q).
5: Compute w i

k = LN
�
q i

k
�
+ logp

�
q i

k
�
.

6: end for
7: Set up the set of particles S = /0.
8: Compute V1 = maxw0

k
9: Compute V2 =V1 +2d

10: while |V1 �V2|< d do
11: Sort

�
w i

k
 K1

k=1 in descending order.
12: Select the first K2 of the sorted w i

k and associated q i
k, obtain

�
w̃ i

k
 K2

k=1 and
n

q̃ i
k

oK2

k=1

13: S = S
Sn

q̃ i
k

oK2

k=1
.

14: for k = 1 to K2 do
15: Compute wk

Norm = ew̃i
k

ÂK
k=1 ew̃i

k
.

16: end for
17: for k = 1 to K1 do
18: Draw ˜̃q i

k ⇠ Multinomial
✓n

q̃ i
k

oK2

k=1
,
�

wk
Norm

 K2
k=1

◆

19: Compute q i+1
k = ˜̃q i

k + e i+1
k ,e i+1

k ⇠ N (0,S).
20: Compute w i+1

k = LN
�
q i+1

k
�
+ logp

�
q i+1

k
�
.

21: end for
22: Compute V1 =V2.
23: Compute V2 = maxw i+1

k .
24: end while
25: Select the particle points in S that satisfies w i

k �V2 > L, obtain S̃.
26: for k = 1 to K do
27: Draw q IS

k from S̃ uniformly.
28: end for
29: Define the importance sampling density as the mixture of densities associated

with each drawn q IS
k :

q(q) =
K

Â
k=1

pkqk

⇣
q |q IS

k

⌘
,

where pk = ewk/ÂK
k=1 ewk , wk == LN

�
q IS

k
�
+ logp

�
q IS

k
�
, and qk

�
q |q IS

k
�
=

N
�
q IS

k ,S
�
. Or pk =

1
K , for k = 1, . . . ,K.

30: Output: q(q).
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Algorithm 2 Estimator Calculation
1: Input: The number of samples K3, the proposal distribution q(q).
2: for k = 1 to K3 do
3: Draw q (k) ⇠ q(q).

4: Compute w̃(k) = eLN

⇣
q (k)

⌘

p
⇣

q (k)
⌘

.
5: end for
6: Compute the estimator

b̄q =
ÂK3

k=1 w(k)q (k)

ÂK3
k=1 w(k)

,

\Var (q) = 1

ÂK3
k=1 w(k)

K3

Â
k=1

w(k)
⇣

q (k)� b̄q
⌘⇣

q (k)� b̄q
⌘0
,

where w(k) = w̃(k)/q
⇣

q (k)
⌘

.

7: Output: b̄q , \Var (q).

Remark 4.4.13. The numerical evaluation of the quasi-posterior density values is

costly computationally. GPU can enhance the computational speed greatly since

it can solve the model and compute the density values in parallel given a great

number of sampled parameters. Steps 10–24 are adaptive since the area with the

largest posterior density values will be automatically found given the dataset, d and

K1.

4.5 Monte Carlo Studies

In this section, two models are studied to examine the performance of the new ap-

proach. One is the life-cycle model without exogenous dynamic latent state. The

other one is a simplified version of the illustrative model.
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4.5.1 The Case without Dynamic Latent State

The households are faced with the same utility maximization problem, i.e.,

max
{ct}T

t=0

E0

"
T

Â
t=0

b t c1�r
t

1�r

#
, (4.5.1)

s.t. mt+1 = R(mt � ct)+ yet+1,0  t < T,

ct 2 (0,mt ] ,with m0 given,

where b is the subjective discount factor, r the risk aversion of the households,

R the gross interest rate, y the income level for the households from period t = 0

to t = T , et+1 the income shock associated with the income at each period and

et+1
i.i.d.⇠ logN

⇣
�s2

e
2 ,s2

e

⌘
, mt the liquid wealth at the beginning of period t and

ct the consumption level that chosen by the households, which is in the budget

constraint (0,mt ]. Thus, the Euler equations for the life-cycle model are

c�r
t = RbEt

⇥
ct+1 (mt+1)

�r⇤ ,mt+1 = R(mt � ct)+ yet+1,0  t  T �1, (4.5.2)

where at period T , cT = mT , which results from the households seeking to consume

all their wealth at the last period. There are no close-form solutions for the optimal

consumptions, thus a numerical method is required. Conditional on the values of

parameters, EGM is used to construct the grid of the optimal consumption at each

period. The detail is illustrated in Appendix .4.2.

In this study, the true values of the parameters are reported in Table 4.1. Con-

ditional on the values listed in Table 4.1, we solve the model numerically and sim-

ulate a data set
n

c⇤i,t ,m
d
i,t

oT

t=0
for each household i, where the initial wealth md

0,i

is drawn from a truncated normal distribution with mean 5 and variance 100 rang-

ing from 0 to infinity, i.e., N (5,100) I {x > 0}, where I is the indicator function.

The optimal consumption c⇤i,t is interpolated based on the consumption grid ob-

tained from numerical solving. The measurement error is added, cd
i,t = c⇤i,t + ei,t ,
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Table 4.1: The Values of Parameters Used to Simulate Data

T b r R y s2
e

10 0.96 2 1.03 0.5 0.04

Table 4.2: The Bias and RMSE of the Estimator for b and r

b r
Bias RMSE Bias RMSE

Nobs = 1000 �1.3602⇥10�3 3.89⇥10�3 0.2311 0.6780
Nobs = 1500 �1.4685⇥10�3 3.407⇥10�3 0.2535 0.6008
Nobs = 2000 �6.2943⇥10�4 2.683⇥10�3 0.1081 0.4692
Nobs = 3000 4.3860⇥10�4 2.2⇥10�3 0.0715 0.3926

ei,t
i.i.d.⇠ N

�
0,s2

e
�
, where s2

e = 0.0052. The numbers of households simulated are

Nobs = 1000,1500,2000,3000, respectively and the number of replications for each

case is 200. For each replication, the simulated noisy data
n

cd
i,t ,m

d
i,t

oT

t=1
are used to

estimate the parameters r and b .

In order to estimate the parameters, the priors for the two parameters are set to

b ⇠U (0.5,1) ,r ⇠U (0,15) ,

where U(a,b) is the uniform distribution ranging from a to b. For b , based on the

economic theory, it should satisfy b 2 (0,1) and usually it is assumed to be around

0.9. Thus the prior for b is uninformative. Besides, for the risk averse parameter,

r , the range between 0 and 15 is also quite uninformative.

Algorithms 1 and 2 are applied to estimate the model (for more details of the

estimation, please refer to Appendix .4.3) and the bias and root mean square error

(RMSE) are computed for each parameter in every scenario. The bias and RMSE

are defined in Appendix .4.1. The results are listed in Table 4.2. It is obvious that

as the sample size increases, the bias of both parameters decreases. Further, the
2Jøgensen (2017) estimated the variance of measurement error, which was approximately 0.46.

But the sample size he used ranged from 150,000 to 800,000. Since the sample sizes in Monte Carlo
studies are between 1000 and 3000, the variance of measurement error is proportionally set as 0.005
in terms of the variance of sample moments.
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RMSE of both parameters also decreases and the magnitude of all the RMSE is

proportional to the square root of the sample size approximately. This simulation

study justifies the asymptotic theory and the usefulness of the algorithm.

4.5.2 The Case with Dynamic Latent State

In this subsection, a simplified life-cycle model in GP is considered to examine

the performance of the new approach. The model is defined in the following. The

household i is faced with the following optimization problem,

max
Ci,t

Eti

"
Tr

Â
t=t0

b t�t0
C1�r

i,t
1�r

+kb Tr+1�t0

�
Mi,Tr+1 +Hi,Tr+1

�1�r

1�r

#
(4.5.3)

s.t.Mi,t+1 = R(Mi,t �Ci,t)+Yi,t+1, t0  t  Tr �1

Mi,Tr+1 = R(Mi,Tr �Ci,Tr) , t = Tr,

Ci,t 2 (0,Mi,t ] ,with Mi,t0 given.

The model specification is almost the same as the illustrative model except that

all households start to work at the same age and the marginal utility shifter is not

included. The income process is also the same and is defined as,

8
>><

>>:

Yi,t = Pi,tei,t ,

Pi,t = GtPi,t�1Vi,t ,

ti  t  Tr,

ei,t =

8
>><

>>:

µ, with probability p,

xi,t , with probability 1� p,
where logxi,t

i.i.d.⇠ N
�
0,s2

e
�
,

logVi,t
i.i.d.⇠ N

⇣
0,s2

V

⌘
.

The parameters of the income process are given and the ratio-form Bellman
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Table 4.3: Parameter values used to simulate data.

{Gt}10
t=1 R s2

e s2
V p µ b r Tr g1 t0

Figure 4.1 1.03 0.04 0.02 0.03 10�6 0.96 2 10 0.07 1

equation is now,

Vt (mi,t ;q) =max
ci,t

(
c1�r

i,t
1�r

++bEt

h
(Gt+1Ni,t+1)

1�r Vt+1 (mi,t+1;q)
i)

(4.5.4)

s.t.mi,t+1 = (mi,t � ci,t)
R

Gi,t+1Vi,t+1
+ ei,t+1, ti  t  Tr �1,

mi,Tr+1 = R(mi,Tr � ci,Tr) , t = Tr,

ci,t 2 (0,mi,t ] ,

with

VTr+1 (mi,Tr+1;q) = k
(mi,Tr+1 +h)1�r

1�r

=
1

(1�r)k� 1
r

⇣
k� 1

r mi,Tr+1 +k� 1
r h
⌘1�r

=
1

(1�r)g1
(g1mi,Tr+1 + g0)

1�r ,

where ci,t and mi,t are the normalized values of consumption level Ci,t and wealth

Mi,t , respectively. For simplicity, g0 is equal to 0, which is consistent with the result

obtained by GP. The value function after retirement becomes

VTr+1 (mi,Tr+1;q) = 1
(1�r)g1

(g1mi,Tr+1)
1�r . (4.5.5)

The structural parameter is now q = {b ,r,g1}. The values of parameters for the

simulation are listed in Table 4.3.

The values of {Gt}10
t=1 are described in the left panel of Figure 4.1, which is

the same as Jøgensen (2016). The discount factor b , gross interest rate R, income

shock probability p, variance of transitory shock s2
e , retirement rule parameter g1
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Figure 4.1: The values of Gt and the policy functions for Bellman equation in ratio
form

Notes: The left panel presents the plots of the value of Gt at different ages. The
right panel is the numerical solution of the ratio-form model (4.5.4).

and variance of the shock to permanent income s2
V are approximately equal to those

in GP. Following Jøgensen (2016), the risk aversion r equals 2 and the value of µ

is very close to zero.

For this model, the corresponding ratio-form Euler equations are

c�r
i,t =max

n
m�r

i,t ,bREVi,t+1,ei,t+1

⇥
(Gt+1Vi,t+1)

�r ci,t+1 (mi,t+1)
�r⇤o , t0  t  Tr�1,

c�r
i,Tr

= max
n

m�r
i,Tr

,bR(g1mi,Tr+1)
�r
o
, at age Tr.

EGM is used to solve the model (for more details, one can refer to Appendix .4.2).

The solution of the ratio-form model is presented in the right panel of Figure 4.1.

In the simulation, we assume at age t = 1, the corresponding permanent com-

ponent of income Pd
i,1 for every household is drawn from a log-normal distribution,

i.e.,

logPd
i,1 ⇠ N

⇣
0,s2

V

⌘
,8i = 1, ...,Nobs,

where Nobs is the number of simulated households. We then simulate an income
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panel dataset
n

Y d
i,t ,P

d
i,t

o10

t=1
for each household i. Meanwhile, household’s initial

wealth at age 1, Md
i,1, is sampled from a truncated normal distribution with mean

1 and variance 1 ranging from 0 to infinity, i.e., Md
i,1 ⇠ N (1,1) I {x > 0}, for i =

1, . . . ,Nobs, where I is the indicator function.

The Bellman equation in ratio form is solved by EGM and we obtain the con-

sumption grid at each period. At each t, we normalize the wealth md
i,t =

Md
i,t

Pd
i,t

and use

the grid to interpolate the corresponding optimal ratio-form consumption c⇤i,t . We

then compute the optimal consumption level as C⇤
i,t = c⇤i,tP

d
i,t and obtain

n
C⇤

i,t ,M
d
i,t ,Y

d
i,t ,P

d
i,t

o10

t=1

for each household i. Following the simulation procedure in the last subsection, we

add the measurement error, Cd
i,t =C⇤

i,t + ei,t , ei,t
i.i.d.⇠ N

�
0,s2

e
�
, s2

e = 0.008. Finally

we have
n

Cd
i,t ,M

d
i,t ,Y

d
i,t

o10

t=1
, for i = 1, . . . ,Nobs, which is used for estimation.

In order to obtain the sample moment vector, the Kalman filter is used to filter

the income observations to obtain the mean and variance for Pi,t at each t for house-

hold i. The Kalman filter for income process is documented in detail in Appendix

.4.4.

To estimate the parameters r , b , g1, the following priors are used,

r ⇠U (0,15) ,b ⇠U (0.5,1) ,g1 ⇠U (0,1) .

It is quite intuitive that households must use their wealth to support their lives after

retirement and they would not consume all their liquid wealth in the first year after

retirement. Thus, the bound is quite reasonable and uninformative. For the priors

for r and b , they are also uninformative as argued earlier.

We use Algorithms 1 and 2 to do the estimation. In the estimation, we set

K1 = K3 = 38400, K2 = 1280, S = diag(0.0001,0.04,0.0001), d = 0.5, L = �10,

K = 7680 and the number of grids in EGM is 100. The sample sizes considered

here are Nobs = 1500,2000,3000, respectively. The number of replications is 50.

The biases and RMSE of the estimation are reported in Table 4.4.

The results in Table 4.4 have similar patterns to the outputs in the preceding
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Table 4.4: The bias and RMSE of the estimator

Nobs = 1500 Nobs = 2000 Nobs = 3000
b Bias 2.8583⇥10�4 �3.0266⇥10�5 �3.7344⇥10�5

RMSE 2.8394⇥10�3 2.7242⇥10�3 1.9599⇥10�3

r Bias �3.4112⇥10�2 �1.8676⇥10�3 �1.5472⇥10�2

RMSE 0.1726 0.1676 0.1321
g1 Bias 5.7411⇥10�5 2.2704⇥10�5 �6.8096⇥10�6

RMSE 2.0429⇥10�4 1.6755⇥10�4 1.3224⇥10�4

subsection. The bias for all parameters decreases as the sample size increases. Fur-

ther, the RMSE is approximately proportional to the square root of sample size as

predicted by theory. In summary, the results in Table 4.4 still justify the asymptotic

theory.

4.6 Conclusion

In this paper, a quasi-Bayesian estimator is introduced for structural parameters

in finite-horizon life-cycle models. The asymptotic normality of the estimator is

derived when an analytical solution for the model exists. When the policy functions

are not analytically available, it is shown that if the approximation errors caused by

numerical solving vanish fast enough, the estimator remains to be asymptotically

normal. Further, it is shown that the estimator reaches the efficiency bound in the

GMM framework. In the proposed method, the usual optimization procedure is

converted into a sampling procedure, thereby avoiding the numerical evaluation for

the gradient of objective function and alleviating the local optimum problem. The

estimator and associated asymptotic covariance can be computed simultaneously.

The estimation procedure is also easy to parallelize, facilitating a GPU-based and

adaptive algorithm to enhance computational efficiency. The estimation procedure

is also illustrated based on a variant of the model in GP.

In general our estimator is less efficient than the full likelihood-based proce-

dures, such as those proposed by FRS and Ackerberg, Geweke, and Hahn (2009).
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However, our procedure is less stringent about the model specification. For ex-

ample, the distribution is left unspecified in our approach. Hence, our set up may

be more appealing to empirical researchers who are agnostic about distributional

behaviors of the errors.

There are many possible extensions for this method. For example, finite-horizon

life-cycle models with endogenous discrete choices can be considered since these

models have received considerable attention recently; see Iskhakov et.al. (2017),

Kaplan and Violante (2014) and references therein. Meanwhile, the present paper

only focuses on the estimation. There also remains plenty of work related to infer-

ence. These topics are left for future research.
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Chapter 5 Summary of Conclusions

In Chapter 2, we propose a new Bayesian test statistic to test a point null hypothesis

based on a quadratic loss function. The main advantages of the proposed test statis-

tic are as follows. Relative to the BF, first, it is well-defined under improper prior

distributions; second, it is immune to Jeffreys-Lindley’s paradox; third, it is easy to

compute, even for the latent variable models; fourth, its asymptotic distribution is

pivotal so that the threshold values are easy to obtain; fifth, its NSE can be easily

obtained. Relative to the LM test, first, it can incorporate the prior information to

improve hypothesis testing when the sample size is small; second, it does not suf-

fer from the problem of taking negative values; third,it does not need to invert any

matrix.

In Chapter 3, we propose a new test statistic to test for a point null hypothesis

which can be treated as the posterior version of the Wald test. Compared with exist-

ing methods, the proposed statistic has many important advantages. First, it is well-

defined under improper prior distributions. Second, it avoids Jeffreys-Lindley’s

paradox. Third, its asymptotic distribution is a c2 distribution under the null hy-

pothesis and repeated sampling. This property is the same as the Wald statistic so

that the critical values can be easily obtained. Fourth, it is very easy to compute as it

is based on the posterior mean and posterior variance of the parameters of interest.

Fifth, it can be used to test hypotheses that imposes nonlinear relationships among

the parameters of interest, for which the BF is difficult to use. Sixth, for latent vari-

able models for which the MLE and the Wald test are more difficult to obtain, the

proposed statistic is the by-product of posterior sampling. Finally, only posterior

sampling for the alternative hypothesis is needed for the proposed statistic.
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In Chapter 4, we introduce a quasi-Bayesian estimator for structural parameters

in finite-horizon life-cycle models. The asymptotic normality of the estimator is

derived no matter whether there exists analytical solution for the model. Further, it

is shown that the estimator reaches the efficiency bound in the GMM framework. In

the proposed method, the usual optimization procedure is converted into a sampling

procedure, thereby avoiding the numerical evaluation for the gradient of objective

function and alleviating the local optimum problem. The estimator and associated

asymptotic covariance can be computed simultaneously. The estimation procedure

is also easy to parallelize, facilitating a GPU-based and adaptive algorithm to en-

hance computational efficiency. The estimation procedure is also illustrated based

on a variant of the model in Gourinchas and Parker (2002)
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Appendix

.1 Proofs in Chapter 2

.1.1 Proof of Lemma 2.3.1

When the likelihood information dominates the prior information, the posterior

mean J̄ reduces to the ML estimator bJ , under the alternative hypothesis. When

H0 is true, let J 0 = (q 0,y0) be the true value of J . According to the standard ML

theory and the central limit theorem, it can be shown that

p
n( bJ �J 0)

d! N [0,F(J 0)] ,

where F(J 0) = nI �1(J 0), I (J 0) =�E [I(J0)] is the Fisher information matrix,

and

I(J) =
∂ 2 log p(y|J)

∂J∂J 0 = L(2)
n (J).

Under the standard regularity conditions, as n ! •, we have

�nJ(J 0)
p! F(J 0),

where J(J 0) is the inverse matrix of I(J 0). Therefore, it can be shown that

bJ �J 0 = Op(n�
1
2 ),

J(J 0) = Op(n�1),I(J 0) = Op(n).

113



For any consistent estimator of J , say J̃ , there exists a positive sequence k⇤n ! 0

such that p(||J̃ �J 0|| k⇤n)� 1� k⇤n. Hence, when n is large enough, we can find

some N > 0, and n > N to make ||J̃ �J 0|| k⇤n. Under Assumption 5, we have

1
n
||I(J̃)� I(J 0)|| sup

||J�J0||<kn

1
n
||I(J)� I(J 0)||

p�! 0.

Hence, for any consistent estimator J̃ , 1
n
⇥
I(J̃)� I(J 0)

⇤
= op(1) so that I(J̃) =

I(J 0) + op(n) and that I(J̃) = Op(n). Similarly, J(J̃) = J(J 0) + op(n�1) and

J(J̃) = Op(n�1).

.1.2 Proof of Lemma 2.3.2

When the likelihood information dominates the prior information, the posterior

mode bJ 0 of J under the null hypothesis reduces to the ML estimator of J un-

der the null hypothesis. Similar to Lemma 2.3.1, when H0 is true, according to the

standard ML theory, we have

1p
n

s(J 0)⇠ N[0,F(J 0)],

p
n(by0 �y0)⇠ N[0,Fyy(J 0)],

where Fyy(J 0) is the submatrix of F(J 0) corresponding to y . Hence, we have

s(J 0) = Op(n1/2), by0 �y0 = Op(n�1/2), bJ 0 �J 0 = Op(n�1/2).

Furthermore, based on Remark 3.7, it can be shown that

ȳ0 � by0 = op(n�1/2), J̄ 0 � bJ 0 = op(n�1/2),

ȳ0 �y0 = ȳ0 � by0 + by0 �y0 = op(n�1/2)+Op(n�1/2) = Op(n�1/2),

J̄ 0 �J 0 = Op(n�1/2).

114



Using the first-order Taylor expansion, we have

s( bJ 0) = s(J 0)+ I(J̃ 0)( bJ 0 �J 0),

where q̃ 0 lies on the segment between bJ 0 and J 0. Since bJ 0 �J 0 = Op(n�1/2), it

means that bJ 0 is a consistent estimator of J 0 so that J̃ 0 is also a consistent estimator

of J 0. Hence, we get

s( bJ 0) = s(J 0)+ I(J̃ 0)( bJ 0 �J 0)

= s(J 0)+ [I(J 0)+op(n)]( bJ 0 �J 0)

= s(J 0)+ I(J 0)( bJ 0 �J 0)+op(n)( bJ 0 �J 0)

= s(J 0)+ I(J 0)( bJ 0 �J 0)+op(n)Op(n�1/2)

= s(J 0)+ I(J 0)( bJ 0 �J 0)+op(n1/2)

= Op(n1/2)+Op(n)Op(n�1/2)+op(n1/2) = Op(n1/2),

C( bJ 0) = s( bJ 0)s( bJ 0)
0 = Op(n1/2)Op(n1/2) = Op(n).

Similarly, since J̄ 0 �J 0 = Op(n�1/2), it means that J̄ 0 is a consistent estimator of

J 0 so that J̃ 0 is also a consistent estimator of J 0. Hence, we can get

s(J̄ 0) = Op(n1/2),

C(J̄ 0) = s(J̄ 0)s(J̄ 0)
0 = Op(n).

Furthermore, we can show that

s(J̄ 0) = s( bJ 0)+ I(J̃ 0)(J̄ 0 � bJ 0),

where J̃ 0 lies on the segment between J̄ 0 and bJ 0. Because both bJ 0 and J̄ 0 are

consistent estimators of J 0, J̃ 0 is also a consistent estimator of J 0. Using Lemma
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2.3.1, we get

C(J̄ 0) = s(J̄ 0)s(J̄ 0)
0 = [s( bJ 0)+ I(J̃ 0)(J̄ 0 � bJ 0)][s( bJ 0)+ I(J̃ 0)(J̄ 0 � bJ 0)]

0

= s( bJ 0)s( bJ 0)
0+2I(J̃ 0)(J̄ 0 � bJ 0)s( bJ 0)+ I(J̃ 0)(J̄ 0 � bJ 0)(J̄ 0 � bJ 0)

0I(J̃ 0)

= s( bJ 0)s( bJ 0)
0+2Op(n)op(n�1/2)Op(n1/2)+Op(n)op(n�1/2)op(n�1/2)Op(n)

= s( bJ 0)s( bJ 0)
0+op(n) =C( bJ 0)+op(n).

.1.3 Proof of Theorem 2.3.1

Using the Bayesian large sample theory, we have

E
⇥
(J � J̄)(J � J̄)0|y

⇤
= E

h
(J � bJ + bJ � J̄)(J � bJ + bJ � J̄)0|y

i

= E
h
(J � bJ)(J � bJ)0|y

i
+2E

h
(J � bJ)|y

i
( bJ � J̄)+( bJ � J̄)( bJ � J̄)0

= E
h
(J � bJ)(J � bJ)0|y

i
�2( bJ � J̄)( bJ � J̄)+( bJ � J̄)( bJ �J0)

0

= E
h
(J � bJ)(J � bJ)0|y

i
� ( bJ � J̄)( bJ � J̄)

= �L�(2)
n ( bJ)+op(n�1)+op(n�1/2)op(n�1/2).

The last equality E
h
(J � bJ)(J � bJ)0|y

i
=�L�(2)

n ( bJ)+op(n�1) follows Li, Zeng

and Yu (2012) based on the assumptions listed in Section 3.2. Hence, we have

T(y,q 0) =
Z
(q � q̄)0Cqq (J̄ 0)(q � q̄)p(J |y)dJ

= tr
⇥
Cqq (J̄ 0)E[(q � q̄)(q � q̄)0|y]

⇤

= tr
h
Cqq (J̄ 0)[�L�(2)

n,qq (
bJ)+op(n�1)]

i

= tr
h⇣

Cqq ( bJ 0)+op(n)
⌘
[�L�(2)

n,qq (
bJ)]

i
+ tr

⇥
Cqq (J̄ 0)op(n�1)

⇤

= tr
h
Cqq ( bJ 0)[�L�(2)

n,qq (
bJ)]

i
+op(n)[�L�(2)

n,qq (
bJ)]+Op(n)op(n�1)

= tr
h
sq ( bJ 0)sq ( bJ 0)

0[�L�(2)
n,qq (

bJ)]
i
+op(n)Op(n�1)+op(1)

= tr
h
sq ( bJ 0)sq ( bJ 0)

0[�L�(2)
n,qq (

bJ)]
i
+op(1)

= sq ( bJ 0)
0[�L�(2)

n,qq (
bJ)]sq ( bJ 0)+op(1).
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This proves Equation (2.3.5) in the theorem.

When the likelihood information dominates the prior information, the posterior

mode bJ reduces to the ML estimator of J under the alternative hypothesis, the

posterior mode by0 to the ML estimator of y under the null hypothesis, and L(2)
n (J)

to I(J). Under H0, let J 0 = (q 0,y0) be the true value of J , and bJ 0 = (q 0, by) be

the ML estimator of J . Then, when the null hypothesis is true, bJ and bJ 0 are both

consistent estimators of J . Hence, based on Lemma 3.1 and Lemma 3.2, we get

J( bJ) = I�1( bJ) = [I(J 0)+op(n)]�1 +op(n�1) = J(J0)+op(n�1),

J( bJ 0) = I�1(J0) = [I(J 0)+op(n)]�1 +op(n�1) = J(J0)+op(n�1).

Then, we can further derive that

T(y,q 0) =
Z
(q � q̄)0Cqq (J̄ 0)(q � q̄)p(J |y)dJ

= sq ( bJ 0)
0[�L�(2)

n,qq (
bJ)]sq ( bJ 0)+op(1)

= �sq ( bJ 0)
0Jqq ( bJ)sq ( bJ 0)+op(1)

= �sq ( bJ 0)
0Jqq ( bJ)sq ( bJ 0)+op(1)

= �sq ( bJ 0)
0 ⇥Jqq (J 0)+op(n�1)

⇤
sq ( bJ 0)+op(1)

= �sq ( bJ 0)
0 [Jqq (J 0)]sq ( bJ 0)+ sq ( bJ 0)

0op(n�1)sq ( bJ 0)+op(1)

= �sq ( bJ 0)
0 [Jqq (J 0)]sq ( bJ 0)+Op(n1/2)op(n�1)Op(n1/2)+op(1)

= �sq ( bJ 0)
0 [Jqq (J 0)]sq ( bJ 0)+op(1)

= �sq ( bJ 0)
0
h
Jqq ( bJ 0)+op(n1/2)

i
sq ( bJ 0)+op(1)

= �sq ( bJ 0)
0Jqq ( bJ 0)sq ( bJ 0)+Op(n1/2)op(n�1)Op(n1/2)+op(1)

= �sq ( bJ 0)
0Jqq ( bJ 0)sq ( bJ 0)+op(1)

= LM+op(1).

According to the standard ML theory, under the null hypothesis, LM d! c2(p).

Therefore, T(y,q 0)
d! c2(p) and the theorem is proved.
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.1.4 Derivation of T(y, q 0) and the BF in linear regression model

It is known that the logBF10 can be expressed as

logBF10 = log p(y|M1)� log p(y|M0) .

In the simple linear regression model, under H0, the marginal likelihood p(y|M0) is

given by

p(y|M0) =
Z Z

p(y|a,b0) p
�
a|s2� p

�
s2�dads2

=
ba

(2p)
n
2 G(a)

Z Z
exp

 
� 1

2s2

n

Â
i=1

(yi �a �b0xi)
2

!
1p

2pVas
exp

 
�(a �µa)

2

2s2Va

!

⇥
�
s2��a� n

2�1 exp
✓
� b

s2

◆
dads2

=
ba

(2p)
n
2 G(a)

Z Z 1p
2pVas

exp

(
� 1

2s2

"
�2a

n

Â
i=1

(yi �b0xi)+na2

#)

⇥exp

 
� 1

2s2

n

Â
i=1

(yi �b0xi)
2

!
exp


� 1

2s2Va

�
a2 �2µaa

��
exp

✓
� µ2

a
2s2Va

◆
dads2

=
ba

(2p)
n
2 G(a)

Z Z 1p
2pVas

exp

 
� 1

2s2

n

Â
i=1

(yi �b0xi)
2

!
exp

✓
� µ2

a
2s2Va

◆

⇥exp

(
� 1

2s2

"✓
n+

1
Va

◆
a2 �2a

 
n

Â
i=1

(yi �b0xi)+
µa
Va

!#)
dads2

=
ba

(2p)
n
2 G(a)

r
1

nVa +1

⇥
Z +•

0

�
s2��a� n

2�1 exp

(
� 1

s2

"
b+

1
2

 
n

Â
i=1

(yi �b0xi)
2 +

µ2
a

Va
� µ⇤2

a
V ⇤

a

!#)
ds2

=
baG

�
a+ n

2
�

(2p)
n
2 G(a)

r
1

nVa +1

"
b+

1
2

 
n

Â
i=1

(yi �b0xi)
2 +

µ2
a

Va
� µ⇤

a
V ⇤

a

!#�(a+ n
2)

=
baG

�
a+ n

2
�

(2p)
n
2 G(a)

r
1

nVa +1


b+

1
2

✓
(y�b0x)0 (y�b0x)+ µ2

a
Va

� µ⇤
a

V ⇤
a

◆��(a+ n
2)
.

Under the alternative hypothesis H1, we rewrite the equation in a matrix form:

y = Xg + e,
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where g = (a,b )0, X = (i ,x). The prior for g is N
�
µ̃,s2Ṽ

�
, where µ̃ =

�
µa ,µb

�0,

Ṽ = diag
�
Va ,Vb

�
. Similarly, the marginal likelihood p(y|M1) is

p(y|M1) =
Z Z

p(y|b ,a) p
�
g|s2� p

�
s2�dgds2

=
ba

(2p)
n
2 G(a)

Z Z �
s2��a� n

2�1 exp
✓
� b

s2

◆

⇥exp
✓
� 1

2s2 (y�Xg)0 (y�Xg)
◆

1

2p|Ṽ | 1
2 s2

exp
✓
� 1

2s2 (g � µ̃)0 Ṽ�1 (g � µ̃)
◆

dgds2

=
ba

(2p)
n
2 G(a)

p
|Ṽ |

Z Z 1
2ps2

�
s2��a� n

2�1
⇢✓

� 1
s2


b+

1
2
�
y0y+(µ̃)0Ṽ�1µ̃

��◆�

⇥exp
⇢
� 1

2s2

⇣
g 0
�
X 0X +Ṽ�1�g � g 0

�
X 0y+Ṽ�1µ̃

�
�
�
X 0y+Ṽ�1µ̃

�0 g
⌘�

dgds2

=
ba

(2p)
n
2 G(a)

p
|Ṽ |

Z Z 1
2ps2 exp

⇢
� 1

2s2 (g �µ⇤)0V ⇤�1 (g �µ⇤)

�

⇥exp
✓
� 1

2s2

�
(µ̃)0Ṽ�1µ̃ +y0y� (µ⇤)0V ⇤�1µ⇤�

◆�
s2��a� n

2�1 exp
✓
� b

s2

◆
dgds2

=
ba
p

|V ⇤|
(2p)

n
2 G(a)

p
|Ṽ |

Z �
s2��a� n

2�1 exp
⇢
� 1

s2


b+

1
2
�
(µ̃)0Ṽ�1µ̃ +y0y� (µ⇤)0V ⇤�1µ⇤�

��
ds2

=
ba
p

|V ⇤|G
�
a+ n

2
�

(2p)
n
2 G(a)

p
|Ṽ |


b+

1
2
�
(µ̃)0Ṽ�1µ̃ +y0y� (µ⇤)0V ⇤�1µ⇤�

��(a+ n
2)
.

In the following, we show how to calculate T(y,q 0). It is noted that the log-

likelihood function is:

log p(y|J) =�n
2

log(2p)� n
2

logs2 � 1
2s2

n

Â
i=1

(yi �a �bxi)
2 .

Hence, given J =
�
a,b ,s2�0, for H0 of q = b , we have

s(J)=

 
1

s2

n

Â
i=1

(yi �a �bxi) ,
1

s2

n

Â
i=1

xi (yi �a �bxi) ,�
n

2s2 +
1

2s4

n

Â
i=1

(yi �a �bxi)
2

!0

,

and

Cqq
�
J̄ 0
�
=

1
s̄4

0

"
n

Â
i=1

xi (yi � ā0 �b0xi)

#2

=
1

s̄4
0

⇥
x0 (y�ā0i �b0x)

⇤2
,
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where s̄4
0 =

�
s̄2

0
�2, ā0 and s̄2

0 are the posterior means of a and s2 under H0.

Since the likelihood and the prior are both in the Normal-Gamma form, based on

the previous derivation of p(y|M1), if we integrate the s2, we can have the posterior

density of g = (a,b )0

p (g|y) µ


b+
1
2
�
(µ̃)0Ṽ�1µ̃ +y0y� (µ⇤)0V ⇤�1µ⇤�+ 1

2
(g �µ⇤)0V ⇤�1 (g �µ⇤)

� 2a+n
2 +1

µ


1+
1

2ns
(g �µ⇤)0V ⇤�1 (g �µ⇤)

� n
2 +1

,

which is a density function of multivariate t distribution with degrees of freedom

n = 2a+n, mean µ⇤, and a positive definite symmetric matrix, V ⇤. That is,

g|y ⇠ t (µ⇤,2sV ⇤,n) .

Let

µ⇤ =

0

B@
µ⇤

1

µ⇤
2

1

CA , V ⇤ =

0

B@
V ⇤

11 V ⇤
12

V ⇤
21 V ⇤

22

1

CA .

It is easy to show that b |y ⇠ t (µ⇤
2 ,2sV ⇤

22,n). Then, the posterior variance of b is

Var (b |y) = 2sV ⇤
22

n�2 . Hence, the proposed test statistic can be calculated analytically

as

T(y,q 0) =Cqq
�
J̄ 0
�

Var (b |y) =
2sV ⇤

22
n �2

Cqq
�
J̄ 0
�
.

.1.5 Derivation of the BF and T(y, q 0) in the probit model

In the binary probit model, for each yi, i = 1,2, ...,n, there is a corresponding latent

variable zi that satisfies: 8
>><

>>:

yi = 1 if zi � 0

yi = 0 if zi < 0
,

and

zi = x0iJ + ei,
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where J is the (p+ q)⇥ 1 parameter vector measuring the marginal effects and

ei ⇠ N (0,1) for i = 1, ...,n.

Rewrite the above equation as:

zi = x0i1y +x0i2q + ei.

For each i, we have

8
>><

>>:

p(yi = 1|J) = p(zi � 0| J) = p
�
ei ��

�
x0i1y +x0i2 q

�
|J
�
= F

⇥
(2yi �1)

�
x0i1y +x0i2q

�⇤

p(yi = 0|J) = p(zi < 0| J) = p
�
ei <�

�
x0i1y +x0i2 q

�
|J
�
= F

⇥
(2yi �1)

�
x0i1y +x0i2q

�⇤ ,

where the F(·) is the standard normal cumulative distribution function. Note that

the log-likelihood function is:

log p(y|J) =
n

Â
i=1

logF
⇥
qi
�
x0i1y +x0i2q

�⇤
,

where qi = 2yi �1.

• The estimator of T(y,q 0) and its NSE.

For H0 of q = 0, note that,

∂ log p(y|J)

∂q
=

n

Â
i=1

qi
f
⇥
qi
�
x0i1y +x0i2q

�⇤
xi2

F
⇥
qi
�
x0i1y +x0i2q

�⇤ ,

where f (·) is the pdf of the standard normal distribution. The proposed test

statistic is

T(y,q 0) =
Z �

q � q̄
�0Cqq

�
J̄ 0
��

q � q̄
�

p(J |y)d J ,
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where

Cqq
�
J̄ 0
�

=

✓
∂ log p(y| J)

∂ q

◆✓
∂ log p(y|J)

∂ q

◆0����J=J̄ 0

=

 
n

Â
i=1

f
⇥
qi
�
x0i1 ȳ0

�⇤
qixi2

F
⇥
qi
�
x0i1 ȳ0

�⇤
!
⇥
 

n

Â
i=1

f
⇥
qi
�
x0i1 ȳ0

�⇤
qixi2

F
⇥
qi
�
x0i1 ȳ0

�⇤
!0

,

where J̄ 0 = (q 0, ȳ0) and ȳ0 is the posterior mean of y under H0.

To sum up, to compute the bT(y,q 0), we firstly draw MCMC samples for the

model under H0 and calculate Cqq
�
J̄ 0
�
. We then draw MCMC samples for

the model under H1 to obtain
n

J (g)
oG

g=1
=
n

q (g),y(g)
oG

g=1
. Naturally, the

estimator of the statistic is

bT(y,q 0) =
1
M

G

Â
g=1

f
⇣

q (g)
⌘
,

where,

f
⇣

q (g)
⌘
=
⇣

q (g)� q̄
⌘0

Cqq
�
J̄ 0
�⇣

q (g)� q̄
⌘
,

where q̄ is the posterior mean of q for the model under H1.

Following the discussion about the NSE in Section 3, the numerical variance

of bT(y,q 0) is

Var
⇣
bT(y,q 0)

⌘
=

1
G

"
W0 +2

q

Â
k=1

✓
1� k

q+1

◆
Wk

#
,

where

Wk =
1
G

G

Â
g=k+1

⇣
f
⇣

q (g)
⌘
� bT(y,q 0)

⌘2
.

• The estimator of the BF and its NSE.

We know that the logarithmic observed likelihood function, log p(y|J), is

given by

log p(y|J) =
n

Â
i=1

logF
⇥
qi
�
x0i1y +x0i2q

�⇤
,
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which is easy to compute.

Based on Chib (1995), the logarithmic marginal likelihood under H1, log p(y|M1),

is given by

log p(y|M1) = log p
�
y|J̄

�
+ log p

�
J̄
�
� log p

�
J̄ |y

�
,

where p
�
J̄
�

is the pdf of the prior evaluated at J̄ , p
�
J̄ |y

�
is the pdf of the

posterior distribution evaluated at J̄ . The posterior quantity can be approxi-

mated by

bp
�
J̄ |y

�
=

1
G

G

Â
g=1

p
⇣

J̄ |z(g)1

⌘
,

where {z(g)1 ,g = 1,2, · · · ,G} are efficient random draws from p
�
z1|y, J̄

�
and

the posterior distribution p(J |z) has a closed-form expression in this model.

The logarithmic marginal likelihood under H0, log p(y|M0), is given by

log p(y|M0) = log p
�
y|J̄ 0

�
+ log p(ȳ0)� log p(ȳ0|y,q 0) .

Similarly, bp(ȳ0|y,q 0) =
1
G ÂG

g=1 p
⇣

ȳ0|z
(g)
0 ,q 0

⌘
, and {z(g)0 ,g = 1,2, · · · ,G}

are efficient random draws from p
�
z0|y, J̄ 0

�
.

Hence, the logarithmic BF can be estimated by

\logBF10 =
⇥
log p

�
y|J̄

�
+ log p

�
J̄
�
� log bp

�
J̄ |y

�⇤

�
⇥
log p

�
y|J̄ 0

�
+ log p(ȳ0)� log bp(ȳ0|y,q 0)

⇤
.

To calculate the NSE, following Chib (1995), let h(g)1 = p
⇣

J̄ |z(g)
⌘

, h(g)0 =

p
⇣

ȳ0|z
(g)
0 ,q 0

⌘
, h(g) =

⇣
h(g)1 ,h(g)0

⌘0
, bh =

⇣
bh1,bh0

⌘
, bh0 = 1

G ÂG
g=1 h(g)0 , bh1 =

1
G ÂG

g=1 h(g)1 . Then the numerical variance is

Var
⇣

\logBF10

⌘
=

 
∂ \logBF10

∂bh

!0

Var (h)

 
∂ \logBF10

∂bh

!
,
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Var (h) =
1
G

"
W0 +

q

Â
k=1

✓
1� k

q+1

◆�
Wk +W0

k
�
#
,

Wk =
1
G

G

Â
g=k+1

⇣
h(g)�bh

⌘⇣
h(g)�bh

⌘0
,

∂ \logBF10

∂bh
=

0

B@
�bp

�
J̄ |y

��1

bp(ȳ0|y,q 0)
�1

1

CA .

.1.6 Derivation of the BF and T(y, q 0) in the stochastic condi-

tional duration model

To save the space, here we only discuss the most specification corresponding to H1.

For the SDC model under H1, denoted as M1, given by

8
>>>>>><

>>>>>>:

dt = exp(jt)et , et ⇠ Exp(1) ,

jt = fjt�1 +a + x0tb +set , et ⇠ N (0,1) ,

j1 ⇠ N
✓

a+x01b
1�f , s2

1�f 2

◆
,

we want to test whether b = 0 (hence q = b in this case). As a result, the nuisance

parameter y =
�
a,f ,s2�0 and J =

�
q 0,y 0�0.

• The estimator of T(y,q 0) and its NSE.

The proposed statistic is given by:

T(d,q 0) =
Z �

b � b̄
�0Cqq

�
J̄ 0
��

b � b̄
�

p(J |d)dJ

= tr
h
Cqq

�
J̄ 0
�

E
⇣�

b � b̄
��

b � b̄
�0 |y

⌘i
,

where d = {dt}T
t=1, J̄ 0 = (0, ȳ0), ȳ0 is the posterior mean of y under H0, b̄

is the posterior mean of b under H1, and

Cqq
�
J̄ 0
�
=


∂ log p(d|J)

∂q

✓
∂ log p( d|J)

∂q

◆0�����J=J̄ 0

= sq
�
J̄ 0
�

sq
�
J̄ 0
�0
.

124



According to Remark 3.4, the partial derivative of log-likelihood function

with respect to q can be approximated based on the Q-function. That is,

sq
�
J̄ 0
�
⇡ 1

G

G

Â
g=1


� 1

2s̄2
0

X̃ 0
⇣

ỹ(g)� ā0i
⌘�

=
1
G

G

Â
g=1

h(g)
1 = bh1,

where i =(1, ...,1)0, ỹ(g) =
⇣q

1� f̄ 2
0 j(g)

1 ,j(g)
2 � f̄0j(g)

1 , ...,j(g)
T � f̄0j(g)

T�1

⌘0
,

X̃ =
⇣q

1+f̄0
1�f̄0

x01,x
0
2, ...,x

0
T

⌘
, (ā0, f̄0, s̄2

0 ) is the Bayesian estimator under H0,

{j(g)
t ,g = 1,2, · · · ,G, t = 1,2, · · · ,T} are effective draws of the latent vari-

ables from the posterior distribution p(j|d, J̄ 0). Hence, T(d,q 0) can be ap-

proximated by

bT(d,q 0)= tr

(h
bCqq

�
J̄ 0
�i
"

1
G

G

Â
g=1

⇣
b (g)� b̄

⌘⇣
b (g)� b̄

⌘0
#)

= tr
⇣
bh1bh0

1
bH2

⌘
,

where b̄ is the posterior mean of b under H1 ,
n

b (g)
oG

g=1
are the MCMC

draws from the posterior distribution p(J |y), and

bCqq
�
J̄ 0
�
= bh1bh0

1, bH2 =
1
G

G

Â
g=1

⇣
b (g)� b̄

⌘⇣
b (g)� b̄

⌘0
=

1
G

G

Â
g=1

H(g)
2 .

To calculate the NSE, let h(g)
2 = vech

⇣
H(g)

2

⌘
, h(g) =

⇣
h(g)0

1 ,h(g)0
2

⌘0
, bh=

⇣
bh0

1,
bh0

2

⌘0
.

We have

∂bh1

∂bh
=

2

64
1 0 0 0 0

0 1 0 0 0

3

75 ,
∂ bH2

∂bh
=

2

66666664

0 0 1 0 0

0 0 0 1 0

0 0 0 1 0

0 0 0 0 1

3

77777775

.

Hence,

∂ bT(d,q 0)

∂bh
= vec(Ip)

0

"⇣
bH 0

2
bh1 ⌦ Ip + bH 0

2 ⌦bh1

⌘ ∂bh1

∂ bh
+
⇣

Ip ⌦bh1bh
0
1

⌘ ∂ bH2

∂bh

#
,
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Var
⇣
bT(d,q 0)

⌘
=

∂ bT(y, q 0)

∂bh
Var

⇣
bh
⌘ ∂ bT(y,q 0)

∂bh

!0

,

Var(bh) = 1
G

"
W0 +

q

Â
k=1

✓
1� k

q+1

◆�
Wk +W0

k
�
#
,

Wk = G�1
G

Â
g=k+1

⇣
h(g)�bh

⌘⇣
h(g)�bh

⌘0
.

• The estimator of the BF.

Let log p(d|M0) and log p(d|M1) be the marginal likelihood under H0 and H1

respectively. Hence,

logBF10 = log p(d|M1)� log p(d|M0) .

The marginal likelihood under H1 is

log p(d|M1) = log p
�
d|J̄

�
+ log p

�
J̄
�
� log p

�
J̄ |y

�
,

where p
�
J̄
�

is the prior density function evaluated at J̄ , p
�
J̄ |y

�
is the pos-

terior density function evaluated at J̄ . The marginal likelihood under H0 is

log p(d|M0) = log p
�
y|J̄ 0

�
+ log p(ȳ0)� log p(ȳ0|d,q 0) .

Following Chib (1995), we can approximate the quantities at the right hand

side of the marginal likelihood equations as follows,

– We use the auxiliary particle filter method proposed by Pitt and Shep-

hard (1999) to estimate log p
�
y|J̄

�
and log p

�
y|J̄ 0

�
. The code is pro-

vided by Creal (2009).

– log p
�
J̄
�

and log p(ȳ0) are easy to evaluate since the prior distributions

are standard statistical distributions.

– log p
�
J̄ |y

�
and log p(ȳ0|d,q 0) can be estimated via the approach of
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Chib (1995).

However, since the NSE of the logarithmic observed likelihood function dom-

inates that of the logarithmic marginal likelihood which is estimated by parti-

cle filters, the NSE of the BF cannot be obtained.

.2 Proofs in Chapter 3

.2.1 Proof of Lemma 3.3.1

First, we can show that

���H̄n (JJJ)� H̄n

⇣
bJJJ
⌘���

=
���H̄n (JJJ)� H̄n

⇣
JJJ 0

n

⌘
+ H̄n

⇣
JJJ 0

n

⌘
�Hn

⇣
JJJ 0

n

⌘
+Hn

⇣
JJJ 0

n

⌘
� H̄n

⇣
bJJJ
⌘���


���H̄n (JJJ)� H̄n

⇣
JJJ 0

n

⌘���+
���H̄n

⇣
JJJ 0

n

⌘
�Hn

⇣
JJJ 0

n

⌘���

+
���Hn

⇣
JJJ 0

n

⌘
� H̄n

⇣
bJJJ
⌘��� . (.2.1)

For any e , there exists a d (e)> 0 such that

P

0

@ sup
N(JJJ 0

n,d (e))

���H̄n (JJJ)� H̄n

⇣
JJJ 0

n

⌘���<
e
3

1

A! 1. (.2.2)

From Assumption 3 that l(2)t (JJJ) is almost surely continuous at JJJ 0
n. We also have

P
⇣���H̄n

⇣
JJJ 0

n

⌘
�Hn

⇣
JJJ 0

n

⌘���<
e
3

⌘
! 1, (.2.3)

P
⇣���Hn

⇣
JJJ 0

n

⌘
� H̄n

⇣
bJJJ
⌘���<

e
3

⌘
! 1, (.2.4)

because of the uniform convergence of l(2)t (JJJ) and bJJJ �JJJ 0
n

p! 0 by Assumptions 1-7

(Gallant and White, 1988). Define events An (e)=
n

supN(JJJ 0
n,d (e))

���H̄n (JJJ)� H̄n

⇣
JJJ 0

n

⌘���< e
3

o
,

Bn (e)=
n���H̄n

⇣
JJJ 0

n

⌘
�Hn

⇣
JJJ 0

n

⌘���< e
3

o
and Cn (e)=

n���Hn

⇣
JJJ 0

n

⌘
� H̄n

⇣
bJJJ
⌘���< e

3

o
.
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Then we have

P(Dn)� P(An (e)\Bn (e)\Cn (e)) ,

where

Dn =

8
<

: sup
N(JJJ 0

n,d (e))

n���H̄n (JJJ)� H̄n

⇣
JJJ 0

n

⌘���+
���H̄n

⇣
JJJ 0

n

⌘
�Hn

⇣
JJJ 0

n

⌘���+
���Hn

⇣
JJJ 0

n

⌘
� H̄n

⇣
bJJJ
⌘���
o
< e

9
=

; .

From (.2.2), (.2.3)and (.2.4), the probability of the complementary event of An (e)\

An (e)\An (e) is

P((An (e)\Bn (e)\Cn (e))c)

= P(An (e)c [Bn (e)c [Cn (e)c) P(An (e)c)+P(Bn (e)c)+P(Cn (e)c)! 0.

Then

P(An (e)\Bn (e)\Cn (e))! 1.

Hence, by (.2.1), for any e > 0

P

0

@ sup
N(JJJ 0

n,d (e))

���H̄n (JJJ)� H̄n

⇣
bJJJ
⌘���< e

1

A

� P

0

@ sup
N(JJJ 0

n,d (e))

���H̄n (JJJ)� H̄n

⇣
JJJ 0

n

⌘���+
���H̄n

⇣
JJJ 0

n

⌘
�Hn

⇣
JJJ 0

n

⌘���+
���Hn

⇣
JJJ 0

n

⌘
� H̄n

⇣
bJJJ
⌘���< e

1

A

! 1. (.2.5)
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It is noted that

sup
N(JJJ 0

n,d (e)),kr0k=1

���1� r00H̄�1/2
n

⇣
bJJJ
⌘

H̄n (JJJ) H̄�1/2
n

⇣
bJJJ
⌘

r0

���

= sup
N(JJJ 0

n,d (e)),kr0k=1

���1+ r00
⇣
�H̄�1/2

n

⇣
bJJJ
⌘⌘

(�H̄n (JJJ))
⇣
�H̄�1/2

n

⇣
bJJJ
⌘⌘

r0

���

= sup
N(JJJ 0

n,d (e)),kr0k=1

���r00
⇣
�H̄�1/2

n

⇣
bJJJ
⌘⌘h

�H̄n

⇣
bJJJ
⌘
+ H̄n (JJJ)

i⇣
�H̄�1/2

n

⇣
bJJJ
⌘⌘

r0

���

 ln sup
N(JJJ 0

n,d (e)),kr0k=1

���r00
⇣
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where ln is the smallest eigenvalue of �H̄n
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⌘

. Then from (.2.5), for any e > 0
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.2.2 Proof of Lemma 3.3.2

Lemma .2.1. Let X1,X2, ...,Xq be independently and identically distributed, then

the following inequality for the order statistic maxi Xi holds
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under the condition that E |X1|2k < • and k > 0.

Proof. Let d = kr�1, 0 < r  1/2, then from Gribkova (1995), the following in-

equality

E

"����max
i

Xi

����
k
#
<C (r)

⇢
E |X1|d g�1

✓
q

q+1

◆�r
,

holds for q � 2r + 1, where C (r) = 2
pr exp(r +7/6) and g(u) = u(1�u). By
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setting r = 1/2, it can be shown that
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for q � 2.

For q = 1, by Jensen’s Inequality,

E
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then
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From (.2.7) and (.2.8), we can get
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for k > 0 and q � 1.

Let Yi = |Xi|, then it is easy to show that
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by (.2.9).

Lemma .2.2. Suppose the posterior density of JJJ can be written as

p(JJJ |y) = p(JJJ) p(y|JJJ)

p(y)
,
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where

p(y) =
Z

Q
p(JJJ) p(y|JJJ)dJJJ .

Then
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where An =
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o
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Proof. The posterior density of zn, p(zn|y), can be written as
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(.2.11)

Then, we take the Taylor expansion to log p
⇣
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⌘
at bJJJ so that we can

have
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where Iq is a q-dimension identity matrix and

Rn (JJJ ,,,y) = Iq +S1/2
n

∂ 2 log p
⇣

y|eJJJ 1

⌘

∂JJJ∂JJJ 0 S1/2
n ,

with eJJJ 1 lies between bJJJ +S1/2
n zn and bJJJ .
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To prove (.2.10), note that
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p
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n
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by Chen (1985) and Schervish (2012). Hence, according to (.2.12), to verify (.2.10),

it is sufficient to show
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Hence, to ensure (.2.13), by assumption 9, it is enough to prove
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In the following, we prove that (.2.14) holds. Since the prior density function is

continuous at JJJ 0
n, that is, given any e > 0, for any h 2 (0,1) satisfying

e � h

 
q2 (1+h)

p
(2k+1)(2k+3)

2(1�h)
q+k+2

2
+1

!
,

9d1 > 0, so that for any JJJ satisfying
���JJJ �JJJ 0

n

��� d1, that is, JJJ 2N0 (d1)=
n

JJJ :
���JJJ �JJJ 0

n

��� d1

o
,

���p(JJJ)� p
⇣

JJJ 0
n

⌘���=
���p
⇣
bJJJ +S1/2

n zn

⌘
� p

⇣
JJJ 0

n

⌘��� h p
⇣

JJJ 0
n

⌘
. (.2.15)
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Furthermore, by Lemma 3.3.1, 8h > 0, 9d2 > 0,
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where N0 (d ) =
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, see Schervish (2012).

Let d = min{d1,d2} and define
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The integration of Cn in the space An can be decomposed into two areas, A1n and

A2n, i.e.,
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Then we have

0  J1  J11 + J12,
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where

J11 =
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It is noted that since d  d1, from (.2.15), we can know that
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It follows from (.2.18), we can get that
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It is noted that, by Lemma .2.1, we have
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where zni is the ith element of zn and the penultimate equation results from the fact

that the central absolute moment of a scalar normal random variable X with mean

µ and variance s2 is
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In the following, we deal with J12. From (.2.15) and Lemma .2.1, we have
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Similarly, we have
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lim
n!•

P

(
J11 + J12

CJ1

 h

 
q2 (1+h)

p
(2k+1)(2k+3)

2(1�h)
q+k+2

2
+1

!)
= 1. (.2.22)

By the way how h and e are chosen, we can get from (.2.22) that
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Since e is chosen arbitrarily and J1 � 0, we have
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Next we show that
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According to Lemma 3.1 in Li et al. (2017), if zn2A2n, log p
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Hence, the integral on the right-hand side of (.2.25) is less than
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For J22, we can show that
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where zni is the ith element of zn and ln is the smallest eigenvalue of �H̄n
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It can be shown that
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where the last inequality results from

Z •

x

1p
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t2
2 dt 

Z •
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t
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e�
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2

x
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.

From (.2.27) and (.2.28), we have

J22
p! 0. (.2.29)

From (.2.26) and (.2.29), we can get (.2.24). And from (.2.23) and (.2.24), we have

J
p! 0.

To prove E
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where k·k is the matrix norm for a matrix A defined as kAk = supkxk=1 kAxk. It is

because that by (.2.30),

Z

An

��znz0n
��
����p(zn|y)� (2p)�q/2 exp

✓
�z0nzn

2

◆����dzn
p! 0.

Thus, we have
���
R

An
znz0n

h
p(zn|y)� (2p)�q/2 exp

⇣
�z0nzn

2

⌘i
dzn

��� p! 0q⇥q, which im-

plies that

Z

An
znz0n p(zn|y)dzn �

Z

An
znz0n (2p)�q/2 exp

✓
�z0nzn

2

◆
dzn

p! 0q⇥q. (.2.31)

So from (.2.11) we can get
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by changing of variables. From (.2.31) and (.2.32), using Assumptions 1-9, we have
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Since kznz0nk  kznk2, when k = 2, the formula (.2.10) holds so that (.2.30) is

also held. Similarly, from this Lemma with k = 1, it is also easy to derive that
p
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⌘
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.2.3 Proof of Theorem 3.3.1

According to Lemma 3.3.2, we have
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According to the maximum likelihood theory (White, 1996), bq �q 0 =Op(n�1/2)

under the null hypothesis. Thus, we can show that
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Furthermore, we can simply derive that
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under the null hypothesis.

Hence, we can further prove that
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From the above derivation, it is easy to show that
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under the null hypothesis.

.2.4 Proof of Theorem 3.3.3

Note that
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By the Taylor expansion, we can show that
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for some 0<M0 <•. Furthermore, by Bayesian large-sample theory,
p
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Op(1). Hence, from (.2.36), we can further derive that
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Therefore, we have
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Finally, the third term of (.2.35) can be expressed as
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.2.5 Proof of Theorem 3.3.4

Let {J [ j], j = 1,2, · · · ,J} be the efficient random draws from p(J |y). Then, we
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⌘⇣
q [ j]� ¯̄q

⌘0
=

1
J

J

Â
j=1

V [ j]
2 = V̄ qq (

¯̄J),

v̄1 =
¯̄q =

1
J

J

Â
j=1

q [ j],

Hence, bT (y,q 0) in (3.3.13) can be rewritten as

bT (y,q 0) = tr
⇣

V̄ qq (
¯̄J)
⌘�1

V̄ q (q 0)

�

= tr

(h
V̄ qq (

¯̄J)
i�1

"
1
J

J

Â
j=1

⇣
q [ j]�q 0

⌘⇣
q [ j]�q 0

⌘#)

= tr
⇢h

V̄ qq (
¯̄J)
i�1


V̄ qq

⇣
¯̄J
⌘
+
⇣

¯̄q �q 0

⌘⇣
¯̄q �q 0

⌘0��

= qq + tr
h
(v̄1 �q 0)(v̄1 �q 0)

0 V̄�1
2

i
,

which is a consistent estimator of T (y,q 0).

Following the notations of Magnus and Neudecker (2002) about matrix deriva-

tives, let

v( j)
2 = vech

⇣
V [ j]

2

⌘
, v[ j]1 = q [ j],

v̄2 = vech(V̄ 2) , v̄1 =
¯̄q , v̄ =

�
v̄01, v̄

0
2
�0
.

Note that the dimension of v̄2 is q⇤ ⇥1,q⇤ = qq (qq +1)/2. Hence, we have

∂ bT (y,q 0)

∂ v̄
=vec

�
Iqq

�0
⇢⇣

(v̄1 �q 0)
0 V̄�1

2

⌘0
⌦ Iqq

�
∂ v̄1

∂ v̄
+
h
V̄�1

2 ⌦ (v̄1 �q 0)
i ∂ v̄01

∂ v̄

�
⇥
Iqq ⌦ (v̄1 �q 0)(v̄1 �q 0)

0⇤⇣V̄�1
2 ⌦V̄�1

2

⌘ ∂vec(V̄ 2)

∂ v̄

�

=vec
�
Iqq

�0
✓⇣

(v̄1 �q 0)
0 V̄�1

2

⌘0
⌦ Iqq +V̄�1

2 ⌦ (v̄1 �q 0)

◆
∂ v̄1

∂ v̄

�
⇥
Iqq ⌦ (v̄1 �q 0)(v̄1 �q 0)

0⇤⇣V̄�1
2 ⌦V̄�1

2

⌘ ∂V̄ 2

∂ v̄

�
.
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where

∂ v̄1

∂ v̄
=

∂ v̄01
∂ v̄

=
⇥
Iqq ,0qq⇥q⇤

⇤
,
∂V̄ 2

∂ v̄
=

"
0q2

q⇥qq
,

✓
∂vec(V̄ 2)

∂ v̄2

◆

q2
q⇥q⇤

#
.

By the Delta method,

Var
⇣
bT (y,q 0)

⌘
=

∂ bT (y,q 0)

∂ v̄
Var (v̄)

 
∂ bT (y,q 0)

∂ v̄

!0

.

The expression of the NSE for bT (y,r) can also be obtained in the similar way.

bT (y,r) = tr

2

64

0

@
∂R

⇣
¯̄q
⌘

∂q 0 V̄ qq

⇣
¯̄J
⌘ ∂R

⇣
¯̄J
⌘

∂q

1

A
�1

V̄ q (r)

3

75

= m+ tr

8
><

>:

⇣
R
⇣

¯̄q
⌘
� r

⌘⇣
R
⇣

¯̄q
⌘
� r

⌘0
0

@
∂R

⇣
¯̄q
⌘

∂q 0 V̄ qq

⇣
¯̄J
⌘ ∂R

⇣
¯̄J
⌘

∂q

1

A
�19>=

>;

= m+ tr

(v̄3 � r)(v̄3 � r)0

⇣
V̄ 0

4V̄ 2V̄ 4

⌘�1
�
,

where similarly,

v̄3 = R

 
1
J

J

Â
j=1

q [ j]

!
= R(v̄1) , V̄ 4 =

∂R
⇣

1
J ÂJ

j=1 q [ j]
⌘

∂q
=

∂R(v̄1)

∂q
, v̄ =

�
v̄01, v̄

0
2
�0
.

So that,

∂ bT (y,r)
∂ v̄

=vec(Im)
0
⇢✓

(v̄3 � r)0
⇣

V̄ 0
4V̄ 2V̄ 4

⌘�1
◆0

⌦ Im

�
∂ v̄3

∂ v̄1

∂ v̄1

∂ v̄

+

⇣
V̄ 0

4V̄ 2V̄ 4

⌘�1
⌦ (v̄3 � r)

�
∂ v̄03
∂ v̄1

∂ v̄1

∂ v̄

+
⇥
Im ⌦ (v̄3 � r)(v̄3 � r)0

⇤⇣
V̄ 0

4V̄ 2V̄ 4

⌘�1
⌦
⇣

V̄ 0
4V̄ 2V̄ 4

⌘�1
�

⇥
∂vec

⇣
V̄ 0

4V̄ 2V̄ 4

⌘

∂ v̄

9
=

; ,
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where

∂vec
⇣

V̄ 0
4V̄ 2V̄ 4

⌘

∂ v̄
=
⇣
(V̄ 2V̄ 4)

0 ⌦ Im

⌘ ∂V̄ 0
4

∂ v̄1

∂ v̄1

∂ v̄
+
⇣

V̄ 4 ⌦V̄ 0
4

⌘ ∂V̄ 2

∂ v̄

+
⇣

Im ⌦V̄ 0
4V̄ 2

⌘ ∂V̄ 4

∂ v̄1

∂ v̄1

∂ v̄
,

where the derivatives of V̄ 4 and v̄3 depend on the form of the function R(q). By the

Delta method, we have

Var
⇣
bT (y,r)

⌘
=

∂ bT (y,r)
∂ v̄

Var (v̄)

 
∂ bT (y,r)

∂ v̄

!0

.

.3 Proofs in Chapter 4

.3.1 The Proof of Lemma 4.4.1

As in (4.4.4),

VN (q ;bc) =zN

Nobs

Â
i=1

lNg̃i (q ;bc) g̃i (q ;bc)0l 0
Nz 0

N

+
N
J

lNḡN,c (q ;bc)bSc ḡN,c (q ;bc)0l 0
N ,

For the first term, by Assumption 2 and Assumption 7, as N ! •, bc ! c0. And

in the framework of the structural model, {g̃i (q ;bc)}Nobs

i=1 are independent across i.

Combined with Assumption 1, 5 and 6, we have

zN

Nobs

Â
i=1

lNg̃i (q ;bc) g̃i (q ;bc)0lNzN
p! E

⇥
lgi (q ; c0)gi (q ; c0)

0l 0⇤ ,

where

gi (q ; c) = (gi,tmin (q ; c) , . . . ,gi,Tr (q ; c))0| {z }
Tm elements

.
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Similarly, by Assumption 2 and 7, as N ! •, bSc
p! Sc , bc ! c0. Combined with

Assumption 1, 8 and 9, we can have

N
J

lNḡN,c (q ;bc)bSc ḡN,c (q ;bc)0l 0
N ,

p! glE
⇥
gi,c (q ; c0)

⇤
ScE

⇥
gi,c (q ; c0)

0⇤l 0.

.3.2 The Proof of Theorem 4.4.1

We define

M (q) =�1
2

E [gi (q ; c0)]
0l 0W (q)lE [gi (q ; c0)] ,

where W (q)=V�1 (q)=
�

lE
⇥
gi (q ; c0)gi (q ; c0)

0⇤l + glE
⇥
gi,c (q ; c0)

⇤
ScE

⇥
gi,c (q ; c0)

0⇤l 0 �1,

where V (q) defined in Lemma 4.4.1. From the definition of criterion function

(4.4.3), under Assumption 1- 10 , we have

1
N

LN (q) =�1
2

ḡ(q ;bc)0l 0
NV�1

N (q ;bc)lNḡ(q ;bc) p! M (q) .

Further, in the framework, we implies that the matrix VN (q ;bc) and V (q) are pos-

itive definite for all q 2 Q. Thus, the as WN (q ;bc) = V�1
N (q ;bc) and W (q) =

V�1 (q). Due to W (q) > 0 and M (q 0) = 0, by Assumption 3, for any d > 0,

q 2 {q : kq �q 0k � d} ⇢ Q, we have M (q) < 0, so that M (q)� M (q 0) < 0.

Therefore, the Lemma 1 in Chernozukov and Hong (2003) is satisfied.

Since {gi,t (q ; c)} are independent across i, we have

p
NlNḡN (q 0; c0)

d! N
�
0,lSgl 0� ,

where Sg = E
⇥
gi (q 0; c0)gi (q 0; c0)

0⇤. If we use the GMM method to estimate the

parameter c0, for
p

NlNḡ(q 0;bc), expanding it around c0,
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p
NlNḡN (q 0;bc) =

p
NlN


ḡN (q 0; c0)+ ḡc (q 0; c̃)0 (bc �c0)+op

✓
1p
J

◆�

=
p

NlNḡN (q 0; c0)+

r
N
J

lNḡN,c (q 0; c̃)0
p

J (bc �c0)+op

 r
N
J

!
.

By Assumption 2, from the first-stage estimation,

p
J (bc �c0)

d! N
�
0,Sc

�
.

Following GP, since the first-stage estimator is obtained conditional on exogenous

structural models and mostly different data, then we can have

p
NlNḡN (q 0;bc) d! N

⇣
0,lSgl 0+ glG0

cScGcl 0
⌘
, (.3.1)

where Gc =E
⇥
—cgi (q 0; c0)

⇤
, g = limN!•

N
J , l = limN!• lN , Sg =E

⇥
gi (q 0; c0)gi (q 0; c0)

0⇤.

We can rewrite the criterion function as

LN (q) =� N
2
[lNḡN (q ;bc)]0WN (q ;bc)lNḡN (q ;bc)

=� N
2
[lNḡN (q ;bc)]0

"
zN

Nobs

Â
i=1

lNg̃i (q ;bc) g̃i (q ;bc)0l 0
Nz 0

N

+
N
J

lNḡN,c (q ;bc)bSc ḡN,c (q ;bc)0l 0
N

��1
lNḡN (q ;bc)

=� N
2

tr

(
lNḡN (q ;bc) ḡN (q ;bc)0l 0

N

"
zN

Nobs

Â
i=1

lNg̃i (q ;bc) g̃i (q ;bc)0l 0
Nz 0

N

⇥ +
N
J

lNḡN,c (q ;bc)bSc ḡN,c (q ;bc)0l 0
N

��1
)

=� N
2

tr
⇥
C (q)D�1 (q)

⇤
,

where C (q) and D(q) are symmetric. Then following Magnus and Neudecker
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(1995), we have

d
�

tr
⇥
C (q)D�1 (q)

⇤ 
=tr

�
dC (q)D�1 (q)+C (q)dD�1 (q)

 

=tr
�

D�1 (q)dC (q)+C (q)D�1 (q)dD(q)D�1 (q)
 

=tr
�

D�1 (q)dC (q)�D�1 (q)C (q)D�1 (q)dD(q)
 
.

Before we derive the first-order and second-order differentiation of LN (q), we con-

sider the following formula,

tr{K1 (q)dD(q)K2 (q)}

=tr

(
K1 (q)zNlNd

"
Nobs

Â
i=1

g̃i (q ;bc) g̃i (q ;bc)0
#

l 0
Nz 0

NK2 (q)

)

+
N
J

tr
n

K1 (q)lNd
h
ḡN,c (q ;bc)bSc ḡN,c (q ;bc)0

i
l 0

NK2 (q)
o

=
Nobs

Â
i=1

tr
�

K1 (q)zNlN
⇥
—q g̃i (q ;bc)dq g̃i (q ;bc)0+ g̃i (q ;bc)dq 0—q g̃i (q ;bc)0

⇤
l 0

Nz 0
NK2 (q)

 
+

N
J

tr
n

K1 (q)lN

h
—q ḡN,c (q ;bc)dqbSc ḡN,c (q ;bc)0+ ḡN,c (q ;bc)bScdq 0—q ḡN,c (q ;bc)0

i
l 0

NK2 (q)
o

=
Nobs

Â
i=1

tr
�

g̃i (q ;bc)0l 0
Nz 0

NK2 (q)K1 (q)zNlN—q g̃i (q ;bc)dq
 
+

Nobs

Â
i=1

tr
�

g̃i (q ;bc)0l 0
Nz 0

NK1 (q)0K2 (q)0 zNlN—q g̃i (q ;bc)dq
 
+

N
J

tr
n
bSc ḡN,c (q ;bc)0l 0

NK2 (q)K1 (q)lN—q ḡN,c (q ;bc)dq
o
+

N
J

tr
n
bSc ḡN,c (q ;bc)0l 0

NK1 (q)0K2 (q)0lN—q ḡN,c (q ;bc)dq
o
. (.3.2)

152



Then, for the first term tr
⇥
D�1 (q)dC (q)

⇤
,

tr
⇥
D�1 (q)dC (q)

⇤

=tr
�

D�1 (q)lNd [ḡN (q ;bc)] ḡN (q ;bc)0l 0
N +D�1 (q)lNḡN (q ;bc) [dḡN (q ;bc)]0l 0

N
 

=tr
�

D�1 (q)lN—q ḡN (q ;bc)dq ḡN (q ;bc)0l 0
N +D�1 (q)lNḡN (q ;bc) [—q ḡN (q ;bc)dq ]0l 0

N
 

=tr
�

ḡN (q ;bc)0l 0
ND�1 (q)lN—q ḡN (q ;bc)dq +lN—q ḡN (q ;bc)dq ḡN (q ;bc)0l 0

ND�1 (q)
 

=2tr
�

ḡN (q ;bc)0l 0
ND�1 (q)lN—q ḡN (q ;bc)dq

 

=2tr
�

ḡN (q ;bc)0l 0
NWN (q ;bc)lN—q ḡN (q ;bc)dq

 
.

By formula (.3.2),

tr
�

D�1 (q)C (q)D�1 (q)dD(q)
 

=2
Nobs

Â
i=1

tr
�

g̃i (q ;bc)0l 0
Nz 0

ND�1 (q)C (q)D�1 (q)zNlN—q g̃i (q ;bc)dq
 
+

2N
J

tr
n
bSc ḡN,c (q ;bc)0l 0

ND�1 (q)C (q)D�1 (q)lN—q ḡN,c (q ;bc)dq
o

=2
Nobs

Â
i=1

tr
�

g̃i (q ;bc)0l 0
Nz 0

NWN (q ;bc)lNḡN (q ;bc) ḡN (q ;bc)0l 0
NWN (q ;bc)zNlN—q g̃i (q ;bc)dq

 
+

2N
J

tr
n
bSc ḡN,c (q ;bc)0l 0

NWN (q ;bc)lNḡN (q ;bc) ḡN (q ;bc)0l 0
NWN (q ;bc)lN—q ḡN,c (q ;bc)dq

o

Therefore,

dLN (q)

=�Ntr
�

ḡN (q ;bc)0l 0
NWN (q ;bc)lN—q ḡN (q ;bc)dq

 
+

N
Nobs

Â
i=1

tr
�

g̃i (q ;bc)0l 0
Nz 0

NWN (q ;bc)lNḡN (q ;bc) ḡN (q ;bc)0l 0
NWN (q ;bc)zNlN—q g̃i (q ;bc)dq

 
+

N2

J
tr
n
bSc ḡN,c (q ;bc)0l 0

NWN (q ;bc)lNḡN (q ;bc) ḡN (q ;bc)0l 0
NWN (q ;bc)lN—q ḡN,c (q ;bc)dq

o
,
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which implies,

—q LN (q)

=�N—q ḡN (q ;bc)0l 0
NWN (q ;bc)lNḡN (q ;bc)+

N
Nobs

Â
i=1

—q g̃i (q ;bc)0l 0
Nz 0

NWN (q ;bc)lNḡN (q ;bc) ḡN (q ;bc)0l 0
NWN (q ;bc)zNlNg̃i (q ;bc)+

N2

J
—q ḡN,c (q ;bc)0l 0

NWN (q ;bc)lNḡN (q ;bc) ḡN (q ;bc)0l 0
NWN (q ;bc)lNḡN,c (q ;bc)bSc .

By (.3.1),

ḡN (q 0;bc) = op

✓
1p
n

◆
,WN (q 0;bc) = Op (1) , (.3.3)

it is obvious that

N
Nobs

Â
i=1

—q g̃i (q 0;bc)0l 0
Nz 0

NWN (q 0;bc)lNḡN (q 0;bc) ḡN (q 0;bc)0l 0
NWN (q 0;bc)zNlNg̃i (q 0;bc)

=N2Op

✓
1p
N

◆
op

✓
1p
N

◆
op

✓
1p
N

◆
Op

✓
1p
N

◆

=op (1) .

N2

J
—q ḡN,c (q 0;bc)0l 0

NWN (q 0;bc)lNḡN (q 0;bc) ḡN (q 0;bc)0l 0
NWN (q 0;bc)lNḡN,c (q 0;bc)bSc

=NOp (1)op

✓
1p
N

◆
op

✓
1p
N

◆
Op (1) = op (1) .

Therefore,

—q LN (q 0)p
N

=�—q ḡN (q 0;bc)0l 0
NWN (q 0;bc)

p
NlNḡN (q 0;bc)+op (1)

d!N
�
0,G0

q l 0V�1 (q 0)lG0
q
�
,

where V�1 (q 0) =
⇣

lSgl 0+ glG0
cScGcl 0

⌘�1
and Gq = —q E [gi,t (q 0; c0)]. This

is because from (.3.1),

p
NlNḡ(q 0;bc) d! N

⇣
0,lSgl 0+ glG0

cScGcl 0
⌘
,
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where Gc =E
⇥
—c ḡ(q 0; c0)

⇤
, g = limN!•

N
J , l = limN!• lN , Sg =E

⇥
gi (q 0; c0)gi (q 0; c0)

0⇤

and

—q ḡN (q 0;bc)0 p! —q E [gi,t (q 0; c0)] = Gq ,

WN (q 0;bc) p!V�1 (q 0)

=
�

lE
⇥
gi (q 0; c0)gi (q 0; c0)

0⇤l + glE
⇥
gi,c (q 0; c0)

⇤
ScE

⇥
gi,c (q 0; c0)

0⇤l 0 �1

=
⇣

lSgl 0+ glG0
cScGcl 0

⌘�1
.

Now turn to the second derivative of the criterion function, which is the Hessian

matrix of Ln (q). The second order differentiation,

d2�tr
⇥
A(q)B�1 (q)

⇤ 

=d
�
�tr

�
ḡN (q ;bc)0l 0

NWN (q ;bc)lN—q ḡN (q ;bc)dq
 
+

Nobs

Â
i=1

tr
�

g̃i (q ;bc)0l 0
Nz 0

NWN (q ;bc)lNḡN (q ;bc) ḡN (q ;bc)0l 0
NWN (q ;bc)zNlN—q g̃i (q ;bc)dq

 
+

N2

J
tr
n
bSc ḡN,c (q ;bc)0l 0

NWN (q ;bc)lNḡN (q ;bc) ḡN (q ;bc)0l 0
NWN (q ;bc)lN—q ḡN,c (q ;bc)dq

o�
.

Following the preceding procedure to derive the first-order differentiation,, we can

obtain the form of —qq 0Ln (q). Due to Assumptions 5-9, for any d > 0, —qq 0Ln (q)

is continuous when kq �q 0k  d and we can have

—qq 0LN (q 0)

N
=�—q ḡN (q 0;bc)0l 0

NWN (q 0;bc)lN—q ḡN (q 0;bc)+op (1) .

Meanwhile, we have

M (q) =�1
2

E [gi (q ; c0)]
0l 0W (q)lE [gi (q ; c0)] ,

where W (q)=V�1 (q)=
�

lE
⇥
gi (q ; c0)gi (q ; c0)

0⇤l + glE
⇥
gi,c (q ; c0)

⇤
ScE

⇥
gi,c (q ; c0)

0⇤l 0 �1.
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Then,

—qq 0M (q) =�E [—q gi (q ; c0)]
0l 0W (q)lE [—q gi (q ; c0)]�

{W (q)E [gi (q ; c0)]⌦ Id}E [—qq 0gi (q ; c0)]�

� 1
2

E [gi (q ; c0)]
0l 0—qq 0W (q)lE [gi (q ; c0)]

—qq 0M (q 0) =�E [gi (q 0,c0)]
0V�1 (q 0)E [gi (q 0,c0)]+op (1) .

And thus,
—qq 0LN (q 0)

N
�—qq 0M (q 0)

p! 0.

Then for e > 0, N > 0, 9d1 (e,N)> 0, 8q 2 {q : kq �q 0k< d1 (e,N)}, due to the

continuity,

sup
q

����
—qq 0LN (q)

N
� —qq 0LN (q 0)

N

����<
1
3

e.

9d2 (e)> 0, 8q 2 {q : kq �q 0k< d2 (e)}, due to continuity,

sup
q

k—qq 0M (q)�—qq 0M (q 0)k<
1
3

e.

And for e > 0, 9N (e,e)> 0, 8N > N (e,e),

P
⇢����

—qq 0LN (q 0)

N
�—qq 0M (q 0)

����<
1
3

e
�
� 1� e.

Therefore, for any e > 0, 8N > N (e,e), let d (e,N) = min{d1 (e,N) ,d2 (e)}, 8q 2

{q : kq �q 0k< d (e,N)},

sup
q

����
—qq 0LN (q)

N
�—qq 0M (q)

���� sup
q

����
—qq 0LN (q)

N
� —qq 0LN (q 0)

N

����+ sup
q

k—qq 0M (q)�—qq 0M (q 0)k

+

����
—qq 0Ln (q 0)

n
�—qq 0M (q 0)

����

<
2
3

e +
����

—qq 0LN (q 0)

N
�—qq 0M (q 0)

���� .

156



Then

(
sup
q

����
—qq 0LN (q 0)

N
�—qq 0M (q 0)

����<
1
3

e

)
⇢
(

sup
q

����
—qq 0LN (q)

N
�—qq 0M (q)

����< e

)
,

which implies

P

8
<

: sup
kq�q 0k<d (e)

����
—qq 0LN (q)

N
�—qq 0M (q)

����< e

9
=

;� 1� e,

in other words, for e > 0,

limsup
n!•

P

8
<

: sup
kq�q 0k<d (e)

����
—qq 0LN (q)

N
�—qq 0M (q)

����> e

9
=

;= 0

Therefore, the Lemma 2 in CH (2003) is satisfied. By the Theorem 2 in CH (2003),

for the etimator bq defined in (4.4.7), we can have

p
N
⇣
bq �q 0

⌘
d! t +N (0,Sq ) ,

where

Sq =


G0

q l 0
⇣

lSgl 0+ glG0
cScGcl 0

⌘�1
lGq

��1
,

Gq = —q E [gi (q 0; c0)], Gc = E
⇥
—cgi (q 0; c0)

⇤
, g = limN!•

N
J , l = limN!• lN ,

Sg =E
⇥
gi (q 0; c0)gi (q 0; c0)

0⇤, t = arg infz2Rd
�R

Rd r (z�u) f
�
u;0,G0

q l 0W (q 0)lGq
�

du
 

.

.3.3 The proof of Theorem 4.4.3

Lemma .3.1. By the definition of D j in (4.4.16), 8q 2 Q,

ḡN (q ;bc)� ḡ j
N (q ;bc) = Op

�
D j
�
.

ḡN,c (q ;bc)� ḡ j
N,c (q ;bc) = Op

�
D j
�
,

V j
N (q ;bc)�VN (q ;bc) = Op

�
D j
�
.
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Proof: By definition, for any q 2 Q,

ḡN (q ;bc)= (ḡtmin (q ;bc) , . . . , ḡTr (q ;bc))0=
 

1
Ntmin

Ntmin

Â
i=1

gi,tmin (q ;bc) , . . . , 1
NTr

NTr

Â
i=1

gi,Tr (q ;bc)
!0

.

Let t 2 [tmin,Tr], for gi,t (q ; c)=Cd
i,t �Ct

⇣
Md

i,t ,z
d
i,t ;q ,c

⌘
, g j

i,t (q ; c)=Cd
i,t �C j

t

⇣
Md

i,t ,z
d
i,t ;q ,c

⌘
,

ḡt (q ;bc)� ḡ j
t (q ;bc) = 1

Nt

Nt

Â
i=1

h
gi,t (q ;bc)�g j

i,t (q ;bc)
i

=
1
Nt

Nt

Â
i=1

h
Ct

⇣
Md

i,t ,z
d
i,t ;q ,bc

⌘
�C j

t

⇣
Md

i,t ,z
d
i,t ;q ,bc

⌘i

=
1
Nt

Nt

Â
i=1

EPi,t

("
ct

 
Md

i,t

Pi,t
,zd

i,t ;q ,bc
!
� c j

t

 
Md

i,t

Pi,t
,zd

i,t ;q ,bc
!#

Pi,t

)

D j
1
Nt

Nt

Â
i=1

EPi,t (Pi,t) = Op
�
D j
�
,

which implies

ḡN (q ;bc)� ḡ j
N (q ;bc) = Op

�
D j
�
.

And similarly, we can also have

ḡN,c (q ;bc)� ḡ j
N,c (q ;bc) = Op

�
D j
�
.

And thus for,

V j
N (q ;bc) =zN

Nobs

Â
i=1

lNg̃ j
i (q ;bc) g̃ j

i (q ;bc)0l 0
Nz 0

N

+
N
J

lNḡ j
N,c (q ;bc)bSc ḡ j

N,c (q ;bc)0l 0
N ,

the first term, since g̃ j
i (q ;bc) and g̃i (q ;bc) are continuous and Q is compact by as-
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sumptions,

zN

Nobs

Â
i=1

lNg̃ j
i (q ;bc) g̃ j

i (q ;bc)0l 0
Nz 0

N �zN

Nobs

Â
i=1

lNg̃i (q ;bc) g̃i (q ;bc)0l 0
Nz 0

N

=zNlN

Nobs

Â
i=1

h
g̃ j

i (q ;bc) g̃ j
i (q ;bc)0 � g̃i (q ;bc) g̃i (q ;bc)0

i
l 0

Nz 0
N

=zNlN

Nobs

Â
i=1

h
g̃ j

i (q ;bc) g̃ j
i (q ;bc)0 � g̃ j

i (q ;bc) g̃i (q ;bc)0
i

l 0
Nz 0

N+

zNlN

Nobs

Â
i=1

h
g̃ j

i (q ;bc) g̃i (q ;bc)0 � g̃i (q ;bc) g̃i (q ;bc)0
i

l 0
Nz 0

N

=Op
�
D j
�
.

And the second term is similar, which means

V j
N (q ;bc)�VN (q ;bc) = Op

�
D j
�
.

The Proof of Theorem 4.4.3: The criterion function for the case using analyti-

cal solution and the one approximated by numerical methods are

LN (q) =�N
2

ḡN (q ;bc)0l 0
NWN (q ;bc)lNḡN (q ;bc) ,

and

L j
N (q) =�N

2
ḡ j

N (q ;bc)0l 0
NW j

N (q ;bc)lNḡ j
N (q ;bc) ,

respectively. By Lemma .3.1, if ND j ! 0, as N ! •, for all q 2 Q,

V j
N (q ;bc)�VN (q ;bc) = Op

�
D j
�
,
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so that

h
V j

N (q ;bc)
i�1 h

V j
N (q ;bc)�VN (q ;bc)

i
V�1

N (q ;bc) =V�1
N (q ;bc)�

h
V j

N (q ;bc)
i�1

=Op (1)O
�
D j
�

Op (1)

=Op
�
D j
�
.

So that,

sup
q2Q

n
L j

N (q)� L̃ j
N (q)

o

= sup
q2Q

⇢
�N

2
ḡ j

N (q ;bc)0l 0
NW j

N (q ;bc)lNḡ j
N (q ;bc)+ N

2
ḡ j

N (q ;bc)0l 0
NWN (q ;bc)lNḡ j

N (q ;bc)
�

= sup
q2Q

⇢
�N

2
ḡ j

N (q ;bc)0l 0
N

h
W j

N (q ;bc)�WN (q ;bc)
i

lNḡ j
N (q ;bc)

�

=NOp
�
D j
�
= Op

�
ND j

�
.

Therefore, denote W̃N (q ;bc) = l 0
NWN (q ;bc)lN ,

sup
q2Q

���LN (q)�L j
N (q)

���

 sup
q2Q

���LN (q)� L̃ j
N (q)

���+ sup
q2Q

���L j
N (q)� L̃ j

N (q)
���

 sup
q2Q

����
N
2

ḡ j
N (q ;bc)0W̃N (q ;bc) ḡ j

N (q ;bc)� N
2

ḡ j
N (q ;bc)0W̃N (q ;bc) ḡN (q ;bc)

����+

sup
q2Q

����
N
2

ḡ j
N (q ;bc)0W̃N (q ;bc) ḡN (q ;bc)� N

2
ḡN (q ;bc)0W̃N (q ;bc) ḡN (q ;bc)

����+Op
�
ND j

�

N
2

sup
q2Q

���ḡ j
N (q ;bc)0W̃N (q ;bc)

��� sup
q2Q

���ḡ j
N (q ;bc)� ḡN (q ;bc)

���+

N
2

sup
q2Q

��ḡN (q ;bc)0W̃N (q ;bc)
�� sup

q2Q

���ḡ j
N (q ;bc)� ḡN (q ;bc)

���+Op
�
ND j

�

=Op
�
ND j

�
.

Therefore, when ND j ! 0, as N ! •, LN (q)�L j
N (q) p! 0 over Q. Further, due to
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the compactness of Q and the Taylor expansion,

sup
q2Q

���exp [LN (q)]� exp
h
L j

N (q)
i���

= sup
q2Q

kexp [LN (q)]k sup
q2Q

���exp
h
LN (q)�L j

N (q)
i
�1

���

C1 sup
q2Q

���exp
⇣

LN
�
q̃
�
�L j

N
�
q̃
�⌘h

LN (q)�L j
N (q)

i���

C1 sup
q2Q

���exp
⇣

LN
�
q̃
�
�L j

N
�
q̃
�⌘��� sup

q2Q

���
h
LN (q)�L j

N (q)
i���

⇡C1
�
1+Op

�
ND j

��
Op

�
ND j

�

=Op
�
ND j

�
, (.3.4)

where q̃ is between 0 and q .

Z

Q
exp

h
L j

N (q)
i

p (q)dq �
Z

Q
exp [LN (q)]p (q)dq

=
Z

Q
exp

h
L j

N (q)�LN (q)
i

p (q)dq

 sup
q2Q

���exp [LN (q)]� exp
h
L j

N (q)
i���

Z

Q
p (q)dq

=Op
�
ND j

�
. (.3.5)

Following the proof of Theorem 4.4.1, we define

J (q 0) =�E [—q gi (q 0,c0)]
0V�1 (q 0)E [—q gi (q 0,c0)] ,

and

h ⌘
p

N (q �TN) ,TN = q 0 +
1p
N

UN ,UN =
1p
N

J�1 (q 0)—q LN (q 0) ,

so that, let HN =
�p

N (q �q 0)�UN : q 2 Q
 

, pN (q) and p j
N (q) can be trans-
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formed into 1p
N

p⇤N (h) and 1p
N

p⇤ j
N (h), respectively, where,

p⇤ j
N (h)=

p
⇣

TN + hp
N

⌘
exp

h
L j

N

⇣
TN + hp

N

⌘i

R
HN

p
⇣

TN + hp
N

⌘
exp

h
L j

N

⇣
TN + hp

N

⌘i
dh

=
p
⇣

TN + hp
N

⌘
exp

h
L j

N

⇣
TN + hp

N

⌘i

C j ,

p⇤N (h)=
p
⇣

TN + hp
N

⌘
exp

h
LN

⇣
TN + hp

N

⌘i

R
HN

p
⇣

TN + hp
N

⌘
exp

h
LN

⇣
TN + hp

N

⌘i
dh

=
p
⇣

TN + hp
N

⌘
exp

h
LN

⇣
TN + hp

N

⌘i

C
.

The corresponding transformed risk functions of R j
N (x ) and RN (x ) are denoted as

Q j
N (z ) and QN (z ), respectively, where

Q j
N (z ) =

Z

HN
r (h+UN �z ) p⇤ j

N (h)dh,

QN (z ) =
Z

HN
r (h+UN �z ) p⇤N (h)dh.

As in Theorem 4.4.1, the Lemma 1 and Lemma 2 in CH (2003) are satisfied, which

implies that the Theorem 1 and Theorem 2 in their paper hold. So that we have for

any 0  a < •,
Z

HN
khka |p⇤N (h)� p• (h)|dh

p! 0,

where

p• (h) =

s
|J (q 0)|
(2p)d exp

✓
�1

2
h0J (q 0)h

◆
,

and

lim
N!•

Z

HN
khka p• (h)dh =Ca < •.

Q• (z ) =
Z

Rd
r (h+UN �z ) p• (h)dh.
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Therefore,

Z

HN
khka

���p⇤ j
N (h)� p• (h)

���dh


Z

HN
khka

���p⇤ j
N (h)� p⇤N (h)

���dh+
Z

HN
khka |p⇤N (h)� p• (h)|dh

=
Z

HN
khka p

✓
TN +

hp
N

◆������

exp
h
L j

N

⇣
TN + hp

N

⌘i

C j �
exp

h
LN

⇣
TN + hp

N

⌘i

C

������
dh+op (1)


Z

HN
khka p

✓
TN +

hp
N

◆������

exp
h
L j

N

⇣
TN + hp

N

⌘i

C j �
exp

h
LN

⇣
TN + hp

N

⌘i

C j

������
dh+

Z

HN
khka p

✓
TN +

hp
N

◆������

exp
h
LN

⇣
TN + hp

N

⌘i

C j �
exp

h
LN

⇣
TN + hp

N

⌘i

C

������
dh+op (1) .

For the second term, it is obvious that

C j =
Z

HN
p
✓

TN +
hp
N

◆
exp


L j

N

✓
TN +

hp
N

◆�
dh =

Z

Q
exp

h
L j

N (q)
i

p (q)dq ,

C =
Z

HN
p
✓

TN +
hp
N

◆
exp


LN

✓
TN +

hp
N

◆�
dh =

Z

Q
exp [LN (q)]p (q)dq .

which implies C j �C = Op
�
ND j

�
by (.3.5) and then for the first term, since ND j !

0,

Z

HN
khka p

✓
TN +

hp
N

◆������

exp
h
LN

⇣
TN + hp

N

⌘i

C j �
exp

h
LN

⇣
TN + hp

N

⌘i

C

������
dh

=

����
1

C j �
1
C

����
Z

HN
khka p

✓
TN +

hp
N

◆
exp


LN

✓
TN +

hp
N

◆�
dh

=

����
1

C j �
1
C

����
Z

HN
khka p• (h)dh+op (1)

=Ca

����
1

C j �
1
C

����+op (1) = Op
�
ND j

�
.
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For the second term, by the Taylor expansion and (.3.5)

Z

HN
khka p

✓
TN +

hp
N

◆������

exp
h
L j

N

⇣
TN + hp

N

⌘i

C j �
exp

h
LN

⇣
TN + hp

N

⌘i

C j

������
dh

=
C
C j

Z

HN
khka 1

C
p
✓

TN +
hp
N

◆
exp


LN

✓
TN +

hp
N

◆�

⇥
����L

j
N

✓
TN +

hp
N

◆
�LN

✓
TN +

hp
N

◆
+op

�
ND j

�����dh

=Op (1)Op
�
ND j

�Z

HN
khka 1

C
p
✓

TN +
hp
N

◆
exp


LN

✓
TN +

hp
N

◆�
dh

=Op (1)Op
�
ND j

�
Ca

=Op
�
ND j

�
.

Therefore,
Z

HN
khka

���p⇤ j
N (h)� p• (h)

���dh = Op
�
ND j

�
.

By the Assumption 3, r (u)  1+ |u|p and by |a+b|p  2p�1 |a|p + 2p�1 |b|p for

p � 1. For any fixed z ,

���Q j
N (z )�Q• (z )

���
Z

HN
(1+kh+UN �zkp)

���p⇤ j
N (h)� p• (h)

���dh

+
Z

Rd\HN
(1+kh+UN �zkp) p• (h)dh


Z

HN

⇣
1+2p�1 khkp�1 +2p�1 kUN �zkp�1

⌘���p⇤ j
N (h)� p• (h)

���dh

+
Z

Rd\HN

⇣
1+2p�1 khkp�1 +2p�1 kUN �zkp�1

⌘
p• (h)dh

=
Z

HN

⇣
1+2p�1 khkp�1 +Op (1)

⌘���p⇤ j
N (h)� p• (h)

���dh

+
Z

Rd\HN

⇣
1+2p�1 khkp�1 +Op (1)

⌘
p• (h)dh.

From above discussions,

Z

HN

⇣
1+2p�1 khkp�1 +Op (1)

⌘���p⇤ j
N (h)� p• (h)

���dh = Op
�
ND j

�
,
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and by the exponentially small tails of the normal density,

Z

Rd\HN

⇣
1+2p�1 khkp�1 +Op (1)

⌘
p• (h)dh = op (1) .

Hence, if ND j ! 0, given fixed z , Q j
N (z )�Q• (z ) p! 0.

Then, we show that both Q j
N (z ) and Q• (z ) are convex, for any given z and z̃ ,

and a 2 [0,1],

Q j
N

⇣
az +(1�a) z̃

⌘
=
Z

HN
r
h
h+UN �az � (1�a) z̃

i
p j⇤

N (h)dh

=
Z

HN
r
h
a (h+UN �z )+(1�a)

⇣
h+UN � z̃

⌘i
p j⇤

N (h)dh

a
Z

HN
r (h+UN �z ) p j⇤

N (h)dh

+(1�a)
Z

HN
r
⇣

h+UN � z̃
⌘

p j⇤
N (h)dh

=aQ j
N (z )+(1�a)Q j

N

⇣
z̃
⌘
.

Hence Q j
N (z ) is convex. Similarly, Q• (z ) is also convex. Further,

Q• (z )
Z

HN

⇣
1+2p�1 khkp�1 +2p�1 kUN �zkp�1

⌘
p• (h)dh

= 1+2p�1
Z

HN
khkp�1 p• (h)dh+2p�1

Z

HN
kUN �zkp�1 p• (h)dh

= Op (1) .

And by the same logic Q j
N (z ) = Op (1).

If ND j ! 0, by the convexity lemma of Polard (1991), pointwise convergence

entails the uniform convergence over the compact set B,

sup
z2B

���Q j
N (z )�Q• (z )

��� p! 0.

For Q• (z ) =
R

Rd r (h+UN �z ) p• (h)dh, it is minimized at z ⇤ = t +UN = Op (1).

And Q j
N (z ) is minimized at

p
N
⇣
bq

j
�q 0

⌘
. Following CH, the uniform conver-
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gence property above as well as the convexity property imply that
p

N
⇣
bq

j
�q 0

⌘
=

UN + t +op (1). Combined with the fact that

UN =
1p
N

J�1 (q 0)—q LN (q 0)
d! N (0,Sq ) ,

the results in the theorem follows.

.3.4 The Proof of Corollary 4.4.4

The asymptotic theory is easily obtained from Theorem 4.4.3. For

E j


N
⇣

q � q̄ j
⌘⇣

q � q̄ j
⌘0���� ·

�
=
Z

Q
N
⇣

q � q̄ j
⌘⇣

q � q̄ j
⌘0

p j
N (q)dq ,

we let

h ⌘
p

N (q �TN) ,TN = q 0 +
1p
N

UN ,UN =
1p
N

J�1 (q 0)—q LN (q 0) ,

then

q =
hp
N
+TN , q̄

j
=

h̄ j
p

N
+TN , h̄ j =

Z

HN
hp⇤ j

N (h)dh,

so that

q � q̄ j
=

1p
N

�
h� h̄ j� .

Therefore,

Z

Q
N
⇣

q � q̄ j
⌘⇣

q � q̄ j
⌘0

p j
N (q)dq

=
Z

HN

�
h� h̄ j��h� h̄ j�0 p⇤ j

N (h)dh

=
Z

HN
hh0p⇤ j

N (h)dh� h̄ jh̄ j0,

166



As in Theorem 4.4.3, if ND j ! 0,
R

HN
khka

���p⇤ j
N (h)� p• (h)

���dh = op (1), which

implies

h̄ jh̄ j0 =
Z

HN
hp⇤ j

N (h)dh
Z

HN
h0p⇤ j

N (h)dh

p!
Z

Rd
hp• (h)dh

Z

Rd
h0p• (h)dh

=h̄h̄0,

and
Z

HN
hh0p⇤ j

N (h)dh
p!
Z

Rd
hh0p• (h)dh.

Therefore,

Z

HN

�
h� h̄ j��h� h̄ j�0 p⇤ j

N (h)dh
p!
Z

HN

�
h� h̄

��
h� h̄

�0 p⇤N (h)dh

=J�1 (q 0)

=�—qq 0M (q 0)

=Sg.

That is, if ND j ! 0 as N ! •,

Z

Q
N
⇣

q � q̄ j
⌘⇣

q � q̄ j
⌘0

p j
N (q)dq = Sg +op (1) .

.4 The Details of Estimation and Computation

.4.1 The Computation of Bias and Root Mean Square Error

This subsection shows how to compute the bias and RMSE. Assume the true value

of the target parameter x is x0 and {x̂m}M
m=1 is the set of estimates of x in M Monte

Carlo replications. The bias is defined as

Bias(x) =
1
M

M

Â
m=1

x̂m � x0.
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The root mean square error is defined as

RMSE (x) =

s
1
M

M

Â
m=1

(x̂m � x0)
2.

.4.2 The Endogenous Grid Method for the Model (4.2.7)

The application of EGM for model (4.2.7) is documented in Algorithm 3.

Algorithm 3 The Endogenous Grid Method for Dynamic Model (4.2.7)
1: Inputs: Optimal consumption at period t + 1, c j (��!mt+1,zt+1;q ,c) and the en-

dogenous grid at period t +1, ��!mt+1.
2: Form an exogenous ascending grid over end-of-period wealth at period t, de-

noted as
�!
At =

�
Ak

t
 j

k=1, where Ak
t > Ak�1

t , 8k 2 {2, . . . , j} .
3: for k = 1 to j do

4: Compute ck
i,t =

⇢
b0REVt+1,et+1,zi,t+1


v(zt+1;h0)
v(zt ;h0)

(Gt+1Vt+1)
�r c j �mk

t+1,zt+1;q ,c
���� 1

r

with mk
t+1 =

RAk
t

Gt+1Vt+1
+ et+1.

5: Compute mk
t = ck

t +Ak
t .

6: end for
7: Store the endogenous grid. �!mt =

�
mk

t
 j

k=1.
8: Store the corresponding optimal consumption at period t. c j (�!mt ,zt ;q ,c) =�

ck
t
 j

k=1
9: Ouputs: c j (�!mt ,zt ;q ,c), �!mt .

Note:

(i) In Step 4, numerical method is used.

• EVt+1,et+1,zi,t+1 is the expectation with respect to Vt+1,et+1 and zt+1. The
expectation is numerically evaluated by using Gauss-Hermite quadra-
ture method.

• The algorithm solves the model backwards, therefore
c j �mk

t+1,zt+1;q ,c
�

is the interpolated value of optimal consump-
tion at period t +1 to approximate the income shocks.

(ii) During the EGM step, as in Carroll (2006), the credit constraints are dealt with
by setting the smallest possible end-of-period resources A1

t equal 0. After
operating the EGM, due to the monotonicity of saving, m1

t is the threshold
value so that when mt < m1

t , the optimal consumption ct = mt .
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Figure 1: The particle points selected during the estimation

.4.3 The details of the estimation procedure for Section 4.5.1

During the estimation for the model (4.5.1), let K1 = 12800, K2 = 3840, K = 2560,

d = 0.5 and the cutoff value L = �10. The number of grid to solve the model is

100. The perturbation variance is S = diag(0.0001,0.04), where 0.0001 and 0.04

are for b and r , respectively. We use the case where Nobs = 3000 for illustration.

Figure 1 plots the particle selected during the estimation procedure. As the pro-

cess goes on, the area shrinks very quickly. The area of the first particle selection

is wide but starting from the second selection, the area is very narrow. After the

fourth particle points selection, we collect all the particles and select a subset of

them based on the threshold value L. Afterwards, we uniformly choose K points

from the subset. Based on these K selected particles, we construct a proposal dis-

tribution – a mixture normal distribution. At last, we draw K3 samples from the

proposal distribution.

The subset of particles and the contour of the quasi-posterior density are plotted

in Figure 2. The left panel is the contour plot and the right panel is the contour plot

plus the subset of particles. We can readily find that the particles cover the area with

significant density value quite well, which justifies that the proposal distribution is

very close to the quasi-density function.

We can see from the left panel of Figure 3. The area with significant weights
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Figure 2: The contour of the quasi-posterior density function and finally selected
particle points

Figure 3: The finally selected particle points and samples from proposal distribution
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is very narrow. The algorithm can identify the area quite accurately. After the final

selection, we draw K3 samples from the proposal distribution. From the right panel

of Figure 3, we can find that the finally selected particles are almost covered by the

samples from the proposal distribution.

.4.4 The Kalman Filter for the Income Process

When there is not income shock, we have

zit = U+Bxit +yit ,

xit = Ct +Dxit�1 +uit ,

where U= 0, B= 1, zit = logYit , xit = logPit , yit = logeit ⇠ N
�
0,s2

e
�
, Ct = logGt ,

D= 1, uit = logVit ⇠N
⇣

0,s2
V

⌘
. According to the dataset, Yit is observed household

income, Gt , s2
e and s2

V are known. The permanent income component Pit is the one

that we want to recover. In the following, the subscripts i is suppressed.

The Kalman filter consists of following three steps. Since the error terms are

all normal and the structure is linear, all the variables in the system are normal

distributed. Thus we only need to filter the mean and variance. Initialize the mean

and variance at the beginning, µ0|0 = E [x0|F0], S0|0 = Var (x0|F0), where F0 is the

information set known at time 0. Later the details of initialization is discussed.

• Initialize µ0|0 and S0|0. At the beginning of time t, we have µt�1|t�1, St�1|t�1.

• One-step-ahead predictive distribution of xt |Ft�1 ⇠ N
�
µt|t�1,St|t�1

�
:

µt|t�1 ⌘ E [xt |Ft�1] =E [Ct +Dxit�1|Ft�1]

=Ct +Dµt�1|t�1,
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St|t�1 ⌘Var [xt |Ft�1] =E [Var (xt |Ft�1) |Ft�1]+Var [E (xt |Ft�1) |Ft�1]

=s2
V +D2St�1|t�1,

where Ft denotes the information known up to time t.

• One-step-ahead predictive distribution of zt |Ft�1 ⇠ N
�

ft|t�1,Qt|t�1
�

:

ft|t�1 ⌘ E [zt |Ft�1] =E {E [zt |xt ,Ft�1] |Ft�1}

=U+Bµt|t�1,

Qt|t�1 ⌘Var [zt |Ft�1] =E [Var (zt |Ft�1) |Ft�1]+Var [E (zt |Ft�1) |Ft�1]

=s2
e +B2St|t�1.

• The filtering distribution of xt given Ft . xt |Ft ⇠ N
�
µt|t ,St|t

�
:

µt|t = µt|t�1 +St|t�1BQ�1
t|t�1

�
zt � ft|t�1

�
,

St|t = St|t�1 �St|t�1B
2Q�1

t|t�1St|t�1.

If p > 0, and µ is very closed to 0. We can use some threshold value to judge

whether there is a shock or not. Once the shock is in presence at any time t, logPt =

logYt � log µ , in which case Pt can be directly recovered. Thus, we can set µt|t =

logYt � log µ and St|t = 0. Otherwise if p > 0, and µ = 0, the income here can be

treated as missing.

For the values of µ0|0 = E [x0|F0], S0|0 = Var (x0|F0), since logYit = logPit +

logeit , we simply assume for each household i, the initial value µ0|0 = logY0 � pµ ,

where logY0 is the population mean of income level at time 0, and accordingly

S0|0 = s2
e .

Figure 4 reports the performance of the income filter where G26:29 = 1.05,

G30:35 = 1.03, G36:45 = 1.01, G46:65 = 1, Tr = 65, p = 0.03, µ = 10�6, s2
V = 0.02,

172



Figure 4: The performance of income filter

s2
e = 0.04. From the left panel, the 95% area centering at the filtered mean µt|t,i

and bounded by ±2St|t can cover Pi,t at majority of the life time. Further, the right

panel shows that the difference between the population means of µt|t and Pi,t are

quite small.

.4.5 The Comparison of Different Computations for Optimal Con-

sumption

Here the second example in the Monte Carlo study section is used with Tr = 65

to compare the performance of different computation methods for the optimal con-

sumption level Ci,t for household i at age t. One is to simulate numerous income

sample paths and compute the optimal consumption at every path at every age. At

each age we collect the consumptions of all households and compute sample mean.

This is the approach proposed by GP. We call it as ’GP’ and it can be expressed by

CGP
i,t = E

"
ct

 
Md

i,t

Pi,t

!
Pi,t

#
=

1
G

G

Â
g=1

ct

0

@Md
i,t

P(g)
i,t

1

AP(g)
i,t , for each i, t,

Ei

(
E

"
ct

 
Md

i,t

Pi,t

!
Pi,t

#)
=

1
Nt

Nt

Â
i=1

GGP
i,t ,
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Figure 5: The computed consumption profiles when Nobs = 1500,r = 2

where
n

P(g)
o66

t=26
is the permanent income component from t = 26 to t = 66 at gth

simulated income path.

The other is to treat the filtered mean µt|t,i from the Kalman income filter, as

logPi,t , which is used by Jørgensen (2017). We call this approach as ‘J’ and it can

also expressed by

CJ
i,t = ct

 
Md

i,t

µt|t,i

!
µt|t,i, for each i, t,

Ei

"
ct

 
Md

i,t

µt|t,i

!
µt|t,i

#
=

1
Nt

Nt

Â
i=1

GJ
i,t ,

The proposed approach in equation (4.4.1) is denoted as ‘L’. Given Nobs = 1500,

we compare these three computation approaches, which is reported in Figure 5.

The number of simulated paths for ‘GP’ is 1000. From the following figures, it

is obvious ’GP’ does not approximate the population mean of consumption profile

quite well even when sample path is 1000. ’J’ is close to the population mean,

similar to ’L’.

For further comparison, we use the following statistics to compare the three

approaches,

dist =

vuut 1
T

T

Â
t=1

 
1
N

N

Â
i=1

Cd
i,t �

1
N

N

Â
i=1

Ca
i,t

!2

,a= GP,J,L.
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Table 1: The values of the statistics for three approaches

GP J L
Nobs = 1500 6.5382⇥10�4 7.2569⇥10�5 2.8096⇥10�5

Nobs = 3000 6.8139⇥10�4 7.1134⇥10�5 1.3468⇥10�5

Nobs = 6000 2.4233⇥10�3 6.6381⇥10�5 9.9386⇥10�6

Figure 6: The computed consumption profiles when Nobs = 6000,r = 0.5

The values of the statistics are reported in Table 1. It is apparent that ’L’ has the

smallest distance from the population mean of consumption profile in all cases. As

the sample size increases, the distance of ’L’ decreases dramatically. But the other

two approaches remains the same magnitudes.

Besides, we change the value of r into 0.5, which is the same as GP. Following

Figure 5, we draw the corresponding figures in Figure 6 which shows that ’L’ is

better.
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