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Abstract

Rapid advances in mobile devices and cloud-based music services have brought

about a fundamental change in the way people consume music. Cloud-based

music streaming platforms like Pandora and Last.fm host an increasing huge

volume of music contents. Meanwhile, the ubiquity of wireless infrastructure

and advanced mobile devices enable users to access such abundant music con-

tent anytime and anywhere. Consequently, there has been an increasing de-

mand for the development of intelligent techniques to facilitate personalized

and context-aware music retrieval and recommendation. Most of existing music

retrieval systems have not considered users’ music preferences, and traditional

music recommender systems have not considered the influence of local con-

texts. As a result, search and recommendation results may not best fit users’

music preference influenced by the dynamically changed contexts, when users

listen to music using mobile devices on the move. Current mobile devices are

equipped with various sensors and typically for personal use. Thus, rich user

information (e.g., age, gender, listening logs) and various types of contexts

(e.g., time. location) can be obtained and detected with the mobile devices,

which provide an opportunity to develop personalized and context-aware music

retrieval and recommender systems.

Among various contexts that have influences on users’ music preferences,

venue is a very important one and can be accurately detected by current tech-

niques. Different venues not only have unique background environments and

atmosphere, but also highly correlate with local activities and events. These

factors play critical roles in determining users’ music selections. In the first



work, we develop a venue-aware music recommender (VAMR) system called

VenueMusic, which can automatically recommend suitable music tracks to var-

ious types of venues. A location-aware topic model is proposed to mine the

common features of songs that are suitable for a venue type and map the songs

and venue types into the same semantic space. Experimental results demon-

strate the effectiveness of VenueMusic and advantages over other systems. In

the second work, we develop a user information aware (UIA) user-aware music

retrieval system, which can utilize users’ demographic information (e.g., age

and gender) in text-based retrieval. A UIA music interest topic model is pro-

posed to capture the influence of age and gender on music preferences. Based

on this model, a novel UIA retrieval method is proposed. Empirical studies

demonstrate that with this method, the performance of various text-based re-

trieval methods can be significantly improved. As demographic information is

not difficult to obtain, the system can be used to deal with the new users for

the personalized music retrieval (PMR) system presented in the third work.

In this work, a novel dual-layer music preference topic model is proposed to

characterize the correlations and interplays between users, songs, and terms

under two latent semantic spaces. Comprehensive experiments have been con-

ducted and demonstrate that the PMR system can better satisfy users’ music

preference and significantly improve the personalized search accuracy.

In summary, we present three music information retrieval systems, which

can be integrated together to help users find their favorite music at different

venues. Our studies in this thesis are early attempts in the development of

user-centric music retrieval systems, especially on the PMR and VAMR. We

hope this work can shed light on the direction of developing user-centric music

retrieval systems and motivate more studies on this promising research area.
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Chapter 1

Introduction

Over the past decades, empowered by fast advances in digital storage and net-

working, we have witnessed ever-increasing amount of music data. Meanwhile,

rapid advances in mobile devices (e.g., mobile phones) and cloud-based music

streaming services, such as Last.fm1 and Spotify2, have brought about a fun-

damental change in the way people consume music. Mobile devices become

the mainstream platforms allowing people to enjoy favorite music anytime and

anywhere. According to Nelsen’s Music 360 2015 report, 44% of US music lis-

teners use smartphones to listen to music in a typical week. While large-scale

music data available from various sources and fast technical advancements

provide users great flexibility and convenience in consuming music, it also in-

troduces an impending and challenging problem about how to assist users in

finding their favorite music or satisfying users’ music needs under dynamically

changed contexts from large-scale music datasets.

Music retrieval and recommender systems are two most important tools to

enable users to explore large-scale music collections or find favorite music. Mu-

sic information retrieval system requires users to input a query3 to represent

1http://www.last.fm/
2https://www.spotify.com/
3Typically, a query could be in the form of text words, such as artist, titles, lyrics or other

annotated descriptive terms (e.g., genre, mood and instrument), or a piece of music [156] or
humming melody [111].

1
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their current music needs, and then estimate the relevance of music items with

respect to the query. The most relevant ones are returned to the users. Alterna-

tively, music recommendation systems infer users’ music preferences according

to their past listening behaviors, find and return music tracks which best fit

their music preferences. When seeking music, users aim to find music items

which satisfy their music needs or preferences. Therefore, understanding and

representing users’ music needs are the prerequisite for both types of systems.

Users’ music needs are dependent on their music taste and preference 4, also

called long-term and short-term music preference in this thesis. The long-term

music preference relates to users’ personality, self-views, cognitive ability, gen-

der, and culture background, etc; and the short-term music preference relates

to users’ local surrounding environment and atmosphere (e.g., location, time,

temperature, ambient lighting conditions, weather, noise level) and physical

state (e.g., activity and mood) [126]. There has been a long history in the de-

velopment of music retrieval and recommender systems [28, 108, 140, 142, 153],

however, these systems cannot well satisfy users’ increasing requirements on

music services. One of the main problems is that existing systems cannot

comprehensively understand users’ music needs under local contexts, which

requires the consideration of both long-term and short-term music preferences.

The input query is the most basic form to represent users’ music infor-

mation needs. In general, the input query can only reflect users’ short-term

music preferences. As a result, the users’ long-term music preferences are often

ignored. Different users have a wide range of music preferences. Thus, given

the same query, different users prefer different results. However, most of the

existing music retrieval systems will return the same results, which are not

optimal for individuals. Taking a simple example, a query of “sad” represents

4Based on the definition of Schedl et al. [136]: “ Taste refers to a long-term inclination
and preference describes a rather short-term, situation-dependent affection. Both are likely
to change over time, although taste usually changes only gradually and at a slower rate than
preference.”.

2
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that the user wants to listen to sad music now. Without the knowledge of

the users’ long-term music preferences, what type of sad music is suitable for

the user is unknown. Consequently, the results could be unsatisfactory for

this user. To improve the performance of music retrieval systems, it is crucial

to consider users’ long-term music preferences in retrieval. In contrast, most

of existing music recommender systems only capture users’ long-term music

preferences while ignoring users’ short-term music preferences, which can be

greatly influenced by local contexts [126], such as local social activities/events

or geo-location. A typical example is that a user may prefer energetic music in

the gym while peaceful music in the library. In recent years, context-aware mu-

sic recommender systems (CAMR) have been attracting increasing attentions.

CAMR systems consider the influence of local contexts on users’ music prefer-

ence, and thus could recommend music tracks to better fit users’ local music

preferences. Despite the high potential of CAMR systems, few CAMR systems

have been used in real applications, due to many challenges faced when devel-

oping effective CAMR systems. The majority of these challenges pertains to

the heterogeneity of data, including complex music content and various types

of contexts (e.g., time, location, weather, activity, and mood). Another big

challenge is related to context-aware system evaluation - the lack of standard

test collections and system performance assessment framework makes every

evaluation time-consuming and often requires real users’ judgments [126].

1.1 Thesis Focus, Research Challenges and Main

Contributions

The advanced mobile devices, ubiquitous wireless infrastructure, and cloud-

based music streaming services enable general users to access large-scale music

contents anytime and anywhere. It provides users great convenience to enjoy

3



CHAPTER 1. INTRODUCTION

abundant music contents. At the same time, it also brings new requirements

and challenges for the development of music information retrieval systems.

The mobile music listening platform requires that the music retrieval and rec-

ommender systems can effectively identify and retrieve users’ favorite songs

under the dynamically changed contexts when on the move. Therefore, it is

important but challenging to develop effective personalized and context-aware

music retrieval/recommender systems. On the other hand, current mobile de-

vices, such as smartphones, are embedded with different types of sensors (i.e.,

GPS, camera, microphones, gyroscopes, ambient light sensors). Thus, various

types of contextual information can be detected and collected, such as time,

location, weather, ambient light and sounds. Besides, mobile devices are typ-

ically for personal use. Therefore, it is not difficult to obtain users’ personal

information (e.g., age, gender and listening logs). The availability of such per-

sonal and contextual information facilitates the development of personalized

and context-aware music systems and applications.

As discussed, most of the existing music retrieval systems have not con-

sidered users’ long-term music preferences and traditional music recommender

systems ignore the influence of contextual factors on short-term music pref-

erences. Thus, it is important to develop personalized music retrieval (PMR)

systems, which take users’ long-term music preferences into consideration, and

context-aware music recommender (CAMR) systems, which consider the influ-

ence of contextual factors. Specifically, in this thesis, main research focus is

on the development of venue-aware music recommender (VAMR) and person-

alized text-based music retrieval (PTBMR) systems. The specific motivations

are,

• For venue-aware music recommendation. Location is a very important

context which significantly affects users’ music preferences [19]. However,

studies on location context in music recommendation are very sparse.

4
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Particularly, venue, as an important location context, which is not only

directly related to the surrounding atmosphere but also related to the

local activities and events, has not been considered in previous context-

aware music recommender systems.

• For personalized text-based music retrieval. Firstly, text-based music re-

trieval (TBMR) is a natural and easy way for users to use and has been

widely used in existing music services, such as Last.fm and Youtube5.

Besides, current TBMR systems have not considered users’ music pref-

erences and retrieve songs only based on their relevances with respect to

the query. Given a query, the search results could be very poor for some

users. PTBMR systems could evaluate the relevance of songs, accord-

ing to users’ personal preferences on the song with respect to a query.

Despite the potential of PTBMR systems, few such systems have been

developed.

The VAMR system aims to automatically recommend suitable songs for

different venue types, such as recommending music tracks for gym and library.

The PTBMR system is developed to provide personalized search results. No-

tice that the two systems can be integrated together to provide music services.

For instance, when a user arrives at a particular venue, the VAMR system

automatically recommends music tracks for this venue. In the case that the

results do not fit her current music preferences because of other factors (e.g.,

mood), the user can express her current music needs with semantic concepts

(e.g., happy). Then the PTBMR system will refine the recommended results

and return personalized results to fit her current preferences at this venue.

Although PMR and CAMR have attracted increasing research attentions

in recent years [89, 133, 136, 126], the development of related systems is still

in the early stage. Many challenges have not been properly addressed. As far

5https://www.youtube.com/
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as this thesis concerned, we confront the following research challenges.

• Challenges on data complexity: The data complexity mainly comes

from two aspects - (1) the complexity of music content: the analysis of

music content is crucial for both music retrieval and recommendation.

Due to the well-known “semantic gap” - the gap between high-level con-

cepts (e.g., genre and mood) used by human to interpret the music and

the low-level acoustic features used by computers to describe the au-

dio stream [126], the performance of content-based music retrieval and

recommendation is still far from satisfactory. Consequently, text-based

music methods and collaborative filtering [131] techniques are dominant

in music retrieval and music recommendation systems, respectively; and

(2) data heterogeneity: in addition to the complexity of music content,

researchers need to consider many different types of data closely around

the music: associated textual data (e.g., audio, metadata, tag or anno-

tation), users’ related data (e.g., age, gender, listening logs) and various

types of contextual data (e.g., location, time, emotions). High data com-

plexity also increases the difficulty in datasets construction and music

preference modeling.

• Challenges on constructing data collection: In the development of

PMR and CAMR systems, datasets are the foundation to analyze and

model users’ music preference and the influence of contextual factors,

as well as system evaluation. With more types of data involved, it be-

comes more difficult to collect data. With the popularity of social music

websites (e.g., Last.fm), it is relatively easy to collect large-scale music

data (e.g., tags), users’ profile and their listening logs (e.g., when and

how many times a user listens to a song). However, it is very difficult

to obtain the contexts under which the user likes/listens to a song. As

a result, researchers have to conduct a user study to collect the data for
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their studies. Because of the high cost of time and labor consuming, the

collected datasets is rather small, as can be seen in Table 2.1.

• Challenges on modeling users’ (contextual) music preferences:

Users’ (contextual) music preferences modeling is the key to the success

of personal music retrieval (and context-aware music recommendation).

Human perceives and judges music based on the high-level semantics

(such as emotion, mood and genre) embedded in music contents. How-

ever, music semantic meanings cannot be effectively characterized using

low-level spectral features due to the “semantic gap” [169]. Thus, in

traditional music recommendation, collaborative filtering [131] is often

used to avoid dealing with music contents. Unfortunately, this technique

cannot be used in PMR. Because the results not only need to match

users’ music preference but also are relevant to the query. It implies

that we have to deal with the music contents to capture the associations

between (user, song, content). Similarly, CAMR needs to model users’

music preference under different contexts, namely, capturing the associ-

ations between (song, context) for general CAMR (to recommend music

to certain contexts) or (user, song, context) for personalized CAMR. Be-

cause the data sparsity [126] becomes much severer in CAMR (as it is

more difficult to get data of users under different contexts), collaborative

filtering methods usually cannot obtain good performance. As a result,

CAMR also has to face the problem of analyzing music content to cap-

ture the complex interactions between (song, content, context) or even

(user, song, content, context) for personalized CAMR.

• Challenges on system evaluation: System performance evaluation

is crucial for the development of any information retrieval system. How

to comprehensively and fairly evaluate a retrieval system has been an

important research topic in information retrieval. Evaluating PMR and
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CAMR systems is lack of reference datasets and evaluation frameworks.

The evaluation of such systems often requires the participation of real

users. However, it is very expensive in terms of both labor and time for

conducting large-scale user study. Previous researches generally limit to

a small group of participants (as shown in Table 2.1). The problem is that

results obtained based on a small population are easy to be biased. How

to comprehensively and fairly evaluate and compare PMR and CAMR

systems in a reproducible setting is very difficult.

In this thesis, we develop a VAMR system and a PTBMR system. Be-

cause the PTBMR system suffers the cold start problem of new users6, we also

develop a user information aware text-based music retrieval system to relieve

the problem. In this system, users’ demographic information (e.g., age and

gender) are used in retrieval to improve the search results. In the development

and evaluation of these systems, we make following main contributions.

1. Three personalized and context-aware music retrieval and recommender

systems are developed. In the thesis, we develop three systems: (1) a

venue-aware music recommender system - recommends suitable music

tracks to different venue types, (2) user information aware text-based

music retrieval (UIA-TBMR)system - utilizes users’ demographic infor-

mation, such as age and gender, in text-based music retrieval and can

significantly improve the search accuracy, and (3) a personalized text-

based music retrieval (PTBMR) system - captures and utilizes users’

music preferences in text-based music retrieval to improve music search

accuracy. No music retrieval and recommender system with the same

functionality as our proposed systems has been reported in previous lit-

eratures. Notice that the PTBMR system requires the listening records of

users to learn their music preferences, while the UIA-TBMR system only

6The system does not have users’ music data to learn their music preferences.
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needs users’ demographic information, which is easy to obtain. Thus,

the two systems are complimentary: the UIA-TBMR system could be

used for users with no or few listening records, and the PTBMR system

is used for users with enough listening records.

2. We propose latent topic models to capture users’ music preferences in

personalized text-based music retrieval and context-aware music recom-

mendation in the latent semantic space. To address the challenges on

music preference modeling in PMR and CAMR, we use both music se-

mantic concepts and music acoustic features to construct a latent music

space using topic modeling methods. Both songs and the music prefer-

ences of contexts and users are mapped into the latent music space. Thus,

songs and music preferences (of contexts and users) are represented by

the same latent topics and can be directly matched. In Chapter 3, a

location-aware topic model is proposed to represent both venues and

songs as the probabilistic distributions of the same set of latent topics.

In Chapter 4, we propose a User Information Aware Music Interest Topic

(UIA-MIT) Model to capture the general effects of gender and age on

the music preference of users in a latent semantic space. In Chapter 5,

a novel Dual Layer Music Preference Topic Model is proposed to con-

struct a latent music interest space and characterize the correlations and

interplays between users, songs, and keywords or terms under the latent

space.

3. We construct several large-scale datasets for system evaluation. For each

proposed system, we have conducted a set of experiments to evaluate its

effectiveness and compare with related methods and systems. Datasets

and evaluation methodologies are two key components for system eval-

uation. To construct the data collections for performance evaluation,

large-scale user related data (e.g., age, gender, and listening log) and
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music related data (e.g., title, tags, and audio track) are collected from

several social platforms, such as Last.fm, Grooveshark7, Spotify, and

Twitter8, as well as other expert-based music websites, like 7digital9 and

Allmusic10. The data collected from multiple platforms are processed

and merged to constructed training and testing datasets for evaluating

the proposed systems. In evaluation, we design offline experiments on

held-out data and online experiments by user study to compare with a

set of competitors. The advantage of offline experiments is its scalability

and reproducibility. However, the offline experiments cannot evaluate

the performance of the systems in real scenarios, as the evaluated per-

formances are based on the labeled data, which is usually not complete.

On the other hand, the online user study can evaluate the effectiveness

of systems in real scenarios, while it is usually in small scale. Therefore,

we use both offline and online experiments to comprehensively evaluate

the developed systems.

1.2 Structure of the Thesis

In Chapter 2, we firstly briefly introduce music retrieval and recommendation

techniques and topic models, and then comprehensively review context-aware

music recommender systems in literature. In Chapter 3 - Chapter 5, we present

the developed venue-aware music recommender system, UIA-TBMR system

and PTBMR system, respectively. Finally, we conclude the thesis and discuss

promising directions of future work.

7http://grooveshark.com/
8https://twitter.com/
9https://www.7digital.com/

10http://www.allmusic.com/
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1.3 Origins and Publications

The following publications form the basis of chapters in this thesis:

• Chapter 3:

– Z. Cheng and J. Shen, On effective location-aware music recom-

mendation, ACM Transactions on Information Systems (TOIS),

2016 (to appear).

– Z. Cheng and J. Shen, VenueMusic: a venue-aware music recom-

mender system, In Proceedings of the International ACM SIGIR

Conference on Research & Development on Information Retrieval

(ACM SIGIR), 2015 (demo paper).

• Chapter 4:

– Z. Cheng and J. Shen, Exploring user-specific information in semantic-

based music retrieval, submitted to TOIS, (Major revision).

• Chapter 5:

– Z. Cheng, J. Shen and S. Hoi, On effective personalized music

retrieval via exploring online user behaviors, In Proceedings of the

International ACM SIGIR Conference on Research & Development

on Information Retrieval (ACM SIGIR), 2016 (accepted as full pa-

per).

The following are the papers published during the course of the Ph.D but

not included in this thesis:

• Z. Cheng, X. Li, J. Shen and A. Hauptmann, Which Information Sources

are More Effective and Reliable in Video Search, In Proceedings of the

International ACM SIGIR Conference on Research & Development on

Information Retrieval (ACM SIGIR), 2016 (short paper).
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• Z. Cheng and J. Shen, Just-for-Me: an adaptive personalization sys-

tem for location-aware social music recommendation, In Proceedings of

the ACM International Conference on Multimedia Information Retrieval

(ACM ICMR), 2014.

• Z. Cheng, J. Shen and T. Mei, Just-for-Me: an adaptive personalization

system for location-aware social music recommendation, In Proceedings

of the International ACM SIGIR Conference on Research & Development

on Information Retrieval (ACM SIGIR), 2014 (demo paper).

• Z. Cheng, X. Li, J. Shen and A. G. Hauptmann, CMU-SMU@TRECVID

2015: Video Hyperlinking, TRECVID 2015 Video Hyperlinking Compe-

tition, (1st place in MAP and 2nd place in MaiSP, to appear).

• Z. Cheng, and J. Shen, On very large scale test collection for landmark

image search benchmarking, Signal Processing, available online11.

• Z. Cheng, J. Shen, and H. Miao, The effects of multiple query evidences

on social image retrieval systems, ACM Multimedia Systems Journal,

available online12.

• J. Shen, R. H. Deng, Z. Cheng, L. Nie, and S. Yan, On robust image

spam filtering via comprehensive visual modeling, Pattern Recognition,

48(10): 3227-3238.

• J. Shen, Z. Cheng, J. Shen, T. Mei, and X. Gao, The evolution of

research on multimedia travel guide search and recommender systems,

In Proceedings of the International Conference on Multimedia Modeling

(MMM), 2014.

• J. Ren, Z. Cheng, J. Shen, and F. Zhu, Influence of influential users: an

empirical study of music social networks, In Proceedings of the Interna-

11http://www.sciencedirect.com/science/article/pii/S0165168415003813
12http://link.springer.com/article/10.1007/s00530-014-0432-7/fulltext.html
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tional Conference on Internet Multimedia Computing and Service (ACM

ICIMCS), 2014.

• Z. Cheng, J. Ren, J. Shen, and H. Miao, Building a large scale test col-

lection for effective benchmarking of mobile landmark search, In Proceed-

ings of the International Conference on Multimedia Modeling (MMM),

2013.

• Z. Cheng, J. Ren, J. Shen and H. Miao, The effects of heterogeneous

information combination on large scale social image search, In Proceed-

ings of the International Conference on Internet Multimedia Computing

and Service (ACM ICIMCS), 2011.
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Chapter 2

Related Work

In this chapter, we briefly review the background knowledge and techniques

that are closely related to our research topics and methods in the following

chapters. We start with an introduction of music information retrieval in

Section 2.1, where main focus is on text-based music retrieval, as well as per-

sonalized music retrieval. In Section 2.2, we introduce the general techniques

in music recommender systems and review the research development in the

domain of context-aware music recommendation. As music retrieval models in-

troduced in Chapter 3 - Chapter 5 are based on topic modeling, in Section 2.3,

we briefly recall related latent topic models and discuss the differences of our

proposed topic models.

2.1 Music Information Retrieval

Music information retrieval is an important sub-domain of information retrieval

with many real applications. The general method of information retrieval is

to estimate the relevance or similarity between the query and documents in

the dataset, and return the most relevant ones. Broadly, there are two music

retrieval paradigms in music retrieval: one is based on the features extracted

from the audio signal of the music tracks, called content-based music retrieval;
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and the other one is based on the associated texts ( e..g, artist, title, lyrics

and other semantic musical concepts - genre, mood, instruments, etc.), called

text-based music retrieval. In this section, we mainly focus on the text-based

music retrieval, because text-based music retrieval is more popular in real

applications [27] and our studies presented in Chapter 4 and Chapter 5 are

based on text-based music retrieval.

2.1.1 Content-based Music Retrieval

Content-based music retrieval systems extract acoustic features from the sound

tracks of music and then compute the similarity between music items based on

the acoustic features. Thus, music feature extraction and music similarity mea-

surement are the core components in content-based music retrieval systems.

Many types of music features have been proposed and used, such as tim-

bre, pitch, melody, chroma, and rhythm features. Comprehensive introduction

about these features can be found in [27, 134]. How to develop effective mu-

sic similarity measurement is a very active topic of research in music retrieval

and recommendation. The main research problem in music similarity is to de-

fine a suitable distance or similarity measures - compute the distance between

two music tracks, such as Euclidean, Manhattan and Hamming distance [25].

Suitable distance measurement is highly dependent on the used features. For

example, when representing music tracks as Gaussian Mixture Models (GMMs)

of mel-frequency cepstral coefficients(MFCCs), Kullback-Leibler distance and

Earth Mover Distance could achieve much better performance than Euclidean

distance [58].

Query by example (QBE) and query by humming (QBH) are two typical

paradigms of content-based music retrieval. QBE takes a piece of music track

as an input and returns the metadata information of the recording - artist, title,

etc. A typical scenario is that a user wants to obtain the metadata information

15



CHAPTER 2. RELATED WORK

of an unknown track. Other applications of QBE include plagiarism detection,

copyright monitoring, etc. In QBH systems, the input is a melody sung by the

user and retrieves the matching track and its metadata. QBH could be used in

the scenarios that the user can only hum melodies that are memorable while

there is no record of music track at hand.

Despite the advances of content-based music retrieval research, content-

based music retrieval systems still fail to cover the semantic distance between

high-level semantic concepts (the language used by human) and low-level fea-

tures. Researchers in the field of music information retrieval suggest to find

algorithms for representing music at a higher, more conceptual abstraction

level. For more related works about content-based music retrieval, please refer

to [153, 27].

2.1.2 Text-based Music Retrieval

Traditional text-based music retrieval techniques heavily rely on the meta-

information (e.g., artist and title) and well-defined categorized information

(e.g., genre and instrument). In many cases, users would also like to describe

their current contexts, such as emotions and occasions or filmed events, with

the expectation that the music search engines return a playlist with suitable

songs [68]. To support the search of such semantic queries, it needs to an-

notate songs with a rich vocabulary of music terms, which requires musical

expert knowledge. A typical example is Pandora1, which relies on experts to

generate description on songs. However, expert-based annotation is very time-

consuming and labor expensive and thus unlikely to scale with the growth in

the amount of recorded songs.

To deal with the problem, many auto-tagging methods are proposed to

automatically annotate songs with music related tags/terms by learning the

correlation between music acoustic contents and the semantic terms based on a

1http://www.pandora.com/
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well-annotated music collection. Most auto-tagging systems generate a vector

of tag weights when annotating a new song for music search and retrieval [100].

An early work in this direction was performed by Turnbull et al. [151]. They

formalize the audio annotation and retrieval as supervised, multi-class labeling

task. The dataset CAL500 they created for this study becomes the standard

test collections for subsequence works [152, 158, 41, 100, 102, 8]. Miotto et

al. [100] proposed a generative approach to improve automatic music anno-

tation by modeling contextual relationships between tags. Recently, Ellis et

al. [41] proposed to use a higher-level “Bag-of-Systems” (BoS) representation

of the characteristics of music piece to improve the auto-tagging performance.

With the advent of social music websites, songs are annotated with user-

contributed social tags, which provide an alternative way to navigate and

search songs (e.g., Last.fm). Social tags, which are contributed by a com-

munity of internet users and have no constraints on the use of text, provide a

rich vocabulary and cover most terms usually used to describe songs. Exten-

sive research efforts have been devoted into developing tag-based music search

systems [76, 86, 87]. However, the user-provided tags are known to be noisy, in-

complete and subjective [87], which limit the search performance of tag-based

methods. Consequently, many works consider the combination of tags and

acoustic similarity to improve the search performance [87, 101, 70, 71, 69]. For

example, Levy et al. [87] represented a music track with a joint vocabulary

consisting of social tags and muswords, and then apply text-based information

retrieval techniques to music collections; Knees et al. [70] incorporated audio-

based similarity into a tag-based ranking process, either by directly modifying

the retrieval process or by performing post-hoc audio-based reranking of the

search results; Miotto et al. [101] combined tags and acoustic contents in re-

trieval via a probabilistic graph-based representation.
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2.1.3 Personalized Music Information Retrieval

The works mentioned above measure the relevance of a music track with respect

to a query only based on the similarity between the query’s content (textual

or/and acoustic contents) and the track’s content, while ignoring user’s music

preference. Actually, the perception on music is very subjective to personal

preference. Therefore, users’ opinions on the search results with respect to a

query could be very different. In recent years, researchers have emphasized the

importance of considering user’s information in music retrieval and advocated

to develop user-centered music retrieval systems [89, 133].

In the domain of text retrieval, personalized information retrieval has at-

tracted lots of research attentions, and many approaches have been proposed

in last decades [23, 47, 94, 141, 162]. However, very few works have been

reported for personalized text-based music retrieval. Hoashi et al. [51] used

relevance feedback methods to refine users profiles for improving search per-

formance, while the method was designed for content-based music retrieval

systems. Wang et al. [158] proposed a tag query interface which enables users

to specify their query in multiple tags and with multiple levels of preferences.

This method relies on user’s efforts to specify the importance of query tags in

each query session. Symeonidis et al. [148] proposed to apply the high order

singular value decomposition (SVD) method to capture the associations be-

tween (user, tag, item). Based on the likeliness that user u will tag musical

item i with tag t, they recommend musical items to user u. However, this

method suffers from the high time complexity of SVD and is only applicable

for small scale data. Hariri et al. [48] considered the problem of personalized

text-based music retrieval where users’ history of preferences are taken into

account in addition to their issued textual queries. They used music annota-

tions retrieved from social tagging Websites such as Last.fm and use them as

textual descriptions of songs. However, they have not evaluated the proposed
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system in retrieval evaluation framework and have not compared with other

music retrieval methods. In Chapter 5, we present a novel personalized text-

based music retrieval system, which uses a dual-layer topic model to explore

the correlations among (user, song, term) for retrieval. Besides, we evaluate

the system in ad-hoc retrieval tasks on two test collections, and compare it with

other text-based music retrieval methods. Experimental results show that the

system can significantly improve the search accuracy with respect to personal

preferences.

2.2 Music Recommendation

Music recommendation can be dated back to 1994 [139], not much later than

the born of the field of recommender systems in the early 90’s [126]. How-

ever, the major breakthrough came around at the turn of 2000’s, when large

amount of music contents became available and online music services provide

convenient channels for people to access the online music contents, which cre-

ate large music communities and allow major music recommender systems to

emerge. Music recommendation is a challenging task not only because of the

complexity of music content, but also because human perception of music is

still not thoroughly understood [126], which can be influenced by age, gender,

personality traits, cultural background, and other contextual factors.

In recent years, due to the ubiquity of wireless and advanced mobile de-

vices, which can detect surrounding contexts and enable users to access music

contents anytime and anywhere, context-aware music recommender (CAMR)

systems has emerged and become a hot research field. The idea is to rec-

ommend music depending on the user’s actual situation, such as her activ-

ity or emotional state, or any other contextual factors which might influence

the user’s local music preferences. For example, location-aware music recom-

mender systems can find music tracks that match the atmosphere of the user’s
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location. Despite the high potential of the applications, the development of

real-world CAMR systems is still in its early stages, because of (1) the hetero-

geneity of data - researchers have to deal with the complex music content and

various types of contextual information (e.g., emotion, time, and location) and

(2) the high cost of evaluating context-aware systems - the lack of datasets and

evaluation frameworks makes the evaluation very difficult and often requires

user study.

This section reviews the music recommendation techniques and the current

state of CAMR systems.

2.2.1 General Techniques

Existing music recommender systems can be generally classified into three dif-

ferent categories: collaborative filtering, content-based and hybrid-based tech-

niques [1]. The following sections briefly review these techniques and introduce

several typical related music recommender systems.

2.2.1.1 Collaborative Filtering

Collaborative filtering (CF) [131] is the most common approach in recom-

mender systems. This technique relies on users’ past behaviors and recom-

mends items to a particular user if they are liked by similar users. A merit

of this approach is that it does not need to analyze item contents. This is an

important advantage in music recommendation, given the complexity of ana-

lyzing music contents. CF is to predict the relevance of items to a user based

on the records of user ratings or implicit feedbacks. It has two categories of

methods - memory based and model based [125].

Memory Based Methods are also called neighborhood methods in lit-

erature [73]. Memory based methods operate over the entire database to com-

pute the relationship between items or users. Given a matrix R of dimensions
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|U | × |I| to represent the rating data of all users on all items in a dataset.

Each element ru,i in a row u denotes the rating of user u gave to item i. The

rating could be binary (i.e., {0, 1}) in implicit feedback, or a real value in [1, 5]

in explicit feedback (e.g., the ratings in Netflix data [11]). An unknown rating

of user u for item i can be predicted either by finding a set of users similar

to u (user-based CF), or a set of items similar to i (item-based CF). Here we

give the basic formulas for user-based CF. Given a user u and an item i, the

predicted rating of this user to this item is:

r̂ui = ru +K
n∑

v=1

w(u, v)(rvi − rv) (2.1)

where ru is the average rating of user u, n is the number of users in the database

with known ratings for items i, w(u, v) is the similarity of users u and v, K is

a normalization factor to keep the sum of w(u, v) is 1 [20]. Different methods

have been proposed to compute the user similarity w [36]. Person correlation

(2.2) [122] and Cosine distance (2.3) [130] are two most common measures:

w(u, v) =

∑k
j=1(ruj − ru)(rvj − rv)√∑k

j=1(ruj − ru)2
∑k

j=1(rvj − rv)2

(2.2)

w(u, v) =

∑k
j=1 rujrvj√∑k

j=1 r
2
uj

∑k
j=1 r

2
vj

(2.3)

where k is the number of items both users u and v have rated.

Model Based Methods try to explain the ratings by characterizing both

users and items on latent factors discovered by latent factor models, such

as Probabilistic Latent Semantic Indexing (PLSI) [53], Latent Dirichlet Al-

location (LDA) [15] and Matrix Factorization [73]. PLSI and LDA will be

introduced in Section 2.3. Next we will introduce MF methods, which is very

popular in the recommender systems and has achieved the best performance in

Netflix Prize [73, 11]. Model based methods map users and items into a latent
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factor space of dimensionality f , such that user-item interactions are modeled

as inner products in that space. Accordingly, each user u is associated with

a vector pu ∈ Rf , which measures to what extent the user u has interest in

the f factors. Similarly, each item i is associated with a vector qi ∈ Rf , which

shows to what extent each item possesses those factors. The dot product of

the user’s and item’s vectors qTi pu characterizes the user’s overall interests on

the item’s characteristics. The dot product is used to predict the rating of user

u for item i:

r̂ui = qTi pu (2.4)

To learn the factor vectors qi and pu, the system minimizes the regularized

squared error on the set of known ratings:

min
q∗,p∗

∑
u,i

(rui − qTi pu)2 + λ(||qi||2 + ||pu||2) (2.5)

The second item in the equation is the regularization item to avoid overfit-

ting. Model-based methods use pre-computed models to make predictions. An

advantage of matrix factorization model to collaborative filtering is its flexibil-

ity in various data aspects, such as adding bias and temporal dynamics [73, 72].

Examples of CF-based Music Recommender System. An typical

example of collaborative systems is the one used in Last.fm. Last.fm keeps

users’ listening behavior and calculates the distance between users. Recom-

mendations are made for users with similar preferences. The success of CF

method in Last.fm relies on the large amount of users and their playback

records. In [139], a user-based CF method was used to estimate the similar-

ity between users according to the rated songs by them. Then the songs of

similar users are recommended to the targeted users. In [36], an item-based

CF method was used to determine the similar artists to keep the broadcasted

playlist coherent.

Advantages and Limitations. Collaborative methods measure the sim-
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ilarity between different music tracks or different users based on the played

history of tracks or users, while the relationship between music tracks and

users are not captured. In other words, the intrinsic music preference of users

on music cannot obtain. This is the underlying reason of the limitations of CF

methods. CF methods are known to suffer from the cold start, data sparsity

and long tail (or popularity bias) problems [126].

2.2.1.2 Content-based Approach

Content-based (CB) systems recommend items similar to the ones known to

be liked by the users. Items are represented by feature vectors. In music

recommendation, the feature vectors can be audio features (such as timbre

and pitch), textual descriptions (e.g., tags) or metadata (e.g., artists). The

key step of CB systems is to capture and represent user’s preferences with

the same features. Then given a new item, the CB systems could estimate

whether the user would like the item based on user’s feature vector and the

item’s feature vector.

Examples of CB-based Music Recommender System: Because mu-

sic content is difficult to describe and represent, CB music recommender sys-

tems are considerably less than CF music recommender systems. An example

of commercial content-based music recommender system is Pandora, which es-

timate the artist similarity and track similarity based on experts’ annotations.

There are also other content-based recommender systems in literatures, such

as MusicSurfer [26] and Musiper [143]. MusicSurfer [26] is a content-based

system for navigating large music collection. The system uses perceptual and

musical audio signal features (e.g., rhythm, tonal, and key note) to estimate

music similarity. Musiper [143] constructs music similarity perception models

of its users by associating different music similarity measures to different users.

The content-based method avoids the popularity bias problem and the problem

of cold-start for new tracks. Due to the current limitation of automatic music
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content description techniques, however, content-based methods are typically

less successful than the collaborative filtering method [27, 74]. Besides, the

songs recommended by content-based methods are lack of serendipity, as the

recommended ones are the most similar tracks with respect to the ones that

users liked. For example, content-based methods are less likely to recommend

the musical style that the user never heard before.

Advantages and Limitations: The major limitations of content-based

recommendation methods are inherited from the content-based music retrieval

techniques - lack of highly effective scheme to compute music content descrip-

tors about high-level concepts. Further, how to model user’s music preference

is also a major problem in CB music recommender systems. Content similarity

cannot completely capture the preferences of a user, because of the semantic

gap between the user’s perception of music and the system’s music represen-

tation. The third problem is that the recommended tracks may lack novelty,

because content-based systems tend to recommend items too similar to those

are used to define the user’s profile. On the other hand, content-based systems

can overcome the popularity bias in CF systems and the cold start problem of

new tracks. However, new users are still an issue.

2.2.1.3 Hybrid-based Approach

As mentioned in previous subsections, collaborative methods and content-

based methods suffer from their own limitations, respectively. Hybrid methods

combine advantages of two methods and avoid their limitations based on the

complementary nature of two methods. Burke [22] summarizes six methods of

combining different recommendation techniques in hybrid recommender sys-

tems: weighted, switching, mixed, feature combination, cascade, feature ar-

gumentation, and meta-level. For details of each method, please refer to the

review [22]. Only few music recommender systems have been reported in lit-

eratures [37, 165]. In [37], Donaldson et al. presented a hybrid recommender
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system, which uses a feature combination method to combine item-based CF

data with acoustic features. Yoshii et al. [165] used the three-way aspect model

to associate ratings and content features with a set of latent variables.

2.2.2 Context-aware Music Recommendation

The recommender systems described above captures the long-term music pref-

erence of users. However, people often prefer different music under different

contextual situations. Many external factors influence users music preference,

including environmental-related context (e.g. location, time, temperature, am-

bient lighting conditions and background noise), user-related context (e.g. ac-

tivity and emotional state), as well as social influence (e.g. friends’ music

preferences and the music popular trends). For example, when reading books

in library, peaceful music is a good choice; while energetic music is preferred

when running in gym. In [18], Lee et al. find that there is a growing need

for contextual-aware music recommendation to provide better results. In re-

cent years, more and more attentions have been devoted to the development

of CAMR systems.

Table 2.1 presents a comprehensive overview on existing studies on context-

aware music recommendation, from the aspects of considered contextual fac-

tors, used data in recommendation, recommendation methods/models, imple-

mentation and evaluation. From the table, we can see that a wide range of

contextual factors have been studied and considered in CAMR systems, in-

cluding environment-related (e.g., time [2, 4, 6, 17, 60, 65, 83, 82, 84, 112,

115, 119, 121, 123, 38, 138], location [2, 3, 17, 61, 84, 19, 98, 119], weather [5,

6, 34, 67, 83, 82, 112], noise [44, 112], temperature [34, 44, 67, 83, 82, 112],

lighting [34, 44], etc.) and user demographic-related (e.g., age and gender [60,

67, 83, 82, 112, 123, 138]) and state-related contexts (e.g., mood [5, 6, 60, 65,

75, 123, 138], activity [6, 34, 44, 65, 138, 159], walking pace [40, 44, 163], heart
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CHAPTER 2. RELATED WORK

beat rate [17, 44, 90, 104, 38], etc.). However, the development of CAMR is

still in the early stage and very few CAMR systems can be applied in the real

world, due to the challenges on the following aspects:

• Context detection - Various types of contexts could affect users’ music

preferences. Among them, some contexts could be detected at high ac-

curacy by mobile devices (used as music players), such as time, location,

and weather, while other contexts are hard to detect by most of the

current mobile devices, such as heart rate and mood. Many of the ex-

isting systems require the installation of special sensors in the system or

wearable sensors in human body to detect the contexts for music recom-

mendation [17, 40, 44, 90, 104, 38]. These systems are not feasible in real

applications.

• Dataset collection - Most of the CAMR systems rely on users’ listening

logs or ratings to train the recommendation models. However, it is diffi-

cult to collect such data, especially for the systems which consider many

different contexts, such as [5, 34, 17, 44, 60, 83, 82, 112, 119, 123, 38, 67,

163], because it requires extensive user’s labor efforts to label different

contexts associated with the listening logs or ratings.

• System evaluation - How to evaluate the performance of developed CAMR

systems is also a very challenging problem. It can be observed that many

systems have not been evaluated at all in the reported literature, such

as [2, 17, 40, 119, 138]. Because the complexity of different contexts and

the difficulty in collecting data, there is no standard test collections for

the evaluation of CAMR systems. Accordingly, it is hard to fairly and

comprehensively evaluate the performance of the developed systems. Be-

sides, there is no standard methodology for CAMR system evaluation. In

existing studies, researchers construct a small collection with hundreds of

songs by recruiting a small group of users for labeling/rating the dataset
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and evaluating the performance of the systems [3, 4, 6, 5, 34, 44, 60, 65,

67, 75, 84, 90, 98, 104, 112, 24, 123, 121, 38, 159, 163]

• Context-aware music preference modeling - Obviously, context-aware

music recommendation modeling is more difficult than traditional mu-

sic recommendation modeling, which has not considered the factor of

context. Collaborative filtering is the most popular and success model

in traditional recommendation modeling, which is also used in CAMR

(e.g., [2, 4, 5, 84, 138]). However, a major problem in CF is spar-

sity, which becomes much severer in CAMR, since it is much harder

to collect records under each type of contexts. As a result, in most

systems, heuristic recommendation methods are used, such as nearest

neighbors [145], simple similarity matching [34, 61, 62, 104], and case-

based reasoning [44, 65, 83, 82, 98]. Music content has not been well

explored in the CAMR model. Many systems only used the listening

logs or ratings with the associated contexts for recommendation without

the analysis of music contents, which easily suffers from the problem of

the “cold start” for new music items. In other cases, content is either used

to annotate the music items with context labels (e.g., moods [88, 75]) or

used to measure the similarity between two songs [84, 146]. None of the

previous systems analyzes the music preferences of users under different

contexts based on the music content.

2.2.2.1 Location-aware Music Recommendation

Location has a strong impact on user’s music preferences [19]. North et al. [105]

presented a study to explore five aspects of the ways how people use music in

everyday life. They found that in different places, people listen to music for

different reasons. For example, when people in the office, they listen to music

because the music helps them concentrate/think; while in pub/night club, the
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music is used to create the right atmosphere. The observations imply that the

place where to listen to music plays an important role in users’ local music

preferences. Although the importance of location on users’ music preference,

there is little research exploring the location-related information in music rec-

ommendations. In [44], Gaye et al. designed a prototype of an interactive

music system to generate electronic music for urban environments. The sys-

tem heavily relies on hardware to collect various user-related (e.g., heart rate,

arm motion) and environment-related contextual information (e.g., light, tem-

perature, and noise, etc.). Lifetrak [119] considers the location (represented by

a ZIP code), time, weather and activities to generate a playlist based on user’s

music library. A mobile audio application Foxtrot [3] allows users to assign

audio content to a specific geo-location, and play audio content associated with

a particular location. Kaminskas et al. [19, 63] conducted a series of studies on

recommending music to the place of interests (POIs). They match the POIs

and music by exploiting semantic relations between the POIs and music items

with the assigned emotional tags to both POIs and songs. Most of these stud-

ies relate the location information with geographical coordinates. However,

it is hard to capture the correlations between music contents and a specific

geo-location. As a result, for a location, these systems can only recommend

the songs liked by users in this location based on previous records [119, 3]. It

is worth to mention that the POIs in Kaminskas et al. [19, 63] are the places

where people do not visit frequently in everyday life.

Going beyond the geo-location information of latitude and longitude, each

venue possesses its own distinguishing atmospheres or semantics. GeoShuf-

fle [98] considers the effects of the locations at where users usually listen to

music in their daily lives. The key difference is that in GeoShuffle, the location

was captured based on GPS data and the locations considered are restricted

to the points in people’s daily routines. Listening records are used to cap-

ture a user’s music listening habits while in the routine paths. Therefore, its
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performance depends on both the regularity of user’s daily routines and the

quality of historical preference data. In our previous work [31], a Just-for-

Me music recommender system was developed for effective personalized music

recommendation in different types of venues, together with the consideration

of global music popularity trends. Just-for-Me applies an extended three-way

aspect model and represents each song as a “bag-of-audio-words” document to

learn the topics. In the extended three-way aspect model, users’ music inter-

ests are represented as topic distributions, and topics are the distributions of

songs, venues, and audio words. Inspired by the key research findings about

the strong influence of venue type on users’ music preference, we focus on the

problem of recommending suitable songs based on different types of venues in

Chapter 3. Core innovation of our proposed VenueMusic system in this chap-

ter is a location-aware topic model (LTM), which naturally associates venue

types and music contents in a latent semantic space by using “bag-of-words”

based representation.

2.3 Topic Model

Topic models, such as probabilistic Latent Semantic Indexing (PLSI, also called

aspect model) [53] and Latent Dirichlet Allocation (LDA) [15], are originally

proposed to discover the underlying themes or latent topics of a large scale

of text documents. The latent topics are discovered by mining co-occurrence

patterns of words in documents that exhibit similar patterns. Base on the topic

models, each document is represented as a multinomial distribution over the

latent topics, which are in turn multinomial distributions of terms. The basic

idea of topic model is that there are latent topics to explain the occurrences

of words in the documents of a corpus. Each document has its own topic

distribution, and each word in a document is associated with a latent topic.

Thus, the corpus can be summarized by the latent topics, and each document
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z w
Nd

N

d

Figure 2.1: Plate notation of PLSI model.

is represented by the probabilistic distribution of the latent topics.

2.3.1 Probabilistic Latent Semantic Indexing

The PLSI is proposed by Hoffman [53]. The graphic model of PLSI is shown in

Fig. 2.1, which describes the generative process of each of the N documents in

the collection. In the figure, Nd denotes the number of words in document d.

Each word w has associated a latent topic z, from which it is generated. The

shaded circles indicate observed variables, while the unshaded one represents

the latent variables. The graphic model of PLSI is shown in Fig. 2.1. The

generation process of a word w in a document d can be expressed as

P (w|d) = P (w|z)P (z|d) (2.6)

The equation describes that the authors select a topic z according to the topic

distribution p(z|d) of the document d, and then select the word w based on

the word distribution given the topic z. Repeating the generation process in

sufficient times, we can finally generate a full document and eventually the

whole document corpus. PLSI shows a sound probabilistic generation model,

however, it is poor on prediction unobserved words and documents. According

to the equation, the joint probability of generating the words and documents
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Figure 2.2: Plate notation of LDA model.

in the corpus can be expressed as,

P (d, w) =
N∏
i=1

Nd∏
j=1

P (di, wj)

=
N∏
i=1

Nd∏
j=1

K∑
k=1

P (wj|zk)P (zk)P (di|zk)

(2.7)

whereK is the number of latent topics. The model parameters are estimated by

maximizing the log-likelihood using Expectation-Maximization algorithm [35].

By treating users as documents and items as words, Hofmann and Puzicha [54]

applied the aspect model to user-item co-occurrence data for collaborative fil-

tering. Latent topics are discovered based on the item co-occurrences across

different users’ profiles; then a user’s interest is represented as a distribution

of the latent topics. Later on, Popescul et al. [116] extended this method to

incorporate the item’s content for discovering user’s interests based on both of

the co-occurrence of items among users’ profiles and the co-occurrence of item

contents in items. The method is also called three-way aspect model [116].

2.3.2 Latent Dirichlet Allocation

The graphic model representation of LDA model is shown in Fig. 2.2. The

shadow node denotes observed parameters; the transparent nodes are the hid-

den parameters. The basic idea of LDA is similar to PLSI, while LDA intro-

duces two Dirichlet vector priors α and β, as shown in Fig. 2.2. The function

of the α and β is to constraint p(z|d) and p(w|z), respectively, so as to solve
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the ”overfitting” problem in PLSI. Let Z = {z1, z2, ..., zK} denote the topic

vector, and K is the number of topics. α is a K-dimensional vector. Each ele-

ment αi ∈ α is a prior for a corresponding element zi ∈ Z. A higher value of αi

will increase the probability of observing topic zi in the corpus. Similarly, let

|W | denote the number of distinct words in the corpus, β is a |W |-dimensional

vector. Each element βi ∈ β is a prior for a corresponding word wi ∈W . A

higher value of βi will increase the probability of p(wi|z). Thus, the Dirich-

let parameters α and β smooth the multinational distributions of p(z|d) and

p(w|z). Assigning smaller values to α and β will reduce the smoothing effect

and result in more decisive topic associations [49]. In other words, the value of

α and β control the sparsity of the document-topic distribution and topic-word

distribution, respectively.

Various approximation inference methods have been developed to estimate

the parameters in variants of LDA, such as variation inference [15], expectation

propagation [99], and collapsed Gibbs sampling [46]. Although Gibbs sampling

is not necessarily as computationally efficient as approximation schemes such

as variation inference and expectation propagation, it is unbiased and has been

successfully applied in many large scale applications of topic models [46, 128,

149, 103]. In this thesis, we apply collapsed Gibbs sampling to estimate the

parameters in the proposed topic modes in Chapter 3 to Chapter 5.

There are many variations of topic models. In the following, we briefly re-

view hierarchical topic models and multimodal topic models, which are related

to our proposed models in this thesis.

2.3.2.1 Hierarchical Topic Model

Hierarchical topic models are able to obtain the relations between topics, such

as nested Chinese Restaurant Process (nCRP) [13], tree-informed LDA [66] and

nHDP [110]. nCRP [13] uses Chinese restaurant process as a representation of

prior and posterior distributions for learning hierarchical topics. The learned
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topics are organized in a tree structure, in which each topic is a node in the

tree. The topics of a document are restricted to follow a path from root

to leaf in the tree. nHDP [110] generalizes the nCRP framework to allow

that the topics of a document could access the entire tree. Tree-informed

LDA [66] also learns the tree-structure topics and it parameterizes how closely

the topic proportion of a parent topic are inherited by its children topics.

Many supervised hierarchical topic models have also been proposed to include

the structure information of labels, such as HLLDA [114], HSLDA [113], and

SSHLDA [95]. A common characteristic of these hierarchical topic models is

that they all focus on modeling the parent-child and sliding relations between

topics. Besides, the topics in those models are represented as the mixture of

words. Thus, these topics (no matter parent topics or child topics) are all in

the same semantic space. Distinguished from these models, the Dual-Layer

Music Preference Topic Model (DL-MPTM) in Chapter 5 discovers two sets of

latent topics under dual-layer latent spaces: the latent topics in the high-layer

latent space are the mixtures of the latent topics in the low-layer latent space.

2.3.2.2 Multimodal Topic Model

Since the success of LDA in single modality scenarios, it has also been extended

to multi-modal cases. Some multi-modal topic models have been proposed in

literature, such as mmLDA [7], Corr-LDA [14], tr-mmLDA [117], MDRF [59],

and factorized multi-modal topic model [155]. The basic philosophy behind

these multi-modal LDA is the existence of shared latent topics that are the

common causes of the correlations between different modality. In mmLDA [7],

the image and text words are generated from two non-overlapping sets of hid-

den topics. For an image, the two sets of topics follow the same topic dis-

tribution. Corr-LDA [14] is designed so that image is the primary modality

and is generated first, and each caption word is forced to be associated with

an image region and is generated based on the topic of this image region.
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Tr-mmLDA [117] uses a latent variable regression approach to learn a linear

mapping between the topic distribution between two modalities. Factorized

multi-modal topic model [155] generalizes the modeling of two modalities to

multiple modalities. It models the dependencies between topics both within

and across modalities by introducing auxiliary variables. These models as-

sume there exists correspondences between different modalities, such as a cor-

responding text document for an image document. Multi-modal document

random field (MDRF) [59] model learns a topic model from a set of docu-

ments by using a document-level similarity graph, which models the similarity

between different documents.

The DL-MPTM in Chapter 5 uses Corr-LDA in the dual-layer structure,

as there are only two modalities - audio and text - in our problem. Besides,

because social tags are usually incomplete, the text document (formed for a

song) is not complete as a corresponding document to the audio document of

the song. The merit of Corr-LDA is that the topics of text words are indeed a

subset of topics that occur in the corresponding image (song in our context),

and an audio segment could be associated with multiple text words, which is

reasonable for the annotation of textual concepts to an audio segment.
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Chapter 3

Venue-aware Music

Recommendation

In this chapter, we present a novel venue-aware music recommender system

called VenueMusic to effectively identify suitable songs for various types of

popular venues in our daily lives. Towards this goal, a Location-aware Topic

Model (LTM) is proposed to 1) mine the common features of songs that are

suitable for a venue type in a latent semantic space and 2) represent songs and

venue types in the shared latent space, in which songs and venue types can be

directly matched. It is worth mentioning that to discover meaningful latent

topics with the LTM, a Music Concept Sequence Generation (MCSG) scheme

is designed to extract effective semantic representations for songs. An exten-

sive experimental study based on two large music test collections demonstrates

the effectiveness of the proposed topic model and MCSG scheme. The com-

parisons with state-of-the-art music recommender systems demonstrate the

superior performance of VenueMusic system on recommendation accuracy by

associating venue and music contents using a latent semantic space.
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3.1 Introduction

Intelligent recommender system, as a promising technology for music search,

aims to assist users in exploring large scale music collections by identifying

suitable songs based on their preferences. Users generally prefer music play-

ers which can automatically recommend the playlists fitting their preferences

based on current contexts (e.g., mood, location, event and activity). Indeed,

a wide range of contextual information have been recently explored in the

music recommender system development [126]. These contexts include both

environment-related (e.g. location and time) [19, 5, 31, 132, 135] and user-

related contexts (e.g. activity and emotion) [24, 159]. These studies have

demonstrated that the incorporation of contexts in recommendation can effec-

tively enhance the user’s satisfaction on recommendation results. As a matter

of fact, location is one of the most crucial contexts and has significant influence

on user’s music preference [19, 106]. Several previous studies attempted to rec-

ommend music to specific geo-locations [119, 3]. Besides, Baltrunas et al. [5]

built an in-car music player for recommending music to the landscapes passed

when driving a car. Kaminskas et al. conducted a series of studies on retrieving

songs suited for place of interests (POI) based on emotional tags [19, 62, 63].

However, one important context that is generally ignored in current research

is user’s venue. To the best of our knowledge, no existing approaches can ef-

fectively recommend music based on common venues, such as office, library,

gym, mall, etc.

Venue, referring to the place where activity or event happens, is an impor-

tant location based context and becomes more and more important in music

recommender system design and development. On the one hand, different types

of venues are where people usually listen to music in everyday life [106]. On the

other hand, every day people could enjoy music at different types of venues,

where different surrounding environment and atmosphere can be found. Thus,
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venue type has important influence on users’ song selections and suitable songs

can be very helpful to create the nice atmosphere for a particular venue. For

example, night bar, restaurants and shops often use music to help them create

the right atmosphere for their customers. Furthermore, users’ activities, which

also play a critical role in determining users’ song preferences [159, 106, 85],

highly correlate with venue type. In fact, when users are engaging in the same

or similar activity, the songs they prefer or play share many common musical

characteristics [159]. For example, low tempo and middle-pitch-range music is

usually selected to assist users in concentrating or thinking, while up-tempo

music is a nature choice for physical exercise in the gym and dance party in

Disco.

This study mainly focuses on the effects of venue types instead of geo-

locations (a geo-location refers to a point pinpointed by geographic coordi-

nate), because users’ music preferences are more likely to be influenced by the

atmosphere and environment of venue types. For examples, a user would prefer

similar types of music when he is working out no matter in the gyms nearby

his office or the ones nearby his home, although these gyms have different geo-

locations. In addition, when conducting different activities in a venue, it is

often that users might like the same type of music, such as when reading and

writing in library. To support efficient music access, listeners frequently orga-

nize songs into different playlists, which are suitable for various venue types.

For example, in a popular music streaming service website Grooveshark1, venue

types are very common titles of their playlists. It is often that the same song

appears in many different playlists named with the same venue type but created

by different users (refer to Sect. 3.3.1.2). This observation suggests that users

share similar understanding and view about the music contents suitable for a

particular venue type. For the simplification of presentation, unless otherwise

indicated, venue in this chapter refers to venue type hereafter.

1http://grooveshark.com
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Motivated by the earlier discussions, we study the problem of recommend-

ing suitable songs to different types of venues by exploring the correlation be-

tween the music features and the characteristics of these venues. In general,

a venue owns its distinct characteristics, such as ambience and atmosphere.

Songs with certain features that fit those characteristics could be more suit-

able for this particular venue, such as energetic music for gym and peaceful

music for library. According to the study [77], users tend to label the pieces

of music they like using high-level concepts, such as styles and emotions. It re-

veals that human perceives and judges music based on the semantics embedded

in music contents. In many cases, music semantic meaning cannot be explicitly

described and characterized using low-level spectral features due to the well

known “semantic gap” [169]. Acoustic contents belonging to same or similar

concepts could be highly diverse. Furthermore, a song could include a complex

mixture of concepts at different levels. Therefore, the utilization of acoustic

features or concepts for describing music preferences at a venue may not be

effective and comprehensive enough to support high quality recommendation.

In this chapter, we present a smart music recommender system called

VenueMusic, which can automatically generate a playlist matching a target

venue appropriately [32]. Towards this goal, we approach the problem from a

new perspective of effective topic modeling and develop a novel scheme called

Location-aware Topic Model (LTM), which models the associations between

the music contents and venues in a latent semantic space. Similar to the

standard Latent Dirichlet Allocation (LDA) [15], in the LTM, each topic is a

multinomial distribution of music semantic concepts, which captures the in-

teractions between various music semantics. Each venue and each song are

then represented by the multinomial distributions of these latent topics. Intu-

itively, the topic distribution of a venue characterizes relevant music properties

of songs that are suitable for this venue; and the topic distribution of a song

reflects how general users perceive the music. As both songs and venues are
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represented by the same latent topics, the suitability of a song for a venue can

be directly measured. The LTM is trained based on a set of songs labeled with

different venues. To enable the LTM to characterize the semantic meaning of a

song, each song is represented as a “bag-of-words” document. This is different

from the existing methods [165, 31] based on “bag-of-audio-words”, which can

not effectively express the semantic meanings of a song. In the VenueMusic

system, each song is represented as a sequence of music concepts2, i.e., a “bag-

of-text-word” document. In particular, a Music Concept Sequence Generation

(MCSG) method (Sect. 3.2.2) is proposed to generate the concept sequence of

a song. As validated in our experiments, song representation based on seman-

tic concept sequences in the LTM is more effective than those using low-level

“audio words”. Our main contributions can be summarized as follows:

• A location-aware music recommender system is developed to recommend

music to different types of common venues in everyday life. The system

matches songs and venues based on their semantic features. This is the

first attempt on developing venue-aware music recommendation methods.

• A novel topic model LTM is proposed to capture the natural connec-

tions between the venue semantics and the music contents. The latent

semantic topics extracted by the LTM are used to characterize the music

features preferred in different venue types as well as the music features

of songs. With this approach, the suitability of a song to a venue can be

quantitatively measured in a latent semantic space.

• A semantic concept sequence generation scheme is designed to represent

a song as a set of concepts for topic modeling. Besides, an infrequent

concept pattern filtering method is introduced to remove noisy concepts

in the generated semantic concept sequence. The final semantic concept

sequences of songs are effective on the training of LTM.
2A music concept could be one or several text words that is usually used to describe

music, such as genre and mood words.
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• Two large scale music test collections are constructed to evaluate and

compare the performance of our system with a set of competitors over a

wide range of venues. The core empirical results demonstrate the poten-

tial of our VenueMusic system.

The rest of the chapter is organized as follows. The framework of the music

recommender system is presented in Section 3.2. Section 3.2.3 introduces the

LTM and provides details about algorithms for the model parameter inference.

Section 3.3 describes the experimental configurations. The evaluation results

are presented and analyzed in Section 3.4. Finally, Section 3.5 concludes the

chapter with discussion of the findings in this study and directions for future

research.

3.2 The VenueMusic System

3.2.1 System Overview

The VenueMusic system consists of two main functionality modules: Mu-

sic Concept Sequence Generation (MCSG) and Location-aware Topic Model

(LTM). Fig. 3.1 illustrates details of the system architecture. Given a set of

songs labeled based on their suitabilities to venues (venue-labeled music collec-

tion), each song is represented as a Music Concept Sequence (MCS) via MCSG

module. Then the LTM is trained to discover a set of latent topics, which form

a latent space. Both songs and venues are represented as topic vectors in this

latent space. For new songs in a music dataset, they are automatically con-

verted into a MCS in the same way and mapped into the same latent space

by the topic model. With the representations of songs and venues in the same

space, the relevance (or suitability) of a song with respect to a venue can be

directly measured. Since topic vectors are probabilistic distributions of the

latent topics, the relevance between a song s and venue type l are evaluated
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Figure 3.1: The framework of VenueMusic System.

using Kullback-Leibler (KL) distance. Specifically, a song s and a venue type

l are both represented by the probabilistic distributions of K topics, the KL

distance is expressed as:

KL(l||s) =
K∑
k=1

l(k)ln(
l(k)

s(k)
) (3.1)

where l(k) and s(k) are the probability of k-th topic in the topic distribution of l

and s, respectively. The system is designed based on the key observation that a

particular venue owns its distinct characteristics or atmosphere, which closely

associates with the events or activities occurring in this venue. Typically,

different types of music can be applied to match the atmosphere or activities

in different venues [159, 62, 124]. VenueMusic aims to model those rich and

complex associations effectively and comprehensively via the LTM.

A prototype of the system has been implemented on Android platform

(Android version 4.4, 2GB RAM, Samsung Galaxy S5). Figure 3.2 shows the

screenshot of the user interface of the system. The design of the interface is to

facilitate the easy interaction between user and VenueMusic and enable users

to smoothly access music services. For more details, please refer to [32].

3.2.2 Music Concept Sequence Generation

The most straightforward scheme to generate a sequence of “word units” about

music contents is “bag-of-audio-words”, which has been explored in many stud-

ies [165, 127, 56]. However, this approach suffers from a few limitations. First,
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(a) (b)

Figure 3.2: The user interface of VenueMusic prototype

“audio words” are representative audio frames and thus have no semantic

meanings. In the real world, people characterize music contents using mu-

sic semantic concepts (e.g. mood, genre, instrument, etc.), which reflect how

human perceives and interprets acoustic content. It is very difficult to connect

the topics generated based on “audio words” with these music concepts. Sec-

ond, the number of “audio words” is hard to be determined. A small number

of “audio words” will not be able to represent and distinguish different music

contents effectively, while a large number of “audio words” will lead to sparsity

problem and low efficient indexing and learning.

To address the issues of “audio words”, we develop a method to extract

semantic music concepts (e.g., genre, mood and instrument) from the audio

contents to represent a song as a MCS, which is the concatenation of concepts

in small segments of the song’s audio stream. Alternatively, we can represent

each song by assigning music concepts to the whole song. Comparing with

this alternative method, MCS has at least two advantages: (1) good com-

45



CHAPTER 3. VENUE-AWARE MUSIC RECOMMENDATION

prehensiveness: it contains all the possible music concepts expressed by the

audio contents; and (2) good differentiation: it can differentiate the relatively

important concepts for a song. For example, in a song, the more segments a

concept appears in, the more important or representative this concept is for

the song. By aggregating a large set of songs for a venue, the latent associa-

tions between the music concepts for this venue can be mined from the MCSs

of these songs. The quality of music concept sequence is very important for

discovering such latent associations. To improve the concept detection qual-

ity, two post-filtering procedures are designed to reduce noisy concepts. As

illustrated in Fig. 3.3, MCS generation consists of three main steps:

1. Partition a song into multiple segments;

2. Estimate the probability of each music concept in each segment using

concept detectors based on the extracted audio features, and then filter

the concepts to keep the most representative and confident concepts of

the segment via two filtering methods;

3. Concatenate the remained concepts of each segment to form the MCS

for this song.

Music Concept Detection

Song

Music Concept

Sequence

Infrequent Concept

Pattern Filtering
Threshold Filtering

Acoustic Feature

Extraction

Probability Estimation

of Music Concepts
Audio Track

Segments

Music Concept

Concatenation

Figure 3.3: Architecture of semantic concept sequence generation.

The segments can be obtained by simply cutting the audio stream of a

song into fixed-length windows or by detecting segments using music segmen-

tation methods [92]. In our implementation, the former method is applied due

to its simplicity. Since step (1) and (3) are straightforward, we focus on the
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description of step (2). There are three key components in step (2): Audio

Feature Extraction, Music Concept Probabilistic Estimation and Concept Fil-

tering. Fig. 3.4 gives very comprehensive illustration about system architecture

of Music Concept Probability Estimation and Concept Filtering.

3.2.2.1 Audio Feature Extraction

For each segment, we extract four types of acoustic features:

• Timbral feature: It characterizes the timbral properties of music sounds.

Timbral feature is calculated based on the short time Fourier transform,

including Mel-Frequency Cepstral Coefficients (MFCCs) [91], Rolloff,

Flux, Low-Energy feature [154], and Spectral Contrast [93]. The total

dimensionality is 23.

• Spectral feature: It describes the spectral properties of music sig-

nal. They include: Spectral Centroid, Spectral Asymmetry, Kurtosis,

Audio Spectrum Flatness, Spectral Crest Factors [21], Slope, Decrease,

Variation; Frequency Derivative of Constant-Q Coefficients [137]; Oc-

tave Band Signal Intensities [42]. The total dimensionality is 70.

• Rhythmic feature: It represents the patterns of a song over a certain

duration. In this study, our rhythm feature includes Beat Histogram,

Rhythm Strength, Regularity and Average Tempo [93]. The total dimen-

sionality is 12.

• Temporal feature: It characterizes the musical properties based on

time domain signals. It includes: Zero Crossing Rate; Autocorrelation

Coefficients [42]; Waveform Moments [42]; Amplitude Modulation [42].

The total dimensionality is 62.

47



CHAPTER 3. VENUE-AWARE MUSIC RECOMMENDATION

Three public toolboxes are used to extract all the above acoustic features:

MIR Toolbox [79], Yaafe [96], and Essentia [16]3.

3.2.2.2 Music Concept Probability Estimation

Music concept probability estimation aims to estimate the probabilities of var-

ious music concepts for a music segment, as illustrated in part (a) of Fig. 3.4.

Suppose there are n music dimensions {C1, C2, ..., Cn} (e.g., genre, mood and

instrument) and Ni concepts for each dimension Ci, the probabilistic vector

of a dimension Ci is Ci = {Pi1, Pi2, ..., PiNi
}, (0 ≤ Pij ≤ 1, 1 ≤ j ≤ Ni), where

Pij is the probability that the segment belongs to j-th concept of Ci. Many

existing regression and classification methods can be used to estimate Pij. In

our implementation, the Support Vector Machine (SVM) method in LIBSVM

library is adopted for the task [29].

Instrument

Mood

Genre

Segment 2

Segment 1

Segment 2
genre

mood

instrument

Genre

Mood

Instrument

Segment 1
genre

mood

instrument

Music Concept Sequence
Infrequent Concept 

Pattern Filtering
Threshold FilteringMusic Concept Probability Estimation

: denotes a concept in a music concept dimension

: remove the concept based on Threshold Filtering or Infrequent Concept Pattern Filtering

Thresholds

: g : m : i 

ICPs & FCPs

Concatenate Concepts 

of Segments

(a) (b) (c) (d)

Figure 3.4: Illustration of the music concept probability estimation and concept
filtering.

3.2.2.3 Concept Filtering

Generally, a music segment contains only limited amount of concepts in a music

dimension. For example, it is really rare that a music is played with all kinds of

3Specifically, Yaafe was used to extract the following features: Spectral Crest Factors,
Slope, Decrease, Variation, Frequency Derivative of Constant-Q Coefficients, Octave Band
Signal Intensities, Beat Histogram, Autocorrelation Coefficients, Waveform Moments, and
Amplitude Modulation; Essentia was used to extract Spectral Contrast ; and other features
were extracted by MIR Toolbox.
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instruments. Thus, effective and comprehensive music characterization might

not be achieved by using all the concepts. How to select the most representative

concepts and remove noisy concepts becomes very important. In VenueMusic,

two different strategies are proposed for the concept space refinement and their

details are as below.

Threshold Filtering It aims at removing the concepts with a probability

lower than a pre-defined threshold. Specifically, for each concept dimension

Ci, there is a predefined threshold τi. If Pij < τi, then the j-th concept in

Ci is removed, where Pij indicates the probability of the j-th concept of Ci in

a segment. The threshold filtering is illustrated in part (b) in Fig. 3.4. This

filtering process is conducted in each music dimension separately.

Infrequent Concept Pattern Filtering As existing music concept clas-

sification algorithms cannot obtain very accurate results [39], it is possible

that there are still mis-classified concepts remained after threshold filtering.

To further improve the quality of generated concept sequences for songs, we

propose an Infrequent Concept Pattern Filtering (ICPF) method. The under-

lying assumption is that there exist inherent interactions between concepts in

different music dimensions, such as the use of instruments in different genres,

and the expressed moods of certain instruments and genres. Although a piece

of music can contain or express any combination of concepts, some of them are

Table 3.1: Few examples of Frequent Concept Patterns and Infrequent Concept
Patterns discovered in our dataset. Each concept pattern is comprised by a
concept from each of the three music concept types: mood, instrument, and
genre.

Frequent Concept Patterns Infrequent Concept Patterns

aggressive, guitar, rock literate, snare, hiphop

literate, saxophone, country humorous, clarinet, funk

rollicking, guitar, electronic rollicking, snare, hiphop

passionate, violin, electronic aggressive, clarinet, funk

aggressive, drumkit, alternative humorous, drumkit, classical
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very rare. For example, guitar is a popular instrument to express passionate

mood in rock music, while drumkit has less chance to be found in classical

music to express humorous. A concept pattern is comprised by a concept from

each of the music dimensions. For example, suppose there are three music

dimensions: mood, instrument and genre, then {passionate, guitar, rock} is a

concept pattern. Infrequent Concept Pattern (ICP) indicates the concept pat-

terns which are rarely found or even do not exist in a large music corpus, such

as {humorous, drumkit, classical}. The music dimensions and corresponding

concepts used in this study are discussed in Sect. 3.3.1.1 and shown in Ta-

ble 3.2. Table 3.1 shows some examples of Frequent Concept Patterns (FCPs)

and ICPs. The ICPF process is to remove the suspicious concepts that cause

such rare combinations. The intuition is that the appearance of ICP is due to

the mis-detected concepts. Detail steps of the ICPF process are as follows:

• Step 1 - Concept Pattern Construction: For a segment of a song in the

dataset, after concept probability estimation and threshold filtering, a

set of concepts of different music dimensions are obtained. With the

obtained concepts, all the concept patterns of this segment are formed

based on the concept pattern definition. For example, suppose three

music dimensions are considered and for a segment, the obtained concepts

are: three concepts in the first music dimension {c11, c13, c15} ∈ C1, two

concepts in the second music dimension {c22, c24} ∈ C2, and two concepts

in the third music dimension {c32, c37} ∈ C3. Then in this segment, 12

concept patterns can be formed, such as {c11, c24, c37|c11 ∈ C1, c24 ∈

C2, c37 ∈ C3}.

• Step 2 - FCP Set and ICP Set Construction: Count the frequency of each

concept pattern formed by all the segments of songs in the dataset, and

then construct FCP set and ICP set based on the frequency of concept

patterns (refer to Sect. 3.3.3).
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Algorithm 1: Infrequent Concept Pattern Filtering Process of a Segment

Input: Sfcp: FCP set; Sicp: ICP set; C: Concept set of a segment;
P: Pc(c ∈ C) is the estimated probability of concept c in the segment

Output: C ; // return the remaining concepts after filtering for the

segment

1 Form all the concept patterns L with C ;
2 Ctemp = [] ; // define a empty set for concepts

3 while Sicp
⋂
L 6= ∅ do

4 for each concept c ∈ Sicp
⋂
L do

5 Ctemp = Ctemp

⋃
c ;

6 for each concept c ∈ Ctemp do
/* count the number of times c in a ICP of the segment */

7 Get mc: the number of concept patterns l ∈ Sicp
⋂
L containing c ;

/* count the number of times c in a FCP of the segment */

8 Get nc: the number of concept patterns l ∈ Sfcp
⋂
L containing c ;

/* get the concepts which appear in the most number of ICPs */

9 Set m = max(mc,∀c ∈ Ctemp) ;
10 Cicp = [] ;
11 for each concept c ∈ Ctemp do
12 if mc == m then
13 Cicp = Cicp

⋃
c ;

/* remove the concept which appears in the most number of ICPs */

14 if |Cicp| == 1 then
15 Remove c ∈ Cicp from C ;

16 else
/* get the concepts which appear in the least number of FCPs */

17 Set n = min(nc,∀c ∈ Cicp) ;
18 Cfcp = [] ;
19 for each concept c ∈ Ctemp do
20 if nc == n then
21 Cfcp = Cfcp

⋃
c ;

/* remove the concept which appears in the least number of FCPs

*/

22 if |Cfcp| == 1 then
23 Remove c ∈ Cfcp from C ;

24 else
/* if there are more than one concepts appearing in the most

number of ICPs and the least number of FCPs, remove the

ones with smallest probability */

25 Remove the concepts c ∈ Cfcp with the smallest Pc(∀c ∈ Cfcp) from C ;

26 Re-form the concept patterns L with the remaining concepts C ;
27 Ctemp = [] ;

28 Return C;
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• Step 3 - Noisy Concept Removal: For each segment of a song, detect

the ICPs and remove suspicious concepts that cause such ICPs using

Algorithm 1. Specifically, for the set of concepts in an ICP of a segment,

we remove the one that appears in the most number of ICPs (line 9-15)

or the least number of FCPs (line 17-23) in this segment. If two concepts

appear in the same number of ICPs and FCPs (i.e., both concepts appear

in the most number of ICPs and the least number of FCPs), the label

with lower probability (Pij) will be removed (line 25).

3.2.3 Location-aware Topic Model

In the real world, various songs could be suitable for a particular venue. A

human possesses an amazing capability to judge whether a song fits a venue

or which song has higher suitability to a venue. However, it is not easy to

explicitly explain the reason in a straightforward way. Although people usu-

ally interpret music using various semantic concepts, explanation based on

concepts or mixture of concepts could be inaccurate, less comprehensive and

confusing in many cases. One approach is to describe and model a venue’s

characteristics via combining the musical concepts that are suitable for the

venue. In other words, it maps the venue and music items into common musi-

cal concept space. The drawback of this method is lack of effective capability

to model interactions between different concepts. Many music concepts are

generally highly correlated and not independent of each other. In fact, they

are intertwined together in a song to express certain semantics. For example,

compiling the same song in different styles and using different instruments can

create different atmosphere and give us different feelings. Music selection for

a venue is highly related to the combinations and association of the multiple

concepts. Motivated by these observation and discussion, we develop a novel

topic model - Location-aware Topic Model (LTM) to facilitate a joint model-
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ing of songs and venues under a latent topic space, in which the association

and suitability between music and venues can be directly characterized and

measured. In LTM, each latent topic is represented by a mixture of music

concepts; in turn, songs and venues are the mixtures of topics. A topic of

LTM can be treated as a particular interaction between music concepts. The

topics and their associations (i.e., the representation of a venue) explain the

underlying reasons why people prefer certain songs at a certain type of venue.

3.2.3.1 Model Description

Location-aware Topic Model (LTM) is a generative probabilistic model to char-

acterize the associations between music contents and venue types. The associ-

ations are constructed via a set of latent semantic topics, which are discovered

from a venue-labeled music corpus. The corpus consists of a set of songs labeled

with one venue label or several venue labels, indicating that the song is suitable

for these venues. The common features embedded in songs labeled with the

same venue characterize the music preference of a venue. For the LTM, the

music preference of a venue l is represented as a probabilistic distribution of

latent topics, θl
4. Meanwhile, each song s is also modeled as a probabilistic

distribution of the same latent topics, θs, which captures the latent semantics

expressed by the song. Each latent topic z is a probabilistic distribution of

terms or music concepts , denoted as φz, which effectively captures rich in-

teractions between different music concepts. LTM can be represented by the

graphical model shown in Fig. 3.5. In the generation of a song s labeled with

a venue l, for each word ws of the song s, it could be generated based on the

music preference of the venue θl, or generated according to this song’s prop-

erties θs. As shown in the figure, LTM contains a switch mechanism which

controls the generation of words based on the topic distribution of the venue

4Unless otherwise specified, notations in bold style denote matrices or vectors, and nota-
tions in normal style denote scalars
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Figure 3.5: Plate notation of the Location-aware Topic Model.

ls or the song s. In particular, an indicator variable y ∈ {0, 1} from Bernoulli

distribution parameterized by π associated with each word ws. y acts as a

switch: if y = 0, a topic z is drawn from θl firstly, then word ws is drawn from

φz; otherwise, if y = 1, a topic z is drawn from θs firstly, then word ws is drawn

from φz. Formally, the generative process of LTM is shown in Algorithm 2.

Algorithm 2: Generative Process of LTM

1 for each topic z ∈ {1, · · · ,K} do
2 Draw φz ∼ Dir(·|β);

3 for each song s ∈ {1, · · · , S} do
4 Draw θs ∼ Dir(·|α);

5 for each venue l ∈ {1, · · · , L} do
6 Draw θl ∼ Dir(·|γ);

7 for each song s ∈ {1, · · · , S} labeled with a venue ls ∈ {1, · · · , L}5 do
8 for each word ws ∈ ws in the song s do
9 Draw y ∼ Bernoulli(·|π);

10 if y == 0 then
11 Draw z from the topic distribution θls of the venue ls;

12 if y == 1 then
13 Draw z from the topic distribution θs of the song s;

14 Draw the word ws from φz;

According to the generation process, the probability of a word ws in a song

s under venue type label l is:

P (ws|s, l) = πP (ws|θs,φ, s) + (1− π)P (ws|θl,φ, l)

= π
∑
z

P (ws|z,φ)P (z|θs, s) + (1− π)
∑
z

P (ws|z,φ)P (z|θl, l)
(3.2)
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where P (ws|θs,φ) is the probability that the word ws in s is generated

according to the song’s music properties, P (ws|θl,φ) is the probability that

the word ws in s is generated based on the venue’s music preference. π is the

Bernoulli parameter or mixing weight which controls the generation process.

From the generation process, we can easily find that the topic distribution of a

song is determined by the word (i.e., music concept) occurrences in this song.

The generated latent topics are meant to capture the difference between songs.

At the same time, the word co-occurrence patterns or hidden associations be-

tween the words/concepts embedded in the songs of a venue, are captured by

the topic distribution of this venue. A venue’s topic distribution can be re-

garded as the background distribution of the songs that are suitable for the

venue and the topic distribution of each song is a variation of the venue’s topic

distribution. As different songs are suitable for different venues, the topics are

also tailored for discriminating the characteristics of different venues.

The proposed LTM discovers (1) each venue’s music distribution over latent

topics θl, (2) each song’s topic distribution θs, (3) topic distribution over music

concepts φ, and (4) the mixing weight π. The generative model captures the

associations between songs and venues via the generation of a venue-labeled

music corpus. With the model hyperparameters {α,β,γ,η}, the generation

probability of a corpus D with the observed and hidden variables:

P (D|α,β,γ,η) =

∫
· · ·

∫ S∏
s=1

|ws|∏
i=1

P (wi|z,φ)P (φ|β)P (z|θs,θls , y)

P (θs|α)P (θls |γ)P (y|π)P (π|η)dθsdθlsdφdπ

(3.3)

3.2.3.2 Discussion

Here we discuss the differences of our proposed topic model with other topic

models, including Labeled LDA [118], Author-Topic Model [144], and the

location-aware topic model proposed in [157]. In Labeled LDA [118], the terms

in a document are directly assigned to the labels of the documents, which indi-
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cates that the latent topics of a document are limited to its labels. The Author-

Topic model (ATM) [144] uses a topic-based representation to model both the

contents of documents and the interests of authors. However, this model only

focuses on the interests of authors while it cannot obtain the document-specific

topic-mixture proportions. To use ATM in location-aware music recommenda-

tion, a location is treated as an “author”, and all the songs labeled with the

location are generated based on the topic distribution of the location. There

are two limitations to use the method in location-aware music recommenda-

tion: (1) the model cannot capture the distinct characteristics of individual

songs of a location, because these songs are all generated from the same topic

distribution; and (2) for good performance, the ATM needs large numbers of

“authors” to learn the latent topics. While in our context, a location refers

to a type of venue, e.g., library. It is hard to collect enough data for thou-

sands of venue types to learn such a model. The location-aware topic model

in [157] was designed to explicitly model the relationship between locations

and words. This model labels each word in a document with a location, but

it cannot generate the topic distribution for a location. It is reasonable some

textual keywords are related to a location, such as Personal Names (“Obama”

is more likely related to US)or Regional Words (“CCTV” is more likely re-

lated to China)6. However, it is hard to relate a short segment of music (e.g.,

1 second) to a certain place. Thus, with different design goals, the topic mod-

els discussed above are not suitable for location-aware music recommendation

tasks. Different from these models, our proposed topic model can effectively

discover the topic distributions of both songs and venues. Accordingly, the

concepts relevant to venues and songs are mapped into the same latent space

and can be directly matched in the space.

6Please refer to Table 2 in [157] for more examples
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3.2.3.3 Model Inference

In the LTM model, the estimation of the generation probability of a corpus

involves a set of parameters as shown in Eq. 3.3. Among them, α, β, γ and

η are hyperparameters and pre-defined. The parameters to be estimated are

(1) venue-topic distribution θl, (2) song-topic distribution θs, (3) topic-term

distribution φ, and (4) Bernoulli distribution parameter π. Besides, in the

generation process, we also need to assign the indicator vector Y and latent

topic vector Z to the sequence of words W in the corpus. We apply collapsed

Gibbs sampling to obtain samples of the hidden variable assignments and to es-

timate the unknown parameters {θs, θl, φ, π}. In the collapsed Gibbs sampling,

each latent variable is iteratively updated given the remaining variables. The

parameters {θs, θl, φ, π} are estimated based on the results of a constructed

Markov chain that converges to the posterior distribution on z. The Collapsed

Gibbs Sampling process of LTM is described in Algorithm 3.

Algorithm 3: Collapsed Gibbs Sampling Process for LTM

Input: D: A venue-labeled music dataset;
K: number of topics;
Dirichlet priors: α, γ, β;
Beta priors: η

Output: Estimated parameters θs, θl, φ, π
1 Initialize Z and Y by assigning random values ;

2 Count Nk
l , Nk

s , and N t
k based on initialized Z ;

3 Count Ny0 and Ny1 based on initialized Y ;
4 for each Gibbs sampling iteration do
5 for each song s = 1, · · · , S do
6 for each word ws = 1, · · · , Ns do
7 Sample yws ∼ Bernoulli(·|π) based on π’s value computed by

Eq. 3.7;
8 if yws == 0 then
9 Draw zws according to Eq. 3.8;

10 if yws == 1 then
11 Draw zws according to Eq. 3.9;

12 Update Nk
l , Nk

s , and N t
k based on zws = k ;

13 Update Ny0 and Ny1 based yws ;

14 Estimate model parameters θs, θl, φ, and π according to Eq. 3.6 and Eq. 3.7,
respectively
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Here we show how to joint sample yi ∈ Y and zi ∈ Z of a word wi ∈ W

conditioned on all other variables. yi and zi are needed to be sampled jointly,

because yi decides to whether sample zi from θl or from θs. Formally, we

define that W is a sequence of words during the sampling process, Z and Y

denote the set of topics z and indicators y to the word sequence, respectively.

W¬i denotes W excluding the i-th word wi. Similar notation is used for other

variables. For W = {wi,W¬i}, Z = {zi,Z¬i}, and Y = {yi,Y¬i}, the joint

probability of sampling zi = k and yi = 0 is:

P (zi = k, yi = 0|Z¬i,Y¬i,W ,α,β,γ,η)

∝ (η0 +Ny0,¬i) ·
γk +Nk

l,¬i∑K
k=1(γk +Nk

l,¬i)
·

βt +N t
k,¬i∑V

t=1(βt +N t
k,¬i)

(3.4)

Similarly, the joint probability of sampling zi = k and yi = 1 is:

P (zi = k, yi = 1|Z¬i,Y¬i,W ,α,β,γ,η)

∝ (η1 +Ny1,¬i) ·
αk +Nk

s,¬i∑K
k=1(αk +Nk

s,¬i)
·

βt +N t
k,¬i∑V

t=1(βt +N t
k,¬i)

(3.5)

where Nk
l denotes the number of times observing topic k in venue l, Nk

s denotes

the number of times observing topic k in song s, N t
k denotes the number of

times that term t observed with topic k. Ny0 and Ny1 denote the number of

times that words are drawn from venues and songs, respectively. Based on the

state of the Markov chain Y and Z, we can estimate the parameters:

θs,k =
αk +Nk

s∑K
k=1(αk +Nk

s )
θl,k =

γk +Nk
l∑K

k=1(γk +Nk
l )

(3.6)

φk,t =
βt +N t

k∑V
t=1(βt +N t

k)
π =

η1 +Ny1

η1 + η0 +Ny1 +Ny0

(3.7)

3.2.4 Discussion

In real application, the system should (1) be able to recommend new songs

and (2) be updated/refined when more playlist information becomes available.

In order to recommend new songs, the key problem is how to estimate the

topic distributions of new songs. Since new songs do not have venue labels,
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the topic distribution estimation in LTM is the same as the topic distribution

estimation of new documents in LDA. Following the method described in [49]

(see Section 7.1 in [49]), we first initialize the algorithm by randomly assigning

topics to words (in the new songs) and then perform a number of loops through

the Gibbs sampling updated locally for the words of new songs.

When more playlists become available, the online learning algorithms de-

signed for LDA could be applied to our model, such as [52, 168]. As the col-

lapsed Gibbs sampling is used in inference, we show how to extend the state of

the Gibbs sampler to the new observations, i.e., {W , Ŵ ;Y , Ŷ ;Z, Ẑ}. W ,Y ,

and Z denote the topic, indicator, and word sequences in original training

corpus, respectively; and Ŵ , Ŷ , and Ẑ denote the topic, indicator, and word

sequences in the corpus of new playlists, respectively. We first initialize the

algorithm by randomly assigning topics to words (of songs in the new playlists)

and perform a number of loops through the Gibbs sampling updated locally

for those words, Eq. 3.8 and Eq 3.9 become:

P (zi = k, yi = 0|Ẑ¬i, Ŷ¬i, Ŵ ,α,β,γ,η)

∝ (η0 +Ny0,¬i + N̂y0,¬i) ·
γk +Nk

l,¬i + N̂k
l,¬i∑K

k=1(γk +Nk
l,¬i + N̂k

l,¬i)
·

βt +N t
k,¬i + N̂ t

k,¬i∑V
t=1(βt +N t

k,¬i + N̂ t
k,¬i)

(3.8)

P (zi = k, yi = 1|Ẑ¬i, Ŷ¬i, Ŵ ,α,β,γ,η)

∝ (η1 +Ny1,¬i + N̂y1,¬i) ·
αk +Nk

s,¬i + N̂k
s,¬i∑K

k=1(αk +Nk
s,¬i + N̂k

s,¬i)
·

βt +N t
k,¬i + N̂ t

k,¬i∑V
t=1(βt +N t

k,¬i + N̂ t
k,¬i)

(3.9)

where Ny0,¬i, Ny1,¬i, N
k
s,¬i, N

k
l,¬i, and N t

k,¬i are the previously obtained values

on the original training data using Gibbs sampling(see Section 3.2.3.3); and

N̂y0,¬i, N̂y1,¬i, N̂
k
s,¬i, N̂

k
l,¬i, and N̂ t

k,¬i are the corresponding values observed in

the new corpus. Then the parameters estimated by Eq. 3.6 and Eq. 3.7 are

updated with the consideration of those new observations.
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In fact, it would be better to train the model periodically. With the use

of the system, a set of new songs and new playlists will be added into the

corpus after a period. User’s music preference on songs may evolve due to the

evolution of music popularity trends. Re-training the model based on recent

playlists could enable the system to track the recent music preference of users

and always recommend songs that users prefer in recent time period. Besides,

the model is trained in offline. With the recent techniques of training large

topic models [167, 160], our model could be trained efficiently.

3.3 Experimental Setup

We conduct a series of experiments to study the performance of the VenueMusic

System and try to address the following research questions:

RQ1 Is it better to use latent topics to capture the associations between songs

and venues, comparing to the direct use of low-level audio features or

semantic concepts?

RQ2 Is it better to represent songs as music concept sequences in the LTM

than to represent songs as “bag-of-audio-words”?

RQ3 Does the use of Infrequent Concept Pattern Filtering (ICPF) process

improve the final performance?

To answer these questions, we compare the performance of the Location-

aware Topic Model (LTM) with four competitors: two content-based recom-

mendation methods7, a LTM based on “audio words” and a LTM based on

the generated music concepts without the use of ICPF process on two datasets

TC1.

7Collaborative-based filtering (CF) methods are not used in comparisons, because that
CF is suitable for the cases with a large number of users (venues in our case), while there
are only eight venues in our experiments.
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3.3.1 Test Collection Construction

Test collection plays an important role in large scale performance evaluation

and comparison. In this work, we carefully develop three test collections to

facilitate empirical study.

3.3.1.1 Concept-Labeled Music Dataset

A dataset with songs labeled by music concepts is built for learning SVM

classifiers to estimate the probabilities of music concepts in each music segment

(described in Sect. 3.2.2.2). In experiments, three music concepts are used8:

genre, mood, and instrument. The three types of concepts are selected because

(1) they are important concepts usually used to describe music preferences

according to studies from psychology and cognition [45, 120], and (2) they

are the most commonly used music concepts to annotate songs by common

users [76]. The five mood classes in MIREX mood classification task9 are used

in the mood dimension. Twelve genres are used in the genre dimension10, and

twelve instruments from four types of popular instruments [170] are used in

the instrument dimension. The classes of each concept dimension are shown

in Table 3.2. For each class, 100 songs were carefully selected. A 30 seconds

audio stream for each selected song is downloaded from 7digital11.

Details about the procedure of song selection for each concept dimension

are described below.

• Song Selection for Mood : Songs for mood dimensions are collected

from Allmusic12, which is an expert-based music website. Allmusic pro-

8Although there are only three types of music concepts in our implementation, more
concepts can be used. When more music concepts are used, our model is expected to model
the song and venue more accurately.

9http://www.musicir.org/mirex/wiki/2009: Audio Music
Mood Classification

10According to the study of [120], fourteen general genres are well enough to represent
user music preferences on the aspect of genre. The other two genres are sound tracks and
religious besides the twelve genres used here.

11https://www.7digital.com/
12http://www.allmusic.com/
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Table 3.2: Types of three music concepts used in experiments

Concept Classes

Mood aggressive, humorous, literate, passionate, rollicking

Genre
alternative, blues, classical, country, electronic, funk,
hip-hop, jazz,

metal, pop, reggae, rock

Instrument
trombone, trumpet, tuba, flute, clarinet, saxophone,
piano, snare,

drumkit, violin, cello, guitar

vides representative songs for various moods and genres.13 There are 50

songs for each type. For the five classes of mood, each class represents

a cluster of similar moods14 (In Table 3.2, a mood represents a mood

class.). The 50 songs provided by Allmusic for each mood in a mood

class are collected first, and then 100 songs are randomly selected for the

class.

• Song Selection for Genre: Blues, classical, country, electronic, jazz,

and reggae are clearly listed in Allumusic, and provide 50 songs for each

type. To obtain more songs of these genres and songs of other genres, we

referred to DigitalDreamDoors15, which provides more than 200 music

& movie lists. These lists are created by a crowdsourcing method. The

website allows people to review each list. Each list is revised regularly by

the editor who creates the list based on users’ comments. After collecting

songs from corresponding genre lists in the website, three music hobbyists

are asked to cross-check and select the songs for each genre. A song is

selected for a certain genre when the three evaluators make an agreement.

Through the above process, 100 songs are selected for each genre.

• Song Selection for Instrument : For each instrument, we search (1)

13http://www.allmusic.com/genres; http://www.allmusic.com/moods
14http://www.musicir.org/mirex/wiki/2009:Audio Music Mood Classification
15http://www.digitaldreamdoor.com/pages/about us ddd.html. Access on 27 December

2013
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albums and songs of famous soloists of the instrument, such as Taylor

Davis for violin, Alison Balsom for trumpet, etc. and (2) search al-

bums and songs using keywords like “guitar solo”, “guitar music”, “gui-

tar songs” in 7digital. After collecting the candidate songs, the same

assessment procedure as genre music selection is conducted to select 100

songs for each instrument. The selected songs of an instrument contain

pure music, songs, solo and mixed with other instruments.

The selection procedure, which first selects songs from reliable resources and

then manually checks the songs by human subjects, is helpful on guaranteeing

the data quality and saving much time and labour. Notice that a relatively

simple procedure is adopted to verify the genre and instrument of a candidate

song. This is because: (1) in general, a song can be classified into a certain

genre that majority will agree on, and (2) there is a definite answer to whether

a song is played with a particular instrument or not. Because of the objective

nature of the judgment on the genre and instrument of a song, it is easy for the

subjects to achieve agreement on whether a song belongs to a genre or played

with a particular instrument. Similar to the song selection procedure for each

concept described above, candidate songs are first collected and then verified

by human subjects.

3.3.1.2 Venue-Labeled Dataset (TC1)

In this dataset, each song is labeled with one or several venue types. The

labels of a song indicate which venue types this song is suitable for. Eight rep-

resentative types of venues in daily life are selected for the experiments. They

include library, gym, restaurant, bedroom, mall, office, bus/train16, and bar,

where people often enjoy music. The song candidates for each venue were col-

lected from the corresponding playlists in Grooveshark. Grooveshark contains

a large amount of playlists created by users, titled with various contexts such as

16Bus and train are used to represent the transportation.
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gym playlist, bar music, etc. These labeled playlists in GrooveShark have been

successfully used for activity classification [159]. Venue-labeled playlists im-

ply that users have special preferences on music contents in different venues,

and also provide us a good source to collect data. In our implementation,

for each venue, the playlists named by “$venue$ songs”, “$venue$ music”,

and “$venue$ playlist” were retrieved in Grooveshark. Songs in the returned

playlists were collected. Taken bar as an example, “bar songs”, “bar music”,

and “bar playlist” were used to search related playlists. For each venue, we

collected songs from at least 150 playlists. And more than 5000 individual

songs were collected on average for each venue. Many songs appear in multi-

ple playlists of a venue. For example, the song “Nine Inch Nails - the hand

that feeds” appears in 48 playlists of library. As the playlists of a venue are

created by different users, the appearance of a song in multiple playlists implies

that people have similar preferences on music for a particular venue. Songs of

a venue are sorted in descending order based on the number of playlists they

appear in. The top 500 songs in the sorted list of each venue were selected.

The selected 500 candidate songs for each venue are then evaluated by

human subjects. Nine subjects are volunteered for the evaluation. All the

subjects are music hobbyists. They are five females and four males with dif-

ferent education backgrounds. Five of them are students, and the other four

are working professionals. During the evaluation, they are required to listen

to each song of a venue and then rate the song. The guidelines of rating are

shown in Table 3.3. The subjects need to listen to a song for at least 60 seconds

before making the final decision.

We studied the inter-subject agreement by calculating Fleiss’s Kappa [78]

among the 9 subjects for every venue. All Kappa values are significantly higher

than 0 (p-value < 0.001) with the lowest value for restaurant (0.076) and mall

(0.09) and especially high for bedroom (0.337), gym (0.314) and library (0.287).

The average Kappa value over eight venues is 0.202 (±0.100). The results
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Table 3.3: Guidelines of rating a song for a type of venue

Score Description

1 point I absolutely will not listen to it in this type of venue

2 point I can stand it in this type of venue

3 point I do not mind to listen to it in this type of venue

4 point I like it in this type of venue

5 point I like it very much in this type of venue

Table 3.4: Number of relevant songs for each venue in TC1

Bar Gym Library Office Restaurant Mall Bus/Train Bedroom

266 233 154 176 121 135 221 189

indicate that subjects have statistically significant agreement on music for

venues. To evaluate the precision and ranking performance of the methods,

the ratings of a song for a venue are converted into three relevance levels.

Specifically, if the majority of the subjects (namely, 5 or more subjects) give

a rating greater than 3 point to a song for a particular venue, then the song is

regarded as relevant for the venue; if the majority of the subjects give a rating

less than 3 point to a song for a particular venue, then the song is regarded

as irrelevant for the venue; if a song does not belong to either relevant or

irrelevant, it is regarded as neutral. The number of relevant songs for each

venue is shown in Table 3.4.

3.3.1.3 Large Music Dataset (TC2)

Since TC1 is relatively small, another test collection (TC2) was developed

for large scale evaluation. TC2 contains 10,000 popular music selected from

Last.fm17. This collection is constructed as follows. Artists from the top 150

artists in each week (namely, the most popular 150 artists in each week) from

20 February 2005 to 24 November 2013 in the category of all places18 were

collected in Last.fm. As the data in Last.fm is known to contain misspellings

17http://www.last.fm
18http://www.last.fm/charts/artists/top/place/all?limit=150.
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and mistakes, the collected artist list was checked by matching each artist

name in AllMusic. After filtering, the list contains 531 artists. The songs of

each artist were collected from the MusicBrainz database19. For the songs in

Last.fm, we collected the number of its listeners till 26 November, 2013, when

accessing the data. Finally, the top 10,000 songs with more listeners were

obtained and their audio tracks are downloaded from 7digital.

3.3.2 Competitors and Evaluation Metrics

In the following presentation, we use CLTM F to represent our proposed

method, which uses LTM based on the extracted music concept sequence with

the infrequent concept pattern filtering. We present the results of the following

four competitors with CLTM F to study the four research questions mentioned

above.

• Audio-Based Filtering (ABF) Each venue is represented by several

representative audio feature vectors. Specifically, by representing the

songs of a venue using the audio features described in Sect. 3.2.2.1, K-

means method is applied to generate k clusters. The feature vectors of

the cluster centers are then used to represent the venue. The similarity

between a representative vector of a venue and the feature vector of

a new song is calculated by Euclidean distance. The best performance

over these representative vectors of a venue is used to compare with other

methods.

• Concept-Based Filtering (CBF) In this method, the histogram of

music concepts is used to represent songs and venues. Specifically, based

on the generated music concept sequence of a song (described in Sect. 3.2.2),

the occurrence times of music concepts in the signature are counted and

normalized to generate a histogram vector, which is used to represent the

19http://musicbrainz.org/. Access on 24 November, 2013
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song. By aggregating all the music concepts of all songs of a venue, the

concept histogram of the venue can be obtained. Then the KL distance

is used to compute the similarity between songs and the venue.

• Audio Word based LTM (ALTM) This method uses “bag-of-audio-

words” as input in the LTM. Specifically, each song in a corpus is seg-

mented into small frames, and audio features are extracted from each

frame. K-means method is used to group the frames into clusters based

on their audio features. The cluster centers are used as “audio words”.

Indexing each frame of a song with the closest “audio words”, the song

is represented as a sequence of audio words. In our implementation, an

audio word is a 0.5s music frame.

• CLTM Comparing with CLTM F, this method doesn’t have the module

to support the infrequent concept pattern filtering process.

Besides the competitors above, we also compared LTM with other meth-

ods, such as Jaccard Similarity in [19]20, Autotagger21 and two LDA variants

(i.e., Author-Topic Model [144] and the location-aware topic model in [157]).

Because these methods are not designed for current tasks - recommend songs

to venue types22, their performances are very limited23. Thus, we only present

the results of four competitors listed above.

Precision at k (Precision@k), Average Precision at k (AP@k) and Normal-

ized Discounted Cumulative Gain at k (NDCG@k) [57] are used as evaluation

metrics. Please refer to Appendix A for the descriptions about these metrics.

20In [19], a song and a Point of Interest are matched based on the similarity between
manually labeled concepts. In our implementation, as no manual labels is available, we use
the generated concept vectors of songs and venues (concept generation of venues is described
in Sect. 3.3.2) for computing Jaccard similarity.

21Autotagger is used to classify each song into different venues.
22The reasons of the two topic models are described in Sect. 3.2.3.2; Jaccard Similarity

in [19] relies on manually labeled tags; and Autotagger is a classification methods.
23For all the four methods, their average accuracies (precision@20) in TC2 are lower than

20%. The highest precision for the four methods are obtained by Jaccard similarity: 0.1875
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Figure 3.6: Average precision@{5 − 20} comparison of different methods on
Test Collection 1 (TC1).

3.3.3 Experimental Configurations

In our experiments, TC1 is split into training set and test set. Specifically,

for each venue, 70% relevant songs were randomly selected to construct the

training set. The test data contains 1000 songs, comprised by the rest 30%

relevant songs of each venue and randomly selected 552 songs from the rest

songs of TC1 (excluding the relevant songs of venues). The representations of

venues (for ABF and CBF methods) are obtained based on the songs in the

train set. ALTM, CLTM and CLTM F are also trained based on the train set

of TC1. The learned models based on the train set of TC1 are directly used in

TC2. We focus on the performance improvement achieved by CLTM F over

other methods. For details about the parameter setting in our experiments,

please refer to [33].

3.4 Experimental Results

3.4.1 Performance Evaluation on TC1

In this section, we compare and analyze the performance of five methods on

TC1. Fig. 3.6a shows the average precision@ {5 − 20} of recommendations

using acoustic features (ABF), concept histogram (CBF), and our method
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(CLTM F). Comparisons between them are to verify the advantages of using

the LTM generated topic distributions to represent songs and venues (RQ1).

From the figure, we can observe that CBF is consistently better than ABF,

and CLTM F clearly outperforms ABF and CBF with statistically significant

improvement. The results demonstrate that low-level acoustic features alone

cannot well represent the associations between music contents and venues.

The generated topics by the LTM associating the music concepts in high-level

semantic space can better capture the connections between music contents

and venues. The comparisons between ALTM, CLTM and CLTM F shown in

Fig. 3.6b demonstrate the advantages of learning topics using music concepts

over audio words (RQ2) and the usefulness of ICPF (RQ3). The ICPF process

indeed improves the final performance, as CLTM F outperforms CLTM. It

implies the process can obtain more suitable music concept sequence for a

song. Furthermore, by comparing the results in Fig. 3.6a and Fig. 3.6b crossly,

we observe that the performance of ALTM is only comparable to that of ABF,

and CLTM is slightly better than CBF. The results indicate that the quality

of music representation is crucial to the success of our LTM on venue-aware

music recommendation.

Table 3.5: Precision and Average Precision comparison across different venues
on Test Collection 1 (TC1)

Venue
Precision@20 AP@20

ABF ALTM CBF CLTM CLTM F ABF ALTM CBF CLTM CLTM F

Bar .300 .300 .350 .300 .400 .118 .226 .173 .197 .317

Bedroom .250 .350 .350 .400 .450 .189 .151 .297 .307 .301

Gym .250 .350 .350 .400 .450 .104 .216 .325 .294 .326

Library .200 .200 .250 .250 .300 .117 .115 .151 .144 .176

Office .150 .200 .300 .250 .450 .057 .085 .141 .169 .259

Restaurant .300 .150 .300 .250 .250 .151 .053 .220 .089 .105

Mall .200 .200 .200 .200 .200 .077 .073 .069 .118 .120

Bus/Train .300 .400 .300 .400 .350 .169 .273 .116 .288 .272

Mean .244 .269 .300 .306 .356 .123 .149 .187 .201 .235

Table 3.5 shows the Precision@20 and AP@20 of our methods and other

69



CHAPTER 3. VENUE-AWARE MUSIC RECOMMENDATION

competitors in each venue. CBF achieves better results than ABF method in

bar, bedroom, gym, library, and office, while does not show any improvement in

restaurant, mall, and bus/train. This is an interesting observation, which is in

accord with the inter-person annotation agreement analysis (Sect. 3.3.1.2). A

possible explanation is that people may have more consistent preferences on the

types of music they like in the former five venues than the later three venues.

Bar and gym have their special atmosphere where people tend to enjoy certain

types of music. For these venues, the performance can be further improved

by CLTM F. It implies that for the venues where music concepts can directly

describe on some extent, the CLTM F topics can better capture the semantics

of the venues. Similar to CBF, CLTM F does not show any improvement in

mall, and even performs worse in restaurant. This is partially because there are

different kinds of mall and restaurant, subjects annotated songs based on the

types of mall and restaurant they frequently visit in daily life. Accordingly, the

obtained relevant songs for the two venues are relatively diverse (low Kappa

values). Consequently, it is harder for the model to capture the associations

between music and the two venues, resulting in poor performance. Particu-

larly, CLTM and CLTM F achieve better results in bus/train, where the CBF

does not show any advantages over ABF. This suggests that music concept

based LTM methods have the potential to capture the underlying reasons for

music preference in the venue where the music concepts cannot well explain

(RQ1). Comparing with CLTM, CLTM F demonstrates much more consis-

tent performance, which clearly shows the effectiveness of infrequent concept

pattern filtering (RQ3).

To evaluate and compare the ranking performance of the methods, NDCG@20

are calculated for all methods and presented in Table 3.6. CLTM F achieve

the best result over the other methods at venues bar, bedroom, gym, library,

and office. CLTM performs better than the other three methods on all venues

except restaurant and mall. The results show that the superiority of music
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concepts based LTM methods on finding the most suitable songs for venues

(RQ1 and RQ2).

Table 3.6: NDCG@20 comparison of different methods across different venues
on Test Collection 1 (TC1)

Venue ABF ALTM CBF CLTM CLTM F

Bar .291 .428 .349 .400 .524

Bedroom .381 .330 .492 .515 .527

Gym .272 .432 .506 .508 .534

Library .295 .293 .345 .306 .385

Office .173 .222 .308 .358 .456

Restaurant .423 .169 .361 .270 .331

Mall .295 .221 .206 .225 .296

Bus/Train .380 .507 .299 .496 .477

Mean .314 .325 .358 .385 .441

3.4.2 Performance Evaluation on TC2

We observed the achieved improvements of CLTM F on music recommenda-

tion for specific venues in TC1, while TC1 is a weakly-labeled dataset24. To

validate the real performance of the method on a large dataset, we evaluate

its performance and compare it with other competitors on TC2. The results

returned by each method are carefully evaluated by human subjects. Specifi-

cally, the five methods were used to recommend songs from TC2 for the eight

venues. The top 20 recommended songs are collected and mingled together

to form a single playlist for a venue. The optimal models of ALTM, CLTM

and CLTM F obtained on TC1 were used. To fairly evaluate whether the

songs in a playlist are suitable for the corresponding venue, 7 human subjects

were recruited. They are 4 females and 3 males with different education back-

ground from Singapore and China (They are a different set of subjects from

the subjects for TC1 annotation). The subjects are required to listen to the

24It is possible that a song is suitable for a venue, while has not been labeled for the venue.
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recommended songs in the corresponding venues25 and rate them according to

the rule described in Sect. 3.3.1.2. Each subject is required to assess each song

in all playlists. With the collected ratings, each song in the results of a venue is

judged as relevant, neutral and irrelevant using the same method described in

Sect. 3.3.1.2. Based on the relevance judgment of each song in the playlists for

venues, Precison@20, AP@20 and NDCG@20 are computed for each method

in each venue. The results are shown in Table 3.7 and Table 3.8.

Table 3.7: Precision and Average Precision comparison across different venues
on Test Collection 2 (TC2)

Venue
Precision@20 AP@20

ABF ALTM CBF CLTM CLTM F ABF ALTM CBF CLTM CLTM F

Bar .950 .800 .850 .950 .950 .845 .746 .723 .906 .950

Bedroom .250 .450 .450 .550 .650 .169 .245 .339 .347 .491

Gym .400 .350 .450 .550 .650 .189 .179 .248 .428 .515

Library .350 .300 .600 .600 .650 .257 .154 .344 .437 .452

Office .400 .350 .450 .450 .500 .175 .162 .213 .235 .269

Restaurant 0.30 .150 .200 .300 .300 .083 .097 .128 .097 .156

Mall .150 .250 .350 .300 .450 .024 .072 .158 .102 .200

Bus/Train .200 .200 .500 .450 .550 .067 .047 .217 .359 .367

Mean .375 .356 .481 .519 .588 .226 .213 .296 .364 .425

Table 3.8: NDCG@20 comparison of different methods across different venues
on Test Collection 2 (TC2)

Venue ABF ALTM CBF CLTM CLTM F

Bar .910 .853 .859 .955 .968

Bedroom .365 .451 .555 .541 .700

Gym .393 .402 .485 .619 .706

Library .456 .335 .533 .538 .625

Office .383 .389 .456 .438 .474

Restaurant .251 .253 .308 .272 .367

Mall .117 .227 .382 .275 .402

Bus/Train .214 .172 .425 .568 .586

Mean .386 .385 .500 .526 .604

25We did not specify the exact location for each venue. They can go to the venues they
usually go to.
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From the results of Precision@20 and AP@20, we can see that CLTM meth-

ods (CLTM and CLTM F) achieve more than 50% recommendation accuracy

for bar, bedroom, gym, library and bus/train, and significant improvement over

other methods in these venues expect bar, where all methods can achieve high

recommendation accuracy. Comparing to CLTM, CLTM F presents more con-

sistent performance and outperforms other methods across all venues, which

implies the necessity of removing noisy concepts. As shown in the Table 3.8,

CLTM F outperforms other methods in all venues on ranking performance, and

achieves significant improvement in bedroom, gym, library, office and bus/train.

The overall performance of CLTM is better than the other three methods, while

its performance is not stable as CLTM F across different venues. The perfor-

mances in restaurant and mall are still unsatisfactory. As subjects judged the

results based on the venues they went to, it is possible that the recommended

songs are suitable for other types of malls or restaurants. For further study of

the problem, it is necessary to classify the venues into finer granularity, such

as specify the types of mall and restaurants.

3.5 Summary

In this chapter, we present a location-aware music recommender system called

VenueMusic. This system can effectively recommend suitable songs for com-

mon venues in daily life. We have detailed a Location-aware Topic Model,

which represents the music profiles of venues in a latent semantic space. A

process of generating high quality music concept sequence for songs was de-

scribed. The generated music concept sequences can effectively learn LTM

for recommending songs for various types of venues. Two large datasets were

constructed to evaluate the performance of our system. Experimental results

demonstrate the effectiveness of our system.
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Chapter 4

User Information Aware

Text-Based Music Retrieval

In this chapter, we present a user information aware text-based music retrieval

system. The goal of the system is to leverage the easily obtained user informa-

tion (i.e., age and gender) to improve the search accuracy. Thus, the system

can be used to deal with the cold-start problem of new users in personalized

music retrieval systems. In fact, user-specific information, such as age and gen-

der, has great influence on personal music preferences and interests. However,

the existing research pays few attentions on designing advanced schemes for

modeling and integration of user specific information to facilitate text-based

music retrieval. By analyzing large-scale users’ music profiles in Last.fm, we

observe the influence of age and gender on music preference. Based on the ob-

servations, a novel topic model based scheme called User-Information-Aware

Music Interest Topic (UIA-MIT) model is proposed to capture the influence

of user’s age and gender on user’s music preferences. Further, by capturing

the correlation of user’s music preference, song, and semantic tags in a latent

music interest space, we develop a user information aware retrieval framework,

which can search and re-rank the search results based on age- and/or gender-

specific music preference. An extensive experimental study demonstrates the
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superiority of our method over the state-of-the-art text-based music retrieval

methods from various perspectives.

4.1 Introduction

With the fast development of mobile computing technology and cloud-based

streaming music service, personal handheld devices have been becoming the

most popular platform to consume music daily. Based on Nelsen’s Music 360

2015 report, 44% of US music listeners use smartphones to listen to music in

a typical week. Typically, smartphones are for personal use. Thus, it is easy

to obtain personal information via smartphones, which can be used in person-

alized applications to achieve better user experiences. With the fast growing

trend in music consumption with smartphones, there has been an increasing

interest in the multimedia database and information system communities to

study the technology for supporting user-centered music information retrieval.

Techniques for effective user-centered music search are gaining in its impor-

tance due to a wide range of potential applications. Based on this technology,

personalized music search or recommendation systems can be developed to

automatically cater for users’ music needs.

Generally, user’s music selection is greatly influenced by long-term music

interests, which is dependent on user-specific background, such as age, gender,

social status, grow-up environment, culture background, etc. Fig. 4.1 illus-

trates the influences of age and gender on user’s music preferences. Based on

a large number of real users’ profiles from Last.fm1, users are classified into

different 14 age and gender groups. For example, “16-20 male” refers to the

group of male users in ages of 16 to 20 years old. Similar definitions can be

generalized to other groups. This figure presents the percentage of different

artists in top 20, 50 and 100 favorite artists between 16-20 male users with

1Please refer to Section 4.3.1 for details about the users’ profile.
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other 13 group users 2. From the figure, we can clearly observe that (1) users

with larger age difference have more different favorite artists, and (2) the tastes

of users in the same gender are more similar than users in different genders.

For example, users in 16-20 male group and 21-25 male group have more com-

mon favorite artists than users in 16-20 male group and 21-25 female group.

The observations demonstrate the importance of age and gender on listeners’

music preferences.
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Figure 4.1: Percentage of different artists in top 20, 50, and 100 favorite artists
between the 16-20 male group and other groups. The percentage of different
artists in top K is the number of different artists between two groups in the
top K artists divided by K.

Semantic-based music retrieval, as one of the most popular music search

paradigms, typically requires users to provide a few text keywords as query to

describe their music information needs. Because of the great impact of user-

specific information on music preferences, given the same query, different users

would expect different search results. For example, given a query “pop, sad”,

the retrieved songs expected by 40 years old male could be very different from

the ones favored by 20 years old female. Here, user-specific information refers

to the user related information which could influence user’s long-term music

interests. Despite the importance, user-specific information have not been well

2The most favorite artist of a user group is the one whose songs are loved by the most
number of users in this group. In this figure, the 16-20 male group is used as the comparative
base to compare with other groups. The same conclusions can be observed using other groups
as comparative basis.
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explored in existing music retrieval systems. Few studies focus on designing

advanced schemes to exploit user-specific information in music retrieval. In

this study, we develop a text-based music retrieval system, which can leverage

user-specific information to improve the search performance. Because user-

specific information is relatively easy to be obtained, especially on the mobile

platform, the system has a wide range of real applications. Besides, it can be

applied to deal with the cold-start problem of new users in personalized music

retrieval system.

Two main challenges of integrating the user-specific information in music

retrieval are (1) how to model the influence of user-specific information on

music preferences and (2) how to associate the influence with query and songs.

To tackle the challenges, a novel topic model called User Information Aware

Music Interest Topic (UIA-MIT) model is proposed. UIA-MIT can explicitly

model the music preferences of different types of user-specific information.

We focus on age and gender information in this study. In this model, the

music preferences depending on different factors (i.e., age and gender) are

represented by the probabilistic distributions of a set of latent topics. The

latent topics are represented by the probabilistic distributions of songs and

terms (song’s annotations or tags). Therefore, song, term, and the music

preferences (influenced by age and gender) are associated via the latent topics.

Based on the UIA-MIT model, we develop a probabilistic semantic-based music

retrieval method, which aims at effectively satisfying user’s personal music

information needs by taking user-specific information into account.

In order to evaluate the method’s performance and demonstrate advantages

of our proposed method, we have conducted a series of experimental studies

and comprehensive comparisons over different methods on two different search

related tasks: ad-hoc retrieval and re-ranking. Our empirical results show

age or/and gender information play important roles in search performance im-

provement. It demonstrates the importance and practical meaning of utilizing

77



CHAPTER 4. USER INFORMATION AWARE TEXT-BASED MUSIC RETRIEVAL

user-specific information in real music retrieval system development. To the

best of our knowledge, our work is the first attempt on designing advanced

music retrieval methods to leverage user-specific information in retrieval.

The remainder of this chapter is organized as follows: In Section 4.2, we

describe the UIA-MIT model and introduce the related retrieval methods. Sec-

tion 4.3 presents experimental configuration and Section 4.4 gives a detail de-

scriptions on experimental results. Finally, Section 4.5 concludes this chapter

with a detailed summary.

4.2 User Information Aware Music Retrieval

System

In this section, we describe the user information aware music retrieval system,

which consists of two components:(1) a User Information Aware Music Interest

Topic (UIA-MIT) Model, which captures the influence of user information

(age and gender in this study) on user’s music preference; and (2) a user

information aware music retrieval method, which could leverage user’s age and

gender information in music retrieval based on the captured influence of age

and gender on music preference.

4.2.1 Music Interest Discovery Topic Models

In this section, we present two topic models - Music Interest Topic (MIT) model

and User-Information-Aware Music Interest Topic (UIA-MIT) model, which

aim at capturing the latent music interests of users underlying the observations

of (user, song) records. In both models, a set of latent topics (i.e., K topics)

is discovered based on the records of users’ loved tracks. Each latent topic

represents one type/style of music or a music interest dimension. Notice that

the music interest of a user is influenced by many factors, such as personality,
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age, gender, country, etc. The MIT model has not explicitly modeled the

influence of those factors and represents the latent music interest of a user

as a probabilistic distribution of the latent topics. On the other hand, the

UIA-MIT model is to capture the influence of different factors (e.g., age and

gender) on music interests. For example, what is the general music interests

of users in a certain age range or gender ; or in other words, the likelihood of

each type of songs loved by the users with regard to their ages and genders.

This kind of knowledge can help us refine the search results in music retrieval.

In the UIA-MIT model, a user’s latent music interest is expressed as a mixture

of multiple latent topic distributions. Each latent topic distribution represents

the music interests depending on a factor (e.g., age). Therefore, the mixture of

multiple latent topic distributions in this model represents a user’s latent music

interests, as the result of collective effects of different factors. In the following,

we first introduce the key concepts (Sect. 4.2.1.1), and then describe the MIT

(Sect. 4.2.1.2) and UIA-MIT model (Sect. 4.2.1.3), as well as the algorithm to

inference the model (Sect. 4.2.1.4).

4.2.1.1 Preliminary

For ease of understanding and presentation, we first introduce some key con-

cepts and notations.

Dataset D. The dataset D in our model learning consists of user, user

information (i.e., age and gender), song, and song’s content (i.e., tags and

audio words), that is, (u, a, g, s, sw, sv) ∈ D, where u ∈ U , s ∈ S, a ∈ A,

g ∈ G, sw ∈ W , and sv ∈ V . One piece of record in the dataset is that a user u

of age a and gender g loves a song s with tags sw and audio content sv: Dusc =

{(u, a, g, s, w, v) : w ∈ sw, v ∈ sv}. The corpus is formulated into three types

of documents: (1) user-song-document: it is the user’s music profile, which is

the sequence of loved songs of the users. Each song represents a “word” in this

type of document; (2) song-word-document: this type of document represents
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the semantic content of a song. For each song, its text word document is formed

by firstly parsing its social tags (in Last.fm) into individual words and then

concatenating those words; (3) song-audio-document: this type of document

represents the audio content of a song. For each song, it is comprised by the

audio words of the song. The implementation details of the three types of

documents in our study are described in Section 4.3.

Audio Word. An audio word is a representative short frame (e.g., 23ms

in our implementation) of the audio stream in a music corpus [127, 147]. Audio

words are used to represented the audio content of a song into a “bag-of-audio-

words” document. The general procedures to generate the audio words are:

(1) segment the audio stream of each song in a corpus into short frames; (2)

extract acoustic features from each short frame; (3) use a clustering algorithm

(e.g.,k-means) to cluster the short frames into n clusters based on their acoustic

features. The cluster centers are the generated audio words for the corpus. By

encoding each short frame of a song by the nearest cluster center (or audio

word), then the song is indexed as a sequence of audio words, namely, a “bag-

of-audio-words” document.

User Profile. For each user u in the dataset D, we create a user profile

Du, which including user’s age and gender (i.e., age and gender) as well as

loved tracks (i.e., {u, a, g, s} ∈ Du).

Latent Topic. A latent topic z, or topic for short, in a song collection

S is presented by a topic model φs, which is a probabilistic distribution over

songs, that is, {P (s|φs) : s ∈ S} or {φk,s : z = k, s ∈ S}. Similarly, a

topic in a text word corpus W is represented by a topic model φw, which is

a probabilistic distribution over text words, that is {P (w|φw) : w ∈ W} or

{φk,w : z = k, w ∈ W}. A topic in a audio word corpus V is represented by a

topic model φv, which is a probabilistic distribution over audio words, that is

{P (v|φv) : v ∈ V} or {φk,v : z = k, v ∈ V}.

Age and Gender Music Preferences. In the UIA-MIT model, we
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categorize users into groups based on their age and gender information. As

users in similar ages tending to have similar music interests, we categorize

users in similar ages into an age group (presented in Sect. 4.3.1). The age music

preference denotes the music preferences of a certain age range a or the general

music preferences of users in the age range a, represented by θa, a probabilistic

distribution over topics. Similarly, the gender music preference denotes the

music preferences of gender, denoted by θg, a probabilistic distribution over

topics.

User’s Music Interest. In both MIT and UIA-MIT models, a user’s

music interest, denoted as θu, is a probabilistic distribution over topics. The

user’s music interest can be influenced by many factors (i.e., personality, age,

gender, country, etc.). MIT models a user’s music interest without explicitly

modeling any individual factors, thus the user music interest θu in MIT denotes

user’s personal music interest as the results influenced by all factors. UIA-MIT

explicitly models the music preferences of ages and genders. In UIA-MIT, a

user’s music interest is comprised by the mixture of three topic distribution

(see Eq. 4.1): (1) θu: the music preferences as a collective results based on

the influences of on all other factors (e.g., personality) besides age and gender

, (2) θa: age music preference or the music preference with regard to user’s

age , and (3) θg: gender music preference or the music preference with regard

to gender. For the simplicity of presentation, in UIA-MIT, we also call θu as

user’s music interest.

4.2.1.2 Music Interest Topic Model

Given a corpus of a large number of users and their loved tracks, user’s latent

music interest can be discovered using latent factor models, such as matrix

factorization [73] and topic models. The proposed M usic I nterest T opic (MIT)

model is an extension of Latent Dirichlet Allocation [15]. LDA is used to

discover the latent topics or themes of a text document corpus. Similarly,
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Figure 4.2: The graphical representation of the MIT model. Following the
standard graphical model formalism, nodes represent random variables and
edges indicate possible dependence. Shaded nodes are observed random vari-
ables.

MIT discovers the latent music interest dimensions underlying a user-song

corpus, which contains users’ loved songs and the contents of songs. In LDA,

the latent topics are discovered based on the co-occurrence patterns of words

in the documents. In MIT, the music interest dimensions are discovered by

mining the music content co-occurrence patterns in users’ loved songs.

The graphic representation of this model is shown in Fig. 4.2. Given a

loved song s of a user u, it is assumed to be generated by first choosing a

topic z ∈ Z from the user’s music interests θu; then the song is sampled

according to the song distribution φk,s of the chosen z = k. At the same time,

its contents (i.e., text words sw and audio words sv) are generated according

to φk,w and φk,v, respectively. The model captures the songs’ associations

based on their co-occurrences in the same user’s profile and the word (both

textual and audio words ) associations based on their co-occurrences in the

same song. Therefore, the model discovers a latent music space based on

the co-occurrences of songs and their contents. A topic z is represented as a

distribution of songs, a distribution of text words and a distribution of audio

words, respectively. Because the social tags of songs could be noisy (e.g.,

unrelated and incomplete), the consideration of audio contents is helpful on

generating meaningful latent topics (see Eq. 4.3, Eq. 4.5 and Eq. 4.6).
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Figure 4.3: The graphical representation of the UIA-MIT model.

4.2.1.3 User Information Aware Music Interest Topic Model

In general, users with similar demographics have more similar music interests

than users with different demographics. For example, users in the same age

or gender have more similar music interests [12, 81, 55, 80]. To model the

influence of user-specific factors, we propose a User Information Aware Music

Interest Topic (UIA-MIT) model, which extends MIT to model user’s music

interest as a mixture of the music preferences (represented as the probabilistic

distributions) depending on different factors. The graphic representation of

the model is shown in Figure 4.3. As shown in the figure, UIA-MIT explicitly

models the music preferences of ages (θa) and genders (θg). The music prefer-

ence, as a result of all other factors (such as user’s personality and country), is

modeled as a single probabilistic distribution of latent topics, denoted as user’s

personal music interest (θu). The user’s music interest (θu) in MIT can be

regarded as the topic distribution as the collective result of all the influence fac-

tors, including age, gender, and other factors. Notice that the UIA-MIT model

can be extended to model the music preference of other individual factors.

From the generation perspective, the model mimics the music selection

process by considering the user’s music interest, age music preference, and
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gender music preference in a unified manner. Given a user with age a and

gender g, the likelihood the user u selecting a music track is dependent on

the music preferences of user age and gender as well as his/her personal music

interest:

P (s|u, a, g,θu,θa,θg,φt,φv,φs) = λuP (s|u,θu,φt,φv,φs)

+ λaP (s|a,θa,φt,φv,φs) + λgP (s|g,θg,φt,φv,φs)

(4.1)

where P (s|u,θu,φw,φv,φs) is the probability that song s is generated accord-

ing to the personal music interest of user u, denoted as θu; P (s|a,θa,φw,φv,φs)

and P (s|g,θg,φw,φv,φs) denote the probability that song s is generated ac-

cording to the age music preference of a and gender music preference of g,

denoted as θa and θg respectively. λ = {λu, λa, λg : λu +λa +λg = 1} is a cat-

egorial distribution, which controls the selection motivation of song s. That is,

when selecting song s, it is possible that user u selects it according to his/her

own music interests θu with probability λu, or according to the age music pref-

erence θa with probability λa, or according to the gender music preference θg

with probability λg. Note that λ is a group-dependent parameter, as users in

different groups have different tendency to select music from different aspects.

For example, from the training results, female users are more likely to select

music tracks according to the general music preferences (namely, mainstream-

ing music) than male users. The generation process of UIA-MIT is shown in

Algorithm 4 (Steps 5-32). Intuitively, UIA-MIT models user’s music interests

as the combination of the general music preferences according to certain user-

specific information (age and gender here) and user’s distinct music interests

(affecting by user’s personality, etc.). The general music preferences of certain

user-specific information can be applied in music-related service. For example,

in music retrieval and recommendation, more accurate results can be provided

to new users when we know their age and/or gender based on the general age
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and gender music preferences.

With the hyperparameters α = {αu,αa,αg}, β = {βs,βw,βv} and γ =

{γu, γa, γg}, the joint distribution of the observed and hidden variables s, w,

v, z, y, and λ can be written as follows:

P (S,W ,V ,Z,Y |α,β,γ) =

∫
· · ·

∫
P (S,W ,V |φs,φt,φv,Z)

P (Z|y,θu,θa,θg)P (θu|αu)P (θa|αa)P (θg|αg)

P (φs|βs)P (φt|βt)P (φv|βv)P (y|λ)P (λ|γu, γa, γg)

dθudθadθgdφsdφtdφvdλ

(4.2)

4.2.1.4 Model Inference

The estimation of the joint probability in Eq. 4.2 involves a set of parameters

as shown. Among them, α, β, and γ are hyperparameters and pre-defined.

The parameters to be estimated are (1) user music interest θu, (2) age music

preference θa, (3) gender music preference θg, (4) topic-song distribution φs,

(5) topic-text word distribution φw, (6) topic-audio word distribution φv. and

(7) categorical distribution parameter λ. Besides, in the generation process,

we also need to assign the indicator vector Y and latent topic vector Z to the

sequence of songs S in the corpus.

In our implementation, collapsed Gibbs sampling [46] is used to estimate

the parameters in the topic models (MIT and UIA-MIT). Here, we describe how

to inference the parameters in the UIA-MIT. The parameter inferences of the

MIT model can be derived in a similar way. In the collapsed Gibbs sampling,

the parameters {θu,θa,θg,φs,φw,φv} and the categorical distribution param-

eter λ are estimated based on the results of a constructed Markov chain that

converges to the posterior distribution on topic z. In the following, we present

the sampling process to estimate the parameters {θu,θa,θg,φs,φw,φv,λ}.

The Collapsed Gibbs Sampling process of UIA-MIT is described in Algo-

rithm 4.
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Algorithm 4: Generative & Collapsed Gibbs Sampling Process for UIA-
MIT

Input: A user music profile dataset D;
Number of topics: K;
Dirichlet hyperparameters: αu, αa, αg, βs, βw, βv;
Categorical priors: γu, γa, γg

Output: Estimated parameters: θ̂u, θ̂a, θ̂g, φ̂s, φ̂w, φ̂v, λ̂a, λ̂g
1 Initialize Z and Y by assigning random values;

2 Count Nk
u , Nk

a , and Nk
g based on initialized Z;

3 Count Ns
k , Nw

k , and Nv
k based on initialized Z;

4 Count Ny0 , Ny1 and Ny2 based on initialized Y ;
5 for each topic k = 1, ...,K do
6 Draw φk,s ∼ Dir(·|βs);
7 Draw φk,w ∼ Dir(·|βw);
8 Draw φk,v ∼ Dir(·|βv);

9 for each user u ∈ U do
10 Draw θu ∼ Dir(·|αu);

11 for each age range a ∈ A do
12 Draw θa ∼ Dir(·|αa);

13 for each gender g ∈ G do
14 Draw θg ∼ Dir(·|αg);

15 repeat
16 for each user u ∈ U with age a ∈ A and gender g ∈ G do
17 for each song s ∈ Du do
18 Toss a coin according to categorical distribution ys ∼ Dir(γu, γa, γg);
19 if ys == 0 then
20 Draw zs ∼Multi(θu) according to the music interest of user u;

21 if ys == 1 then
22 Draw zs ∼Multi(θa) according to the music preference of age a;

23 if ys == 2 then
24 Draw zs ∼Multi(θg) according to the music preference of gender g;

25 After the sampling of the topic zs = k, draw song s ∼Multi(φk,s);
26 for each word w ∈ sw do
27 Draw w ∼Multi(φk,w);

28 for each audio word v ∈ sv do
29 Draw v ∼Multi(φk,v);

30 Update Ny0 , Ny1 and Ny2 according to ys;

31 Update Nk
u , Nk

a , and Nk
g according to ys and zs = k;

32 Update Ns
k , Nw

k , and Nv
k according to zs = k;

33 until convergence;

34 Estimate model parameters {θ̂u, θ̂a, θ̂g}, {φ̂s, φ̂w, φ̂v} and {λ̂a, λ̂g} according to
Eq. 4.7, Eq. 4.8 and Eq. 4.9, respectively
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In the next, we show how to sample the topic zs for song s (the steps

17-24 in Algorithm 4). Let S be a sequence of songs during the sampling

process, Z and Y denote the set of topics and indicators corresponding to the

song sequence. W and V denote the textual word and audio word sequence

corresponding to S. S¬i denotes S excluding song si, and W¬i denotes W

excluding words in wi. Similar notations are used for other variables. Let si in

the profiles of a user in user age group a and gender group g, for S = {si,S¬i},

W = {wi,W¬i}, V = {vi,V¬i}, Z = {zi,Z¬i}, and Y = {yi,Y¬i}, we show

how to jointly sample yi and zi of a song si and its words (w and v). yi and

zi are needed to be sampled jointly, because the value of yi decides sampling

zi from θu(yi = 0), θa(yi = 1) or θg(yi = 2) as shown in Fig. 4.3. The joint

probability of sampling zi = k and yi = 0 is:

P (zi = k, yi = 0|Z¬i,Y¬i,S,W ,V , ·) ∝ (γu +Ny0,¬i) ·
Nk

u,¬i + αu∑K
k=1(Nk

u,¬i + αu)
· Pcom

(4.3)

Pcom =
βs +N s

k,¬i∑S
s=1(βs +N s

k,¬i)
·

∏
t∈wsi

(βt +N s,t
k )!∏

t∈wsi
(βt +N s,t

k −N t
s)!

(
∑T

t=1(βt +N s,t
k −N

t
s))!

(
∑T

t=1(βt +N s,t
k ))!

·

∏
v∈vsi

(βv +N s,v
k )!∏

v∈vsi
(βv +N s,v

k −Nv
s )!

(
∑V

v=1(βv +N s,v
k −Nv

s ))!

(
∑V

v=1(βv +N s,v
k )!

(4.4)

where Nk
u denotes the number of times that topic k is sampled from the topic

distribution θu, denoting the music interest of user u. Ny0 is the number of

times that the topics drawn from user’s music interest θu. N s
k is the number of

times that song s is sampled from topic k. The number N ··,¬i with N¬i denote

a quantity, excluding the current instance. N s,w
k and N s,v

k denote the number

of times of text word w and audio word v assigned to topic k because of their

occurrence times in song s (since s is associated to topic k). si,w denotes the

text word sequence in song s; and si,v denotes the audio word sequence in song

v. Nw
s is the occurrence time of text word w appearing in song s; and N v

s is the

occurrence time of audio word v in song s. Notice that the exclusion of si from

S will cause the exclusion of si,w from W and si,v from V . Consequently, the
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words w ∈ si,w and v ∈ si,v will be excluded from the topic zi = k for multiple

times (Nw
s and N v

s , respectively; N s,w
k,¬i = N s,w

k −Nw
s and N s,v

k,¬i = N s,v
k −N v

s ).

The influence of the exclusion of s on the topic distribution is represented

in Eq. 4.4. The three items separated by a dot · on the right hand side of

the equation denote the caused topic distribution changes corresponding to

the exclusion of song si, song’s text words si,w and song’s audio words si,v,

respectively.

Similarly, the joint probabilities of sampling zi = k for the cases of yi = 1

and yi = 2 are:

P (zi = k, yi = 1|Z¬i,Y¬i,S,W ,V , ·) ∝ (γa+Ny1,¬i)·
Nk

a,¬i + αa∑K
k=1(Nk

a,¬i + αa)
·Pcom (4.5)

P (zi = k, yi = 2|Z¬i,Y¬i,S,W ,V , ·) ∝ (γg+Ny2,¬i)·
Nk

g,¬i + αg∑K
k=1(Nk

g,¬i + αg)
·Pcom (4.6)

where Nk
a and Nk

g denote the number of times that topic k is sampled from the

topic distribution of the music preference of age a and the music preference

of gender g, respectively. Ny1 and Ny2 are the number of times the topics

are drawn from age music preference θa and gender music preferences θg,

respectively.

After a sufficient number of sampling iterations, based on the state of the

Markov chain Y and Z, the parameters can be estimated:

θu,k =
αu +Nk

u∑
k′(αu +Nk

u )
, θa,k =

αa +Nk
a∑

k′(αa +Nk
a )
, θg,k =

αg +Nk
g∑

k′(αg +Nk
g )

(4.7)

φk,s =
βs +N s

k∑
s′(βs +N s

k)
, φk,t =

βt +N t
k∑

t′(βt +N t
k)
, φk,v =

βv +N v
k∑

v′(βv +N v
k )

(4.8)

λu =
γu +Ny0

γa + γu + γg +Ny0 +Ny1 +Ny2

, λa =
γa +Ny1

γa + γu + γg +Ny0 +Ny1 +Ny2

(4.9)
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Nw
k and N v

k are the number of times text word w and audio word v sampled

from topic k in the corpus, respectively. λ̂g can be obtained by 1− λ̂u − λ̂a.

4.2.2 Music Retrieval based on MIT and UIA-MIT

In this section, we show how to apply the proposed topic models for exploiting

the age and gender information in music retrieval. Notice that in MIT and

UIA-MIT, music concepts (tags, or text word w) and songs are associated (by

latent topics) in the latent music interest space, which is discovered based on

the music preferences of users. Thus, the captured associations can be used to

estimate the relevance between concepts and songs, which reflects user’s music

preferences on the songs with respect to the concepts. Thus, the MIT and

UIA-MIT can be used for semantic-based music retrieval. And the retrieved

results consider the collaborative preferences of general users with respect to

the query.

Given the query q, for each song, a probability P (s|q) can be estimated

by both MIT and UIA-MIT models. In music retrieval or re-ranking, the

candidate songs are ranked in the descending order of P (s|q) and the top

results are returned to the user. Specifically, for a query q = {w1, w2.., wn}, the

conditional probability P (s|q) is estimated based on the estimated parameters

Θ = {θu,θa,θg} and Φ = {φs,φt}.

p(s|q,Θ,Φ) ∝ P (s, q|Θ,Φ) =
n∏

i=1

P (ti|s,Θ,φt)P (s|Θ,φs) (4.10)

The words in the query q are assumed to be independent in the above equa-

tion. In MIT model, Θ = {θu}; and in UIA-MIT model, Θ = {θu, θa, θg}.

The UIA-MIT model can incorporate age and gender information in retrieval.

Fig. 4.4 shows the retrieval procedure using the UIA-MIT model.
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Probability of the user (u,a,g) 

selecting the song 

UIA-MIT Model

θu , θa , θg , Φs , Φw , λu , λa , λg

Given a query q={t1, t2, …, tn}

by User (u, a, g) and a song s

Probability of user selecting song 

s: P(s|q,u,a,g)

 𝛷𝑘 ,𝑠 ∙
𝐾

𝑘=1
𝛷𝑘 ,𝑡 ∙ 

(𝜆𝑢𝜃𝑢 ,𝑘 + 𝜆𝑎𝜃𝑎 ,𝑘 + 𝜆𝑔𝜃𝑔,𝑘) 
Relevance between s and w in 

music dimension k: 𝛷𝑘 ,𝑠 ∙ 𝛷𝑘 ,𝑡  

Preference of user (u,a,g) in 

topic k or music dimension k:

𝜆𝑢𝜃𝑢 ,𝑘 + 𝜆𝑎𝜃𝑎 ,𝑘 + 𝜆𝑔𝜃𝑔,𝑘  

User music interest θu,k

Age music preference θa,k

Gender music preference θg,k 

Probability of song s: Φk,s 

Probability of word w: Φk,t

Figure 4.4: The scheme of using UIA-MIT in text-based music retrieval.

4.2.2.1 Music Retrieval based on MIT

According to Eq. 4.10, the conditional probability P (s|q) in the MIT model

becomes:

P (s|q,θ,φs,φt) ∝ P (s, q|θ,φs,φt) =
n∏

i=1

P (ti|s,θ,φt)P (s|θ,φs) (4.11)

where P (s|θ, φs) is computed as:

P (s|θ,φs) =
K∑
k=1

P (s|z = k,θ,φs)P (z = k|θ) =
K∑
k=1

φk,s · θk (4.12)

According to Bayes rule and the graphical representation of the MIT model:

P (ti|s,θ,φs,φt) =
K∑
k=1

P (ti|z = k,φt)P (z = k|s,θ,φs)

=
K∑
k=1

P (ti|z = k,φt) ·
P (s|z = k,θ,φs)P (z = k|θ)

P (s|θ,φs)

=
K∑
k=1

φk,ti ·
φk,s · θk∑K
k=1 φk,s · θk

(4.13)

Based on Eq. 4.12 and Eq. 4.13, Eq. 4.11 becomes:

P (s|q,θ,φs,φt) ∝
n∏

i=1

K∑
k=1

φk,ti · φk,s · θk (4.14)

For the user u whose music profile is known, θ in the above equations

is his/her music preference θu obtained in the MIT, and θk in the equation

is θu,k. While in the case of without any prior knowledge about the user,

P (z = k|θ) is set to the normalized probability of P (z = k|θu) = θu,k over all

users in the corpus.
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4.2.2.2 Music Retrieval based on UIA-MIT

In many scenarios, it is possible to know some information about the user,

such as age and gender associated with the users’ accounts registered in music

related applications or services. In such cases, the age and gender information

can be utilized to improve the search results. In the UIA-MIT model, with the

age and gender information, Eq. 4.11 - Eq. 4.13 becomes:

P (s|q, u, a, g,θu,θa,θg,φs,φt)

=
n∏

i=1

P (ti|s, u, a, g,θu,θa,θg,φt) · P (s|u, a, g,θu,θa,θg,φs)

(4.15)

P (s|u, a, g, ·) =
K∑
k=1

P (s|z = k,φs)P (z = k|u, a, g,θu,θa,θg)

=

K∑
k=1

P (s|z = k,φs)(λuP (z = k|u,θu) + λaP (z = k|a,θa) + λgP (z = k|g,θg))

=
K∑
k=1

φk,s · (λuθu,k + λaθa,k + λgθg,k)

(4.16)

P (ti|s, ·) =

K∑
k=1

P (ti|z = k,φt)
P (s, zj |u, a, g, ·)
P (s|u, a, g, ·)

=

K∑
k=1

φk,ti ·
φk,s · (λuθu,k + λaθa,k + λgθg,k)∑K
k=1 φk,s · (λuθu,k + λaθa,k + λgθg,k)

(4.17)

Based on Eq. 4.16 and Eq. 4.17, Eq. 4.15 becomes

P (s|q, u, a, g,θu,θa,θg,φs,φt) =
n∏

i=1

K∑
k=1

φk,ti ·φk,s ·(λuθu,k+λaθa,k+λgθg,k) (4.18)

When the user θu is known, Eq. 4.18 can be used for personalized music

search. In the case of that θu of the user is unavailable and his/her age and

gender are known, λa and λg are normalized to keep λa + λg = 1, and the

following equation is used for retrieval:

P (s|q, a, g,θu,θa,θg,φs,φt) =

n∏
i=1

K∑
k=1

φk,ti · φk,s · (λaθa,k + λgθg,k) (4.19)
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If either age or gender information is available, only the corresponding mu-

sic preferences will be used (namely, set λa = 1 or λg = 1 in the equation).

Intuitively, φk,wi
·φk,s evaluates the similarity of the song s with respect to query

q in the music dimension k in the music interest space, and λaθa,k + λgθg,k es-

timates the music preferences with respect to age range a and gender g in

the music dimension k. Thus it can be seen as that the model re-weights the

original query in different music dimensions based on user’s age and gender

information. Notice that the UIA-MIT model can be used in personalized mu-

sic search, while it suffers from the cold-start problem for new users. As it is

usually easier to know user’s age and gender information, such as the account

registration with user information in music services like Last.fm, the exploita-

tion of age and gender (i.e., Eq. 4.19) can alleviate the cold-start problem in

personalized music retrieval.

4.2.3 Model Extendability

The UIA-MIT model is easily extended to incorporate other user information,

such as country, culture, etc. For example, when m factors are considered,

let f = {f1, f2, · · · , fm} denote the set of considered factors, based on the

extended model, the likelihood of a user u selecting a song s (namely Eq. 4.1)

becomes:

P (s|u,f ,Θ,Φ) =
m∑
i=1

λiP (s|u, fi,θi,Φ) (4.20)

where Θ = {θ1,θ2, · · · ,θm}, Φ = {φs,φt,φv}, and θi denotes the music

preference of factor fi (e.g., age, gender, or country). λi is the probability of

selecting the song according to the music preference of factor fi. Correspond-

ingly, in the retrieval, Eq. 4.19 becomes:

P (s|q,f) =

n∏
i=1

K∑
k=1

φk,ti · φk,s ·
m∑
j=1

λj · θj,k (4.21)
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4.3 Experimental Setup

In previous sections, we observed the influence of age and gender information

on music preferences and proposed a retrieval method based on the UIA-MIT

model, which can incorporate age and/or gender information in music retrieval.

In the next, we would like to validate the effectiveness of exploiting age and

gender information in music retrieval. We design an offline experimental study

on text-based music retrieval to compare the proposed method with several

competitors which are currently popular and the state-of-the-art text-based

music retrieval methods. In summary, the experiments answer the following

research questions:

RQ1 Whether the UIA-MIT model can capture the music preferences of dif-

ferent ages and genders? The results directly relate to the performance

of the UIA-MIT based retrieval methods. (Sect. 4.4.2.1)

RQ2 Comparing to other text-based music retrieval methods, how well can

UIA-MIT based retrieval methods perform on retrieval with the use of

age and/or gender information? (Sect. 4.4.2.1)

RQ3 Whether the utilization of user-specific information (i.e., age and gender

information in our study) for re-ranking can improve the music search

accuracy? If so, how much can be improved using age and/or gender

information? (Sect. 4.4.2.2 and Sect. 4.4.3)

RQ4 Whether the UIA-MIT model can be extended to capture the music pref-

erence of other user information (e.g., country) for retrieval? (Sect. 4.4.3)

RQ1 checks whether the proposed UIA-MIT model can capture the influence

of age and gender on music interests by examining the topic distributions of

different ages and genders. RQ2 is to study the effectiveness of the retrieval

methods based on the UIA-MIT model using age and/or gender information

93



CHAPTER 4. USER INFORMATION AWARE TEXT-BASED MUSIC RETRIEVAL

in ad-hoc search. RQ3 investigates whether our proposed methods can effec-

tively use the age and/or gender information to refine the search results. We

use the estimated probability P (s|q) based on the UIA-MIT model to re-rank

the results of other text-based retrieval methods to check the performance im-

provement. Besides, we also explore the effectiveness of user-specific informa-

tion in retrieval by examining the performance of a re-ranking method which

uses the age and gender information in a heuristic way (see Music Popularity

Based Re-ranking in Sect. 4.3.2.1). RQ4 is to demonstrate the extendability

of the UIA-MIT model on considering other user information (i.e., country) in

the model.

4.3.1 Datasets

To evaluate the search accuracy of retrieval systems with respect to query users,

a great challenge is how to get the ground truth of the test queries with respect

to corresponding query users. In our retrieval task, given a query q of a user

in a group, a relevant song should be not only relevant to the query but also

loved by the users in this group. We develop two test collections by crawling

user information from Last.fm. Hundreds of queries and corresponding ground

truth are generated for each test collection.

User Profile Dataset. To learn the music preferences via UIA-MIT, we

construct a dataset with users’ demographic information and their loved music

tracks from Last.fm. The dataset is collected in the following procedures. 160

recent active users were randomly selected from Last.fm3. Then the friends

of these users and the friends of their friends were collected with their demo-

graphic information, including age, gender, country. In total, 90,036 users were

collected. The loved tracks of these users were collected using Last.fm public

API “User.getLovedTracks”.

3Accessed http://www.last.fm/community/users/active on Mar 3, 2015.
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Test Collection 1 (TC1). To judge the relevance of songs with respect

to queries, it is necessary to label the songs in the dataset with used query

concepts. CAL10K [150] is a labeled song collection. The annotations are

used as ground truth in previous text-based music retrieval research [101]. This

dataset contains 10,870 songs from 4,597 different artists. The label vocabulary

is composed of 137 “genre” tags and 416 “acoustic” tags. The number of tags

of songs varies from 2 to 25 tags. The song tags are mined from the Pandora

Web sites. The annotations in Pandora are contributed by music experts and

are considered highly objective [150].

In order to train UIA-MIT, the user profile dataset was processed to only

keep the users, whose age and gender information is available. As the number

of users with age under 16 or above 54 years old is small, this study focuses on

studying the influence of ages between 16 to 54 years old. After filtering, there

are 45,334 users left. For user’s loved tracks, we attempted to download their

audio streams from 7digital4. 7digital provides 30s audio stream for songs.

Based on the successfully downloaded tracks, we removed the users with less

than 10 loved songs and songs loved by less than 10 users. Finally, there are

29,412 users in the use set and 15,323 songs in the song set. The social tags

of these songs are collected from Last.fm using API “Track.getTopTags”. The

social tags of songs from Last.fm are used in the topic model training and the

tag-based music retrieval method (see the TAG method in Section 4.3.2.1). In

the song set, there are 2,839 songs contained in the CAL10K dataset, which is

used as the retrieval collection. The user set contains 15,826 males and 13,586

females. In our implementation, we categorized the users into 7 age groups.

Thus, there are 14 user groups (7 age groups × 2 gender groups). The numbers

of users in different age groups are shown in Table 4.1.

Test Collection 2 (TC2). TC1 could be used to test the performance

of the proposed retrieval method by leveraging user’s age and gender informa-

4https://www.7digital.com/
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Table 4.1: Number of users in each age group in Test Collection 1.

Group 0 1 2 3 4 5 6

Age 16-20 21-25 26-30 31-35 36-40 41-45 46-54

# Users 9003 12,820 4941 1482 595 324 247

tion. However, the dataset size for retrieval is relatively small, with only 2,839

songs, due to the limited size of the well-labeled songs. As social tags have

been used for text-based music retrieval, in TC2, we use social tags as annota-

tions in relevance judgment. Besides, with the increasing size of the retrieval

dataset, the TC2 also could be used to validate the extendability of UIA-MIT

to other user information, e.g., country.5 In the User Profile Dataset, there

are 26,468 users, who provide age, gender, and country information. The users

are from 179 different countries. With the age, gender, and country informa-

tion, we categorize users into groups based on {age, gender, country}, e.g.,

16-20 male US. Since the number of users in groups affects the performance

of UIA-MIT on capturing the music preference of users in different groups, to

ensure that each group has a relatively large number of users, three age groups

{16-20, 21-25, 26-30} and five countries {Brazil, US, UK, Poland, Russian}

are used in experiments. In total, there are 30 groups, and the numbers of

users in these groups are shown in Table 4.2. Based on users in these groups,

we further removed the users with less than 10 loved songs and songs loved by

less than 10 users. Finally, there are 14,715 users and 1, 0197 songs. All the

songs are used in retrieval.

Query Set. The best choice of query set is to collect user generated queries

in real applications. The problem is that it is possible that our test collections

do not contain enough relevant songs for the collected queries. If there are

many queries, which only have several relevant songs or even none relevant

5Because there are only 2,836 songs in the retrieval dataset, it is hard to generate lots
of queries, which have enough relevant songs in each user group with the constraint of age,
gender, and country.
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Table 4.2: Number of users in different groups in Test Collection 2.

Country
Male Female

16-20 21-25 26-30 16-20 21-25 26-30

Brazil 1605 1320 253 1665 809 156

Poland 179 270 83 472 401 98

Russia 83 269 109 184 314 92

UK 186 416 223 198 364 120

US 539 1360 684 457 1273 533

songs in a retrieval dataset, then the dataset cannot be used to provide high-

quality performance evaluation over different retrieval methods. An alternative

method is to select the frequent tags as queries, as a main functionality of

social tags is used for retrieval, such as the social tags in Flickr6 and Last.fm.

In experiments, we use a combination of k distinct terms as queries. Following

the methodology in [101, 151], queries composed by k = {1, 2, 3} terms are

used. The method described in [101] is used to construct the query set. In

TC1, all the terms in CAL10K dataset are treated as 1-term query candidates.

And for 2-term and 3-term queries, all the term combinations are considered

as candidates. Then, we filtered the query candidates by only keeping the

queries with at least 10 relevant songs in the ground truth in all user groups

(14 user groups). Finally, there are 33 1-term queries, 122 2-term queries and

542 3-tag query in total. In TC2, social tags are used to generate the queries.

We first filtered the tags which appear less than 10 times in the dataset, and

then removed the tags which express personal interests in the song, such as

“favorite”, “great”, “favor”, “excellent”, etc. Then, we tokenized the tags of

each song into terms. Similarly, all the terms are treated as candidates. For

2-term and 3-term queries, all the term combinations which appear in a song,

are treated as candidates. In the next step, we filtered the query candidates by

only keeping the queries with at least 10 relevant songs in the ground truth in

6https://www.flickr.com/
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all user groups (30 user groups). This leads to 79 1-term queries, 1691 2-term

queries, and 12,584 3-term queries. For the 3-term queries, we retain a random

sample of 3,000 queries as [101], with the assumption that they are generally

enough to evaluate the task. Table 4.3 summarizes the number of queries in

TC1 and TC2. Notice that the queries for each group are the same. Table 4.4

gives some query examples for each type.

Table 4.3: Number of queries in TC1 and TC2.

Test Collection # 1-Term Query # 2-Term Query # 3-Term Query

TC1 33 122 542

TC2 79 1691 3000

Table 4.4: Few examples for each type of queries.

1-Term Query 2-Term Query 3-Term Query

aggressive aggressive, guitar aggressive, angry, guitar

angry aggressive, rock angry, guitar, rock

breathy bass, tonality drums, angry, guitar

country blues, guitar guitar, aggressive, angry

danceable country, guitar guitar, pop, romantic

electronica danceable, harmonies mellow, folk, tonality

guitar drums, guitar mellow, guitar, rock

mellow emotional, romantic organ, piano, tonality

piano mellow, pop piano, guitar, rock

romantic rock, tempo rock, aggressive, angry

Ground Truth. As the query is subject to each user group, a relevant

song with respect to a query should (1) contains all the query terms in the

annotations (in the CAL10K dataset for TC1) or social tags (for TC2); and

(2) be loved by at least 10 users in this user group. Based on the criteria, the

relevant songs in the retrieval datasets of TC1 and TC2 are labeled. For each

query, the numbers of relevant songs in different groups are different. Notice

that we used two-fold cross-validation in experiments (as shown in Sect. 4.3.2).
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4.3.2 Experimental Configurations

In experiments, we split the users into two folds and use two-fold cross-validation:

one fold (users with their loved tracks) is used to training the models (MIT

and UIA-MIT), and the other fold is used to create the query set and generate

the corresponding ground truth. The dataset is split in the way to guarantee

each group has approximately equal number of users in the two folds. In the

result presentation, the presented results are the average performance over the

two folds. In the MIT and UIA-MIT models, the generation of the three types

of documents are presented below.

User-Song Document For each user, a user-song document is generated

based on his/her loved songs. The document is comprised by the concatenation

of the songs loved by the users.

Song-Text Word Document. The social tags of songs from Last.fm

(collected using API “Track.getTopTags”) are used to form the text documents

for songs. In our implementation, the tags that appeared less than 10 songs are

filtered, and then the remaining tags of a song are concatenated together and

tokenized with a standard stop-list to form the text document for the song.

Song-Audio Word Document. For each song, the 30 seconds audio

track downloaded from 7digital is used to generate the “bag-of-audio-word”

document. In our implementation, an audio word is an acoustic feature vec-

tor computed on half-overlapping windows of 23 milliseconds. MFCCs and

Chroma features are used to generate the audio words. MFCCs are the

most popular timbre feature used in music retrieval. For each frame, a 13-

dimensional MFCC vector with its first and second instantaneous derivatives

are extracted, achieving a final 39-dimensional MFFCs feature. The Chroma

feature is a 12-dimensional, real-valued vector that approximates an audio sig-

nal’s strength at each music note. Chroma features are considered because they

are invariant to types of distortions that affect timbre and somewhat invariant
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to certain differences between renditions and arrangements, which are useful

in detecting songs. Before extraction, each song is converted to a standard

mono-channel and 22,050 Hz sampling rate WAV format, a common practice

in music information retrieval. openSMILE [43] is used to extract both fea-

tures. After feature extraction, K-means clustering method is then used to

group frames into clusters based on their feature vectors. The cluster centers

are used as audio words. Replacing each frame with the nearest audio word,

the music track is represented as a sequence of audio words. In experiments,

we empirically set the number of audio words to 4096.

4.3.2.1 Competitors and Evaluation metrics

To explore the effectiveness of using age and/or gender information retrieval

by our proposed retrieval methods, variants of our methods using age and/or

gender information are tested in the experiments and compared with currently

popular and the state-of-the-art text-based retrieval methods. To demonstrate

the superiority of our methods on utilizing the age and gender information, we

also compare our methods with the ones which use age and gender information.

In the following, we first present the variants of our methods, and then other

retrieval methods.

Proposed Method and Variants. Several variants are used to investi-

gate the improvements by using age and gender information individually and

together. These variants include:

• MIT: this is the retrieval method based on the MIT model, which has

not considered any user-specific information. The method is described

in Sect. 4.2.2.1 (Eq. 4.14);

• A-MIT: this method simulates the search scenarios when only age infor-

mation is available for the UIA-MIT based retrieval method, namely, set

λa = 1 in Eq. 4.19 ;

100



CHAPTER 4. USER INFORMATION AWARE TEXT-BASED MUSIC RETRIEVAL

• G-MIT: this method simulates the search scenarios when only gender

information is available for the UIA-MIT based retrieval method, namely,

set λg = 1 in Eq. 4.19;

• C-MIT: in this method, the UIA-MIT model considers age, gender, and

country information simultaneously; and C-MIT simulates the search

scenarios when only country information is available for the UIA-MIT

based retrieval method (only used in Test Collection 2);

• AG-MIT: this method simulates the search scenarios when both age and

gender are available for the UIA-MIT based retrieval method (Eq. 4.19).

• AGC-MIT: in this method, the UIA-MIT model considers age, gender,

and country information simultaneously; and AGC-MIT simulates the

search scenarios when user’s age, gender and country information are

available (only used in Test Collection 2).

Methods without Using Age/Gender Information. We considered

the following text-based music retrieval methods:

• Tag-based method (TAG): In this method, the social tags of each song

in Last.fm are used as the text description for retrieval. Tags are first

tokenized with a standard stop-list, and then a conventional document-

term matrix is created by tabulating the number of occurrences of each

word in tags. The standard tf-idf weighting scheme is used to compute

the similarity between query and songs with the standard cosine distance

in the Vector Space Model [129].

• Weighted Linear Combination (WLC): Similar to the WLC de-

scribed in [101], the first result returned by TAG is used as the seed

for a content-based music retrieval (CBMR) method. Then the score of

the TAG method and CBMR method are linearly combined together to
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generate the final search results. The weighted linear combination can

be described as follows,

Sim(q, s) = w · TAG(q, s) + (1− w) · CBMR(q, s) (4.22)

where TAG(q, s) is the similarity score obtained by TAG method and

CBMR(q, s) is the similarity score obtained by CBMR method. The

CBMR method described in [127] is used in our experiments. Specifically,

the “audio words” are treated as text terms, and then standard VSM

method is used to retrieve the music given the seed song as the query.

The combination weights are tuned for obtaining the highest MAP in

experiments.

• Post-Hoc Audio-based Reranking (PAR) [70]: It is a method to

incorporate audio similarity into an already existing ranking. In our ex-

periments, the results of tag-based method (TAG) are used as the initial

ranking list. PAR computes a new score for each song s by considering

the original rank of s, the original ranks of all the songs having s in their

acoustic neighborhood, and the rank of s in all these neighborhoods. For

more details, please refer to the paper [70]. In the implementation, we

followed the details reported in the referred paper.

Methods using Age and Gender Information. To the best of our

knowledge, we have not found any music search methods using user-specific

information in the retrieval algorithm. Thus, we compare our methods with

the following two heuristic methods on utilizing age and gender information.

Notice that if these methods can also improve the search accuracy, it further

demonstrates the importance of considering user-specific information in music

retrieval.

• Music Popularity Based Re-ranking (MPR): As users in different
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ages and genders prefer different songs with respect to a query, such as

rock, a heuristic method is to re-rank the search results (returned by

other search methods) according to the songs’ popularity in different age

and gender group. Thus, we implemented a popularity-based re-ranking

method to re-rank the top 100 songs returned by other retrieval methods

(such as the above ones) according to the songs’ popularity score in the

targeted user’s age and gender group. Specifically, given a query of a

user u with age a and gender g, and a returned song list s ∈ L(q, a, g),

popularity-based re-ranking method is to re-rank s ∈ L(q, a, g) to obtain

a new song list L′ in the descending order of song’s popularity POP (s) in

the user’s age and gender group (a, g). The popularity score is computed

as:

POP (s) =
N(s, a, g)

N(a, g)
(4.23)

where N(s, a, g) is the number of users in group (a, g) loving song s, and

N(a, g) is the total number of the users in group (a, g).

• Group User Music Representation (GUMR): In this method, we

create music representations of users in group (a, g) according to their

music preferences. Specifically, for each group, we aggregate the social

tags of songs loved by the users in this group to form a document for

the group. The same procedure in Tag-based method (TAG) is used to

process the document, and then the similarity distance between a group

document to each song is computed using cosine distance based on the

standard tf-idf weighting scheme. Then for a given query q of user u in

age a and gender g, the similarity score of a song s with respect to the

query is computed as:

Sim(q, s, a, g) = w · TAG(q, s) + (1− w) · Sim(s, a, g) (4.24)
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in which TAG(q, s) is the cosine similarity between the song s and q us-

ing TAG method, and Sim(s, a, g) is the similarity between user group

preference and the song s. Thus, this method considers both the rele-

vance of query q with respect to the song and the music preference of

users in a specific age and gender. The combination weight is tuned in

experiments.

In the above methods, PAR and MPR are re-ranking methods and thus

compare with the proposed methods and variants in the re-ranking task (Sect. 4.4.3).

Other methods are compared in the ad-hoc search (Sect. 4.4.2).

In experiments, we focus on the evaluation of the search accuracy and use

standard information retrieval metrics, which are used in previous music re-

trieval tasks [101]. Specifically, the following three metrics are used: Precision

at k (P@k), Mean Reciprocal Rank (MRR), Mean Average Precision (MAP).

Details about the metrics are in Appendix A.

4.3.2.2 Parameter Setting

In implementation, the hyperparameters in the topic model are turned in a

wide range: in the UIA-MIT model, without prior knowledge about the topic

distributions of users in different ages and genders, we set αu, αa and αg

to be symmetric. For simplicity, we set them to be the same and tune them

in the range of α = αu = αa = αg ∈ {0.01, 0.05, 0.1, 1.0, 5.0}. Similarly, βt,

βv and βs are also set to be symmetric and the same: β = βt = βv = βs ∈

{0.01, 0.05, 0.10, 0.15, 0.20, 0.25}. The values of γu, γa and γg bias the tendency

of choosing music according to user’s personal, age or gender music preferences.

We would like the tendency to be learned from the data, thus γu, γa, γg are

all set to 1. In Gibbs sampling for the training of topic models, 100 sampling

iterations were run as burn-in iterations and then 50 sampling iterations with

a gap of 10 were taken to obtain the final results. For the WLC and GUMR
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methods, the weight w (in Eq. 4.22 and Eq. 4.24) is turned in the range [0.05,

1] with an interval 0.05. In the result presentation in Sect. 4.4, the reported

results are based on the parameters with the best results.

4.4 Experimental Results

In Sect. 4.4.1, we report a qualitative study on the proposed UIA-MIT model

by presenting the music preferences of users in different ages and genders with

the top latent topics of each user group. Sect. 4.4.2 compares the accuracies of

the proposed methods with the competitors in ad-hoc search and re-ranking

on Test Collection 1. Sect. 4.4.3 presents the re-ranking performance of our

methods on Test Collection 2.

In all the reported results, the symbol (*) after a numeric value denotes

significant differences (p < 0.05, a two-tailed paired t-test) with the corre-

sponding second best measurement. In experiments, for each user group (i.e.,

male users between 16-20 years old), all the 1-term, 2-term and 3-term queries

are used for retrieval and evaluation. All the results presented in below are

the average values over all user groups in each test collection. Notice that

the search performances could be very different from groups to groups. For

example, for most of the queries, the search accuracy of the 16-20 male group

is higher than the 46-54 female user group.7

4.4.1 Qualitative Study of the Topic Model

Before presenting the search results of the retrieval methods based on the UIA-

MIT model, we first examine the effectiveness of this topic model on whether

7The performance differences across different groups might be caused by the differences
between the number of relevant songs in different groups. The number of relevant songs in
groups of 46-54 male and 45-54 female is much smaller because there are fewer users and
few labeled loved tracks for each user in these groups. In this study, we focus on the effects
of exploiting user’s age and gender information on music search performance, and thus have
not presented and compared the search results between different groups.

105



CHAPTER 4. USER INFORMATION AWARE TEXT-BASED MUSIC RETRIEVAL

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

10 11 16 20 35 37 38 39 40

 P
ro

b
ab

il
it

y

 Topic

16-20
21-25
26-30

31-35
36-40
41-45

45-54

(a) Topic preferences of different age groups

 0.02

 0.04

 0.06

 0.08

 0.1

11 15 16 35 37 40

 Topic

Male Female

(b) Topic preferences of different genders

Figure 4.5: Comparisons of the representative topics of different age ranges
and groups

.
Table 4.5: The top words of the most representative topics for age and gender
music preferences in the 45 topics.

Topics Top Words

Topic 10 rock, british, classic, blues, roll, hard, pop, 60s, radio, guitar, male, 70s

Topic 11 rock, indie, alternative, punk, pop, male, good, post, british, dance, 00s, garage

Topic 15 hop, hip, pop, rap, rock, dance, male, alternative, soul, classic, party, american

Topic 16 rock, alternative, indie, pop, male, brit, british, great, sad, beautiful, chill

Topic 20 rock, punk, alternative, post, indie, british, classic, 80s, wave, loved, pop

Topic 35 rock, indie, pop, alternative, vocal, male, punk, folk, 00s, acoustic, good, key

Topic 37 pop, female, dance, rock, indie, vocalists, alternative, party, electronic

Topic 38 pop, rock, female, indie, alternative, chill, electronic, hop, trip, electronica

Topic 39 rock, pop, 80s, classic, male, alternative, punk, vocal, guitar, electric, loved

Topic 40 rock, guitar, classic, male, blues, roll, pop, british, folk, 70s, oldies, 60s

it can capture the age music preferences and gender music preferences. The

results in TC1 are used for analysis. In the UIA-MIT model, age and gender

music preferences are represented by the distribution of latent topics. Here we

aggregate the most 3 representative topics of different groups (7 age groups

and 2 gender groups) and present the preferences of each group on these topics

in Fig. 4.5a and Fig. 4.5b. The top words in each topic are shown in Table 4.5.

These results are obtained with the topic number K = 45 and training on one

of the two folds (as we use two-fold cross-validation method in experiments).

Fig. 4.5a shows the general music preferences of users in different age ranges.

From the figure, it is clear that users in different ages have different music

preferences. Moreover, users with larger age gap have more different music

preferences. For example, users in age from 41 to 54 have no common prefer-
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ence on the top 3 topics with users in age from 16 to 20. Users in age groups

36-40, 41-45, and 45-54 prefer musical topics 10, 20, 39 and 40; in contrast,

users with age less than 35 favors music topics 11, and 35 more. By associating

with the topic semantics, we can see that topic 10, 20, 39 and 40 are related to

terms 60s, 70s 80s classic and blues, which explain why relatively elder users

prefer music in these topics. On contrast, topic 11 and 35 are music related

to terms 00s, which are more likely to be liked by younger users. Fig. 4.5b

shows the music differences between male and female. At the aggregation level

(aggregating the top topics of males and females), it can be found that both

males and females primarily listen to male artists (topic 11, topic 16 and topic

35), and females listen relatively more often to females than males (e.g., topic

37). The observation is consistent with the conclusion in [12]. From the above

discussion, it is safe to conclude that the UIA-MIT model can capture the

influence of age and gender on user’s music interests to some extent.

4.4.2 Performance on Test Collection 1 (TC1)

4.4.2.1 Retrieval Performance

Retrieval results of the proposed methods using age and/or gender informa-

tion with the competitors are reported in Table 4.6. For the three types of

queries, it is obviously that queries with more terms are more difficult for all

methods. As can be seen, the proposed method using age and gender informa-

tion (AG-MIT) generally outperforms all the other methods over all types of

queries. Besides, the MIT, A-MIT and G-MIT methods obtain at least compa-

rable performance over the GBR method, which obtains the best performance

besides our proposed methods. The results demonstrate the effectiveness of

the proposed retrieval methods. From the comparisons between MIT, A-MIT,

G-MIT, and AG-MIT, we can see that the consideration of user’s personal

information can obviously improve the search performance.
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Table 4.6: Retrieval performance for 1-tag, 2-tag and 3-tag queries

Method
1-Tag Query 2-Tag Query 3-Tag Query

P@10 MAP MRR P@10 MAP MRR P@10 MAP MRR

TAG .164 .134 .223 .054 .041 .094 .022 .014 .055

WLC .178 .142 .265 .058 .051 .126 .022 .023 .079

MIT .241 .252 .404 .138 .151 .301 .116 .132 .292

GUMR .133 .115 .221 .030 .026 .091 .015 .012 .060

G-MIT .276 .283 .449 .139 .155 .316 .116 .134 .313

A-MIT .250 .259 .423 .135 .151 .314 .111 .128 .296

AG-MIT .339* .335* .480* .177* .184* .316 .149* .166* .301

Among the tested methods, TAG, WLC, and MIT are the ones without

considering user information. Comparing to the TAG method, which only

uses text information in retrieval, the other three methods (WLC, GBR, and

MIT) using both text and acoustic features obtain better performance. The

WLC method, which uses a linear combination of similarities based on TAG

and acoustic features, can only slightly improve the search performance. No-

tice that the WLC uses the first search result of TAG as the acoustic query,

the search accuracy of TAG thus affects the improvement of the WLC method.

The GBR and MIT method explore both term and acoustic information by dis-

covering and using the intrinsic correlation between the semantics of terms and

the acoustic contents, and they can significantly improve the search accuracy

comparing to the TAG method.

It can be seen that the G-MIT and A-MIT methods can improve the search

performance over the GBR method for 1-term query. The AG-MIT method

can further improve the performance for 1-term queries and obtain better per-

formance on 2-term and 3-term queries. The results of GUMR are quite poor,

because of the simple method in modeling user’s music preferences in differ-

ent age and gender groups. The effects of using age or gender information

in retrieval are comparable, and the gender information seems slightly more

effective than age information. The performance of the AG-MIT method is
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obviously better than the G-MIT and A-MIT methods, indicating that the use

of both age and gender information together is more effective than using them

separately.

4.4.2.2 Re-ranking Performance

This section presents the re-ranking performance based on the top 100 results of

different retrieval methods. The results are reported in Table 4.7, Table 4.8 and

Table 4.9. In those tables, the rows starting with “-” shows the performance

obtained by the corresponding baseline methods (e.g., TAG, WLC, and GBR).

Overall, the results are improved greatly and significantly by the re-ranking

methods, even for 2- and 3-term queries whose initial results are very poor.

An interesting finding is that the initial results of the TAG method are worse

than the WLC method, however, the TAG method can obtain much better re-

ranking results than the WLC method by all re-ranking methods. The results

indicate that the WLC method can obtain better search results in few top

positions (e.g., top 10 results), while it reduces the number of relevant results

in a longer list (i.e. top 100 results).

Table 4.7: Re-ranking performance of 1-tag query

Method
TAG WLC

P@10 MAP MRR P@10 MAP MRR

- .164 .134 .223 .178 .142 .265

PAR .233 .249 .422 .086 .074 .164

MIT .458 .491 .654 .206 .233 .389

MPR .383 .409 .572 .185 .148 .292

G-MIT .460 .470 .619 .197 .223 .398

A-MIT .444 .470 .632 .195 .221 .392

AG-MIT .479* .495 .675* .228* .242 .389

The effectiveness of the re-ranking methods based on the proposed models

can be observed by comparing the MIT method with the PAR method. The

MIT method can improve the performance based on the results of all the three
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Table 4.8: Re-ranking performance of 2-tag query

Method
TAG WLC

P@10 MAP MRR P@10 MAP MRR

- .054 .041 .094 .058 .051 .126

PAR .099 .116 .258 .036 .035 .100

MIT .252 .271 .444 .070 .078 .185

MPR .237 .257 .422 .063 .069 .163

G-MIT .260 .278 .458 .069 .079 .188

A-MIT .254 .277 .448 .077 .086 .198

AG-MIT .267 .294* .468* .087* .091* .192

Table 4.9: Re-ranking performance of 3-tag query

Method
TAG WLC

P@10 MAP MRR P@10 MAP MRR

- .022 .014 .055 .022 .023 .079

PAR .068 .078 .191 .022 .023 .075

MIT .188 .204 .374 .044 .047 .124

MPR .184 .204 .373 .039 .042 .111

G-MIT .191 .209 .385 .048 .053 .134

A-MIT .192 .211 .383 .045 .046 .123

AG-MIT .200 .225* .410* .053 .048 .114

methods, and the improvements are much greater than the PAR method. No-

tice that the MIT method explores the relevance between queries (semantic

concepts or tags) and songs in a latent music interest space, which is discov-

ered based on the music preferences of a large number of listeners. In other

words, the method leverages the collaborative knowledge of crowds to estimate

the relevance between query concepts and songs - the music preference of gen-

eral users on songs with respect to query concepts. The external knowledge is

complementary to the information used by the TAG, WLG, and GBR meth-

ods, which compute the relevance between the query and song only based on

their contents. Consequently, using the estimated relevance between query and

song based on the MIT and UIA-MIT models for re-ranking can significantly

improve the search performance.
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The benefits of using user information in music retrieval can be well demon-

strated by the MPR method, which can improve the search performance greatly

using a heuristic method - re-ranking the songs according to their popularity

in user groups. For the 1-term query on P@10, the relative improvement by

MPR achieves more than 133% and 43% over the TAG and GBR methods, re-

spectively. The improvement over 2-term and 3-term queries is even larger. G-

MIT and A-MIT methods obtain much better results than the MPR method.

The AG-MIT method can further improve the performance. Comparing to

the MIT method, the advantage of the G-MIT method and A-MIT method

is not obviously. Notice that improvements achieved by A-MIT, G-MIT and

AG-MIT are contributed by both the learned associations between query and

songs and the captured age and gender music preferences in UIA-MIT. The

comparable performance between the MIT, G-MIT, and A-MIT discloses that

a major part of the improvement is gained from the aspect of estimating the

relevance between query concepts and songs in the latent music interest space.

On the other hand, the influence of age and gender are correlated to affect

user’s music interests. Thus, it is not optimal to use the obtained age mu-

sic preference and gender music preference individually, as in the A-MIT and

G-MIT methods. Therefore, the advantages of using age or gender informa-

tion over the MIT method is not obviously. UIA-MIT captures the age music

preference and gender music preference together and achieves consistent and

better improvement over MIT. The relative improvement of the AG-MIT for

the 1-term query on P@10 achieves more than 192% and 79% over the TAG

and GBR methods, respectively.

In summary, the proposed topic model can effectively capture the associa-

tions between songs and tags, which can be effectively used in text-based music

retrieval. Besides, the exploitation of user information (i.e., age and gender) in

music retrieval is very useful and can significantly improve the search perfor-

mance. Furthermore, the proposed UIA-MIT model can effectively capture the
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general music preferences of users in different ages and genders. And the UIA-

MIT based retrieval methods can effectively incorporate the user information

in music retrieval to improve the search accuracy.

4.4.3 Performance on Test Collection 2 (TC2)

From the experimental results on TC1, we can observe that using our method

in re-ranking can greatly improve the search results. Thus, we focus on the

performance of re-ranking and only report the re-ranking performance on TC2.

In TC1, the re-ranking performance based on TAG are better than or compa-

rable to that based on WLC and PAR. As similar results are observed in TC2,

we only present the performance of re-ranking performance based on TAG.

Table 4.10 presents the re-ranking results of different variants on TC2. The

second row shows the search results of TAG method, and 3 - 9 rows show the

re-ranking results of different methods. Besides the similar observations as in

TC2, we can see that user’s country information (C-MIT) can also be used

to improve the performance. AGC-MIT obtains the best performance, which

demonstrates that the UIA-MIT model can be extended to include other user

information and the utilization of more user information can obtain better

performance.

4.5 Summary

In this chapter, we presented a text-based retrieval system which can lever-

age user’s basic information (e.g., age and gender) to significantly improve the

search performance. Particularly, we proposed a User-Information-Aware Mu-

sic Interest Topic (UIA-MIT) model to discover the latent music interest space

of general users and capture the music preferences of users in different ages

and genders. In the latent space, the association between music concepts and

songs can be constructed. Thus, a music retrieval method is proposed based
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Table 4.10: Re-ranking performance for 1-term, 2-term and 3-term queries in
TC2

Method
1-Term Query 2-Term Query 3-Term Query

P@10 MAP MRR P@10 MAP MRR P@10 MAP MRR

TAG .122 .120 .165 .042 .020 .065 .022 .017 .045

MPR .216 .277 .445 .135 .138 .085 .103 .106 .119

MIT .220 .278 .483 .142 .175 .183 .104 .106 .117

A-MIT .240 .318 .528 .146 .182 .189 .103 .106 .120

G-MIT .228 .304 .500 .135 .158 .140 .104 .108 .120

C-MIT .244 .318 .537 .144 .181 .194 .104 .107 .120

AG-MIT .252 .330 .547 .144 .176 .184 .104 .108 .120

AGC-MIT .375* .505* .688* .160 .199* .202 .105 .110 .127

on the UIA-MIT model for text-based music retrieval. The proposed method

can effectively incorporate user information in retrieval. Extensive experiments

have been conducted to demonstrate the advantages of exploiting user’s age

and gender information in music retrieval and validate the effectiveness of the

proposed retrieval methods. The research results in this chapter demonstrate

the importance and potential of utilizing user-specific information in music re-

trieval systems. As the system presented in this chapter only needs user’s basic

information to improve the search results, it could be used to deal with new

users in the personalized music retrieval system (described in next chapter),

which suffers from the cold-start problem of new users.
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Chapter 5

Personalized Text-Based Music

Retrieval

In the previous chapter, we present a user information aware text-based mu-

sic retrieval system, which could improve the text-based search accuracy by

considering the general music preferences of users in certain age or gender.

In this chapter, we describe a personalized text-based music retrieval system,

which takes users’ personal music preferences into account. Towards the goal,

a novel Dual-Layer Music Preference Topic Model (DL-MPTM) is proposed

to construct latent music interest spaces and characterize the correlations and

interplays between users, songs, and keywords or terms in the latent spaces.

Further, based on the DL-MPTM, we develop an effective personalized music

retrieval system. To verify the performance of the system, extensive experi-

mental studies have been conducted on two large-scale public datasets to com-

pare the proposed method with the state-of-the-art music retrieval methods

and existing personalized music retrieval methods. The results show that our

method significantly outperforms the state-of-the-art approaches in terms of

personalized search accuracy.
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5.1 Introduction

Over the past decades, empowered by fast advances in digital storage and

networking, we have witnessed ever-increasing amounts of music data from

various domain applications. Meanwhile, with the proliferation of mobile de-

vices (e.g., mobile phones and laptops) and cloud-based music service, the

development of personalized music information retrieval techniques has gained

greatest momentum as a means to assist users to explore large-scale music

collections based on “individual preference”. In music retrieval, users often

use several keywords to describe their music information needs and current

contexts, with the expectation that the music search engine returns a list of

suitable songs. Thus, text-based music retrieval (TBMR) [151, 87] has been

widely used in many real applications and commercial music services. How-

ever, existing TBMR methods only consider the relevance between songs and

search keywords, while generally ignoring the effects of user’s personal music

preference. In fact, how a user perceives a song is very subjective, depend-

ing on their emotional and culture background [148]. For example, given a

query “sad”, whether a song is relevant or the relevance level of the song with

respect to “sad” is dependent on the user’s personal perception on the song.

Thus, for music retrieval, it is crucial to take user’s personal music preference

into account and effectively model the correlation among (user, song, term).

The significance of leveraging user music preference has been widely recognized

in the development of smart music information systems [133]. However, few

researches focus on 1) investigating the effects of user music preferences on

search performance improvement; and 2) designing advanced schemes to catch

and model such effects and exploit them in the development of personalized

music search systems.

Motivated by discussion above, we focus on developing a personalized text-

based music retrieval system and studying the effects of personal music prefer-
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ences on search performance. Effective integration of the user music preference

to improve retrieval performance generally requires a comprehensive and re-

liable modeling scheme to characterize how the user music preference affects

individual music information needs. To achieve the goal, we propose a novel

topic model based scheme called Dual Layer M usic Preference T opic M odel

(DL-MPTM). DL-MPTM is a novel two-layer topic model, which discovers two

sets of latent topics - latent music dimensions and latent semantic subtopics.

In this model, a user’s music preference is represented as a mixture of latent

music dimensions, which are discovered based on the co-occurrence of songs

in playlists and co-occurrence of latent semantic subtopics across songs. The

latent semantic subtopics are the mixtures of terms. Accordingly, the corre-

lation among (user, song, term) can be captured by the associations of the

two sets of latent topics. Based on the model, a personalized text-based music

retrieval method is developed.

To study the influence of personal music preferences and validate the perfor-

mance of proposed system, it is important to evaluate the system performance

and compare it with other competitors. A big problem is how to construct

a dataset for robust system evaluation. A naive approach is to leverage the

assistance of end users to manually label songs with various music concepts.

However, this approach could be very expensive in terms of time and expertise.

An alternative way is to leverage users’ listening logs and social tags in social

music services. In recent years, the rapid growth and popularity of online so-

cial music services, such as Last.fm and Pandora1, provide excellent sources

to harvest large-scale user behavior information. When interacting with the

social music portals, users leave rich digital footprints containing the details

about personal music listening history (e.g., which song was played by which

user at what time for how long). Through analyzing the data, comprehen-

sive information related to users’ music preferences or tastes can be obtained.

1http://www.pandora.com/
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Besides, in those social music websites, songs are tagged by users with differ-

ent types of concepts, which reveal the semantic contents of the songs. The

social tags in Last.fm almost cover all the concepts that users usually use to

describe songs, and have been applied for text-based music search [87, 101].

The listening history of users and social tags provide us reliable sources to

learn the correlations among (user, song, term), which can be used to support

music search at the personal level. Accordingly, we use the social music data

to examine the performance of the proposed system. In summary, the main

contributions can be summarized as follows.

• Instead of conducting large-scale user study, online social music data

(user listening history and music social tags) is leveraged to study the

problem of personalized text-based music retrieval, which has been gen-

erally ignored in existing research.

• A personalized text-based retrieval method is proposed based on a novel

dual-layer topic model DL-MPTM, which captures user’s music prefer-

ence on songs with respect to the query via the connection of two latent

semantic spaces.

The remainder of this chapter is organized as follows: Section 5.2 describes the

proposed topic model - DL-MPTM and Section 5.3 introduces the personalized

text-based retrieval method. Section 5.4 gives the experimental configuration

and Section 5.5 reports experimental results and main findings. Finally, Sec-

tion 5.6 concludes this chapter with a summary.

5.2 Dual-Layer Music Preference Topic Model

The goal is to design a personalized text-based music retrieval system for

searching songs, which should not only be relevant to the query but also match

user’s personal music preferences. Consequently, the core research problem is
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how to effectively model users’ music preference on songs with respect to the

search keywords, namely, the correlation among (user, song, term). Users usu-

ally prefer different types of music tracks, which can be reflected from the songs

he/she usually listened to. Meanwhile, people’s music preferences on songs are

highly associated with the semantics embodied by the audio contents of songs.

Based on the semantics, user’s music preferences can be extracted by analyzing

the semantics of songs listened by the users. Further, given that the semantics

of songs are modeled by song’s contents and user-generated annotations (e.g.,

social tags), the correlations among (user, song, term) can be estimated. To

achieve the goal, we propose a dual-layer LDA model, which characterizes the

song’s semantics based on the associations between audio contents and tags

and models user’s music interests based on the songs and their semantics. To

ease understanding of the model, we firstly introduce two important concepts.

Latent Semantic Subtopics: Latent semantic subtopics (or subtopic for

short) are the latent topics discovered (in the second layer - Part B in Fig. 5.1)

based on the association between song’s audio contents and annotations or

text words. The subtopics are modeled using the multinomial distributions of

audio words and text words.

Latent Music Dimensions: Latent music dimensions (or music dimen-

sions for short) are a set of latent topics discovered (in the first layer - Part A

in Fig. 5.1) based on co-occurrence of songs and their subtopic distributions.

Users’ music interests are modeled using the multinomial distributions of mu-

sic dimensions. A music dimension is in turn a multinomial distribution of

subtopics.

5.2.0.1 Model Description

Figure 5.1 illustrates the graphical representation of Dual Layer M usic Preference

T opic M odel (DL-MPTM). The model consists of two main components: Part

A (the first layer) and Part B (the second layer). The second layer (Part B) is
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Figure 5.1: The graphical model representation of the DL-MPTM model.

a Corr-LDA model [14], which discovers subtopics based on the co-occurrence

of music contents (audio words and text words) in the same song. Besides, this

model discovers the associations between audio contents and text words. The

first layer (Part A) is a topic model to explore music dimensions υ based on the

co-occurrences of songs in the same user’s profile and the subtopics associated

with these songs. Each subtopic z is represented by a multinomial of audio

words and a multinomial distribution of text words; each music dimension υ

is represented by a multinomial distribution of songs and a multinomial distri-

bution of subtopics. The set of subtopics in the second level is shared across

different music dimensions. These subtopics, which are represented by the

distribution of text words or audio words, are used to characterize the music

dimensions. User music interests are represented by the multinomial distribu-

tion of music dimensions. Because the music dimension is discovered based on

the co-occurrence of subtopics of songs and the subtopics are discovered based

on the co-occurrence patterns of songs’ contents, the dual-layer topic model

discovers the latent music dimensions and subtopics in a mutual reinforcement

process.

From the generative perspective, a song s with text words ws and audio

words vs preferred by a user u, namely, an observation of (u, s,ws,vs), is

assumed to be generated by first choosing a music dimension υ (e.g., a certain

music style) from music interest θu of user u. Then based on the selected topic

υ, song s is drawn according to φυ,s, which represents the likelihood for user
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u to select song s in the music dimension υ. The audio words vs and text

words ws of song s are generated according to the subtopic distributions θυ of

the music dimension υ. The generation process of audio words and text words

is to firstly generate all the audio words, and then subsequently generate all

the text words. Specifically, for each audio word vs, a subtopic z is sampled

and the audio word is generated accordingly based on φz,vs . After obtaining

all the audio words, for each text word, an audio word vs is first selected and

the text word ws is generated, conditioned on the subtopic that generated the

audio word. For details about the sampling process of the second layer (Part

B), please refer to [14]. More formally, the process of user’s profile generation

is shown in Algorithm 5 (steps 4-21).

Based on the connection of two layers of topic models, DL-MPTM thus

specifies the conditional joint distribution on song s and a term t given a user

u and the latent variables:

P (s, t|u,θu,θυ,φs,φv,φt)

=

M∑
υ=1

P (υ|u, θu)P (s|υ,φs)

K∑
z=1

P (z|υ,θυ)P (t|z,φt)
(5.1)

This equation estimates how correlative user u, song s, and term t could

be, and thus can be used for personalized text-based music retrieval, which is

introduced in Section 5.3.

5.2.0.2 Model Inference

In the DL-MPTM model, α, γ,βs,βv, and βt are Dirichlet priors and pre-

defined. The parameters needed to be estimated include: (1) user interest

(user-music dimension) distribution θu, (2) music dimension - subtopic distri-

bution θυ, (3) music dimension - song distribution φs, (4) subtopic-term dis-

tribution φt and (5) subtopic-audio word distribution φv. Several algorithms

have been developed to approximate the parameters in variants of LDA. In

our implementation, collapsed Gibbs sampling [46] is used to estimate these
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Algorithm 5: Generative & Collapsed Gibbs Sampling Process for DL-
MPTM

Input: A user music profile dataset D;
Number of latent topics: K; Number of latent music dimensions: M ;
Dirichlet hyperparameters: α, γ, αg, βs, βt, βv

Output: Estimated parameters: θu, θυ, φs, φt, φv

1 Initialize Z and Υ by assigning random values;

2 Count Nm
u , N s

m, and Nk
m based on initialized Z;

3 Count N t
k and Nv

k based on initialized Z;
4 for each latent music dimension υ ∈ {1, · · · ,M} do
5 Draw φs ∼ Dir(·|βs);
6 Draw θυ ∼ Dir(·|γ);

7 for each latent subtopic k ∈ {1, · · · ,K} do
8 Draw φv ∼ Dir(·|βv);
9 Draw φt ∼ Dir(·|βt);

10 for each user u ∈ U do
11 Draw θu ∼ Dir(·|α);

12 for each Gibbs sampling iteration do
13 for each user u ∈ U do
14 for each song s ∈ Du do
15 Draw a latent music dimension υ from the music interest

distribution of user θu;
16 for each audio word vs ∈ vs do
17 Draw zvs from the distribution θυ of latent subtopics in the

latent music dimension υ;
18 Draw vs from the audio word distribution φv from subtopic z ;

19 for each word w ∈ ws in the song (suppose there are n audio
words in this song, and let zi denote the sampled topic for the i-th
audio word in previous step) do

20 Draw y ∼ Unif(1, 2, ..., n)2;
21 Draw ws from the text word distribution φt from the latent

subtopic zy;

22 Update N t
k and Nv

k according to zvs = k, ws, and y;

23 Update Nm
u , N s

m, and Nk
m according to υs = m and zvs = k;

24 Estimate model parameters {θu,θυ, {φs,φt, and φv} according to Eq. 5.6,
Eq. 5.7 and Eq. 5.8, respectively.

121



CHAPTER 5. PERSONALIZED TEXT-BASED MUSIC RETRIEVAL

parameters, as this method has been successfully applied in many large scale

applications of topic models [46, 103]. Notice that in the learning of a model,

Gibbs sampling iteratively updates each latent variable given the remaining

variable until it converges. The Collapsed Gibbs Sampling process of DL-

MPTM is described in Algorithm 5.

Given a user music profile corpus D with user set U , for each user u ∈ U , a

playlist {s1, s2, ..., sn} records his/her playing behaviors or music profile. Each

song s contains a sequence of text words ws and a sequence of audio word vs.

In the Gibbs sampling process, the playlists of users are sampled in sequence.

Let S be the sampling sequence in the Gibbs sampling process, which is the

concatenation of songs in the playlists of all the users. Similarly, let V and W

denote the corresponding sampling sequences of audio words and text words. Υ

and Z denote the set of latent music dimensions and subtopics corresponding

to the song sequence and audio words sequence, respectively. Besides, Y is

the assignment indicators of the word sequence W . S¬i denotes S excluding

the i-th song si in S. Similar notation is used for other variables. For the

sampling of latent music dimension υi = l for si, the probability is

P (υi = l|Υ¬i,S,Z,Y ,V ,W ) ∝
αl +N l

u,¬i∑L
l=1(N l

u,¬i + αl)
·

βs +N s
l,¬i∑M

s=1(N s
l,¬i + βs)

· PLS(l, si)

(5.2)

PLS(m, si) =

∏K
k=1 Γ(γk +Nk

l )

Γ(
∑K

k=1(Nk
l + γk))

·
Γ(

∑K
k=1(Nk

l,¬i + γk))∏K
k=1 Γ(γk +Nk

l,¬i)

=

∏K
k=1(γk +Nk

l − 1)!∏K
k=1(γk +Nk

l − nl,k,si − 1)!
·

(
∑K

k=1(Nk
l,¬i + γk − nl,k,si)− 1)!

(
∑K

k=1(Nk
l,¬i + γk)− 1)!

(5.3)

where N l
u denotes the number of times that music dimension l is observed in

u’s playlist. Nk
l is the number of times that subtopic k is observed in music

dimension l. Notice that the exclusion of υ = l will cause the changes of
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Nk
l for all k = [1, K]. Nk

l,¬i denotes the number of times latent subtopic k

is observed in latent music dimension l by excluding l assigned to song si,

and Nk
l,¬i = Nk

l − nl,k,si . nl,k,si denote the number of times the subtopic k is

observed in music dimension l due to si. PLS(l, si) denotes the effects of the

exclusion of υ = l on the distribution of subtopics in the music dimension l.

Γ(·) is the Gamma function.

Next we introduce the sampling of subtopic zj = k for an audio word

vj = v in si and the sampling of all text words of the song si. Notice that the

text words in si are sampled after sampling all the audio words in si, as the

assignment of zj to the words in a song is dependent on the subtopic sequence

of audio words in this song. The probability of zj = k to an audio word vj = v

is:

P (zj = k|Υ,S,Z¬j ,Y ,V ,W ) ∝
γk +Nk

l,¬j∑K
k=1(Nk

l,¬j + γk)
·

βv +Nv
k,¬j∑V

v=1(Nv
k,¬j + βv)

· PZ(k)

(5.4)

PZ(k)

∏T
t=1 Γ(βt +N t

k)

Γ(
∑T

t=1(N t
k,¬j + βt))

·
Γ(

∑T
t=1(N t

k + βt))∏T
t=1 Γ(βt +N t

k,¬j)

=

∏T
t=1(βt +N t

k − 1)!∏T
t=1(βt +N t

k − nt − 1)!
·

(
∑T

t=1(N t
k,¬j + βt − nt)− 1)!

(
∑T

t=1(N t
k,¬j + βt)− 1)!

(5.5)

where N v
k is the number of times that subtopic zj = k is assigned to audio

word vj = v. N t
k,¬j denotes the number of times that t is assigned to subtopic

k before assigning k to the j-th audio word of song si, and N t
k,¬j = N t

k − nt.

nt denotes the number of times that term t is assigned to the subtopic of the

j-th audio word in the current song si. Notice that the exclusion of zj = k for

audio word vj may influence the assignment of zj = k to multiple text terms

and multiple times. Similar to PLS(l, si), PZ(k) denotes the effects of the

exclusion of zj = k on the distribution of text terms in the subtopic k.

Based on the state of the Markov chain υ and z, we can estimate the
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parameters:

θu,m =
αm +Nm

u∑M
m=1(αm +Nm

u )
θm,k =

γk +Nk
m∑K

k=1(γk +Nk
m)

(5.6)

φm,s =
βs +N s

m∑M
s=1(βs +N s

m)
φk,t =

βt +N t
k∑T

t=1(βt +N t
k)

(5.7)

φk,v =
βv +N v

k∑V
v=1(βv +N v

k )
(5.8)

5.3 Retrieval Model

The goal of the retrieval model is to search a subset of songs that are relevant

to a particular query. Let q = {t1, t2, ..., tn} represent user u’s query consisting

of n terms. The retrieval algorithm aims at ranking songs based on their

relevance to the query according to u’s music preference on the songs. Notice

that the relevance level of a song with respect to a query is dependent on user’s

music taste. Given a query q issued by user u, for a song s, P (s|q, u) denotes

the likelihood or probability of user u preferring this song s with respect to the

query q. Thus, candidate songs can be ranked in the descending order of their

probabilities P (s|q, u) with respect to the user and query (u, q). According to

Bayes rule, P (s|q, u) can be computed as:

P (s|q, u) =
P (q, s|u)P (u)

P (q, u)
∝ P (q, s|u) (5.9)

where P (q, s|u) represents the relevance of song s to query q based on user u’s

opinions on the song.

With the posterior estimation of θu, θυ, φs, and φt in the DL-MPTM, we

have:

P (q, s|u,θu,θυ,φs,φt) =

M∑
υ=1

P (υ|u,θu)P (q, s|υ,θυ,φs,φt)

=

M∑
υ=1

P (υ|u,θu)

n∏
i=1

P (ti, s|υ,θυ,φs,φt)

(5.10)
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where P (υ|u,θu) is the probability of user u selecting music dimension υ,

and P (q, s|υ,θυ,φs,φt) is the joint probability of query q and s in the music

dimension υ. In the derivation, we assume the query terms are independent

from each other under this specific music dimension. Given the music dimen-

sion υ, s and t are independent, the joint probability of term ti and song s in

the music dimension υ can be estimated by multiplying the the probability of

s and ti in the music dimension υ: P (s|υ,φs) and P (ti|υ,θυ, φt).

P (ti, s|υ,θυ,φs,φt) = P (s|υ,φs)
K∑
z=1

P (ti|z,φt)P (z|υ,θυ) (5.11)

The probability of term ti in music dimension υ can be obtained by the gen-

erative probability of term ti in the subtopic space:
∑K

z=1 P (ti|z,φt)P (z|υ,θυ).

Based on Eq. 5.10 and Eq. 5.11, the probability of user u selecting s for query

q can be estimated:

P (q, s|u,θu,θυ,φs,φt) =

M∑
υ=1

P (υ|u,θu)

n∏
i=1

P (s|υ,φs)

K∑
z=1

P (ti|z,φt)P (z|υ,θυ)

=
M∑
υ=1

θu,υ ·
n∏

i=1

φυ,s ·
K∑
z=1

θυ,z · φz,ti

(5.12)

Intuitively, for a specific music dimension υ, P (υ|u,θu) denotes the pref-

erence of user u in this dimension; P (s|υ,φs) denotes the likelihood of song s

in this dimension;
∑K

z=1 P (z|υ,θυ)P (t|z,φt) denotes the likelihood of a term

t in this dimension. Thus, P (υ|u, θu)P (s|υ,φs)
∑K

z=1 P (z|υ,θυ)P (t|z,φt) in-

dicates the likelihood for user u to consider song s is relevant to term t in this

music dimension.

Algorithm 6 summarizes the whole procedure of personalized text-based re-

trieval method. DL-MPTM training process can be carried out in offline phase

(line 1 - 2). Personalized music search is based on the obtained parameters in

DL-MPTM, for a given query q, a rank list L can be returned (line 3 - 4).
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Algorithm 6: DL-MPTM based personalized text-based music retrieval
Offline Phase: DL-MPTM model training
Input: Corpus D with music profiles of users U ,
Output: θu,υ, φυ,s, θυ,z and φz,ti

1: Train the DL-MPTM model using the collapsed Gibbs sampling method
described in Algorithm 5.

2: Estimate θu,υ, φυ,s, θυ,z and φz,ti using Eq. (6) - Eq.(8)

Online Phase: personalized music search
Input: A query q = {t1, t2, ..., tn}
Output: A ranking list L

3: Compute P (q, s|u) using Eq. 5.12 based on the estimate parameters
4: Sort the songs into a ranking list L in the descending order of their

probabilities P (q, s|u)

Discussion. When the system is used in real applications, it will face two

problems at the early stage: (1) how to train the model when only a small

number of users is available at the early stage; and (2) how to deal with the

cold-start problem of new users. For the first problem, the abundant online

users music listening behaviours could be harvested and leveraged to train the

model. For the second problem, a common method is to ask users to provide

some initial data at the beginning, such as their favourite songs. However, the

input of a long list of songs will bring a heavy burden to users. Alternatively,

in our system, we could leverage users basic information, such as age, gender,

and country information to provide personal service at the early stage, namely,

using the system described in Chapter 4. As demonstrated in Chapter 4, the

consideration of age, gender and country could greatly improve the search

performance, which will give users to have a good impression on the system at

the beginning.

5.4 Experimental Configuration

In this section, we present the experimental settings for the performance eval-

uation, including test collections, query set with corresponding ground truth,

competitors and performance metrics.

126



CHAPTER 5. PERSONALIZED TEXT-BASED MUSIC RETRIEVAL

5.4.1 Test Collections

In order to achieve good repeatability of the experiments, test collections are

developed based on two public datasets. Their details are as follows.

Taste Profile Subset (TPS) 3 [97]: This dataset consists of more than

48 million triplets (user, song, count) gathered from user listening histories.

Here, “(user, song, count)” refers to the number of times (i.e., count) the user

played the song. It contains approximately 1.2 million unique users and covers

more than 380,000 songs. From this dataset, we randomly select 10,000 users

with their listening records for our experiments.

Lastfm-Dataset-1K (Lastfm-1K)4 [50]: This dataset contains (user,

timestamp, artist, song) quadruples collected from the Last.fm using the public

API. This dataset includes the listening history (until May 5th, 2009) of 992

users, 961,417 songs of 176,948 artists. Based on the quadruples records, we

can also get the triplets (user, song, count) for this dataset.

In order to ensure the quality of test collections, the p-core filtering method [9]

is used to filter users and songs. The p-core of level k has the property, that

each song was listened to by at least k users and each user listened to at least

k songs. In the experiments, k is set to 20. For the remaining songs, the

30 seconds audio samples were downloaded from 7digital5, and their tags were

crawled from Last.fm. Table 5.1 summarizes the details about the two datasets

used in experiments. It is worth mentioning that two datasets have very dif-

ferent properties. Comparing with TPS, Lastfm-1K contains less users while

each user has richer listening records. Thus, two datasets are used to examine

the performances of personalized music retrieval systems in two scenarios: (1)

with rich users’ listening records available (Lastfm-1K), and (2) with limited

users’ listening records available (TPS), respectively.

3http://labrosa.ee.columbia.edu/millionsong/tasteprofile
4http://www.dtic.upf.edu/ ocelma/MusicRecommendation

Dataset/lastfm-1K.html
5https://www.7digital.com/
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Table 5.1: Details of two datasets used in experiments.

Dataset #User #Songs #Artist #Ave. Listened Songs per User

Lastfm-1K 992 7433 881 335.51

TPS 7022 2332 1094 15.96

The training of DL-MPTM model needs the played records of songs by

users and the songs’ contents, including textual content (e.g., textual words

describing the song) and music content (e.g., audio words of the song). To

facilitate the DL-MPTM training, we organize the related data into three types

of documents. The description and generation process of the three types of

documents are presented below.

User-Song Document For each user, a user-song document is generated

based on his/her played records. The document is comprised by the concate-

nation of the songs (a “song” in a document is indexed by a unique ID) played

by the users. For example, if a user u with profiles (u, s1, 2), (u, s2, 3), (u, s3, 1),

the user’s user-song document is {s1, s1, s2, s2, s2, s3}. It is worth noticing

that the songs in the documents can be in any order of sequence. To acceler-

ate the training process, the user-song document for each user is created by

concatenating the songs that were played more than 2 times by the user, and

each song only appears once. Thus, for each user, the user-song document is

actually a playlist consisting of the songs that were preferred by the user in

the past. For the users who are used as query users in experiments, half of the

songs in their playlists are randomly selected as test songs and thus removed

from the user-song document used in the training stage (see Sect. 5.4.2).

Song-Text Document The document contains the textual contents of

the song, namely, the text words of a song used in the DL-MPTM. In our

implementation, social tags are used to represent the text documents of songs.

Our model is to capture the correlation of user, song, and term to facilitate

personalized search. The tags of each song are collected from Last.fm using
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public API (Track.getTopTags). In our implementation, for each dataset, we

filtered the tags that appeared in less than 10 songs. Besides, we also remove

the tags which express personal preferences on the songs, such as “favorite

songs”, “favorite”, “best song forever”, etc. The remaining tags of a song are

concatenated together and tokenized with a standard stop-list to form the text

document for the song.

Song-Audio Document The document contains the audio content of a

song, namely, the audio words used in the DL-MPTM. The audio contents of

one song are represented by “bag-of-audio-words” document. An audio word

is a representative short frame of audio stream in a music corpus. The general

procedures to generate the audio words consists of three steps: (1) segment

the audio track of each song in a corpus into short frames; (2) extract acous-

tic features from each short frame; and (3) apply a clustering algorithm (e.g.,

k-means) to group the short frames into n clusters based on their acoustic

features. The cluster centers are the audio words generated for the corpus. By

encoding each short frame of a song with the nearest cluster center (or audio

word), then the song is indexed as a sequence of audio words. In our imple-

mentation, we segment each song into 0.05s short frames without overlapping.

Also, each song is converted to a standard mono-channel and 22,050 Hz sam-

pling rate WAV format. Mel Frequency Cepstral Coefficients (MFCCs) [91]

feature is used to generate the audio words. For each frame, a 13-d MFCCs

vector with its first and second instantaneous derivatives are extracted, achiev-

ing a final 39-d MFFCs feature. We use K-means to generate the audio words.

And for each dataset, we generate a vocabulary of 4096 audio words.
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5.4.2 User-Specific Query, Test Collection and Ground

Truth

In personalized music retrieval, a positive result should not only be relevant to

the query but also be preferred by the query user6. In other words, to evaluate

personalized music retrieval systems, we need to know (1) whether the result

is relevant to the query, and (2) whether the user prefers the result. Therefore,

user’s preferences on all the songs in the test collection should be available

in the evaluation. To achieve the goal, we create the query set and the test

collection specific to each individual user. Firstly, a set of users is randomly

selected from the datasets (Lastfm-1K and TPS) as query users. Then, for each

user, a set of text queries are generated and a test collection for this specific

user is created by randomly sampling half of the songs from his/her user-song

document. In the user-specific test collection, the played times of songs can

be used to estimate the user’s preferences on these songs. Specifically, the

relevance levels of a song with respect to a user-specific query are defined as

follows.

• Non-relevant (0): song’s text document does not contain all the query

terms or the user listened to the song only once.

• Relevant (1): song’s text document contains all the query term, and the

user listened to the songs for 2 to 5 times.

• Highly relevant (2): song’s text document contains all the query term,

and the user listened to the songs for more than 5 times.

The definitions of relevance levels are based on the assumption that more

times a user listens to a song, the higher preference level the user have on

the song. The evidence that a user listened to a song more than two times

6The user who submits the query is called the query user. In personalized information
retrieval, user and query should be in pairs. Afterward, we use “query users” to refer to the
users used in the search stage.
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Table 5.2: Several examples for three types of queries.

1-Word Query 2-Word Query 3-Word Query

rock chill, soft 00s, male, rock

metal chill, mellow 00s, indie, mellow

piano male, mellow chill, mellow, rock

happy drums, guitar british, male, rock

rainy country, guitar melancholy, rock, sad

driving danceable, harmonies mellow, folk, tonality

energetic alternative, guitar guitar, rock, vocalists

romantic emotional, romantic chillout, mellow, rock

indicates that the user shows some interests in the song. The songs listened

to only once are regarded as irrelevant, since it could be a variety of reasons

why users listen to a song only once. Notice that for a user, his/her listened

songs, which are used in the user-song document in the topic model training

stage, are removed from the test collections in the retrieval stage.

To test the performance of queries used in real scenarios, three types of

text queries are developed for evaluation purpose: one-, two- and three-word

queries, as users seldom issue long queries for music search in reality [100].

This strategy is also often applied in previous text-based music retrieval stud-

ies [100, 151]. For the one-word queries in each dataset, the most frequently

used words are used as candidates. For the two- and three-word queries, the

most frequent co-occurrent two and three words in tags are used as candi-

dates, respectively. The query users and user-specific queries are carefully

selected from these candidates to ensure that, for each user, the user-specific

test collection contains sufficient relevant songs for his/her queries (for the

fair comparisons of different retrieval methods) [100]. The query words cover

the commonly used music concepts, such as genre, instrument, mood, and era.

Table 5.2 shows the query examples used in the experiments.

Since the average number of songs played by users in two datasets are

very different, different numbers of users and queries can be generated in two
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datasets. The details about users and queries in both datasets are as below.

• Lastfm-1K: In this dataset, 124 users are selected as query users, and

96 different queries (30 one-word queries, 30 two-word queries, and 36

three-word queries) are selected. The selected queries are the same for

all the users. The number of songs in this test collection of each user is

at least 500. In total, there are 11,904 user-specific queries used in this

dataset.

• TPS: Because the number of songs listened by users in this dataset is

much smaller, few user-specific queries can be applied in order to make

sure that there are enough positive songs (for each query) in the user-

specific test collections. Finally, we select 20 users and 20 queries (8

one-word queries, 6 two-word queries, and 6 three-word queries) per user.

Similarly, the queries of all the users are the same. The least number of

songs in the test collection for each user is set to be 100. In total, there

are 400 user-specific queries used in this dataset.

5.4.3 Experimental Setup

The section introduces the details about competitors, evaluation metrics and

system parameters.

Competitors To verify the effectiveness of the proposed personalized text-

based music retrieval system, we compare it with three text-based music re-

trieval (TBMR) methods and an existing personalized music retrieval (PMR)

method. The three TBMR methods are tag-based music retrieval (TAG),

weighted linear combination (WLC), and post-hoc audio-based reranking (PAR),

which are described in Sect. 4.3.2.1. The PRM method is proposed in [48]. The

topic model captures the text associations based on their co-occurrences in the

same song and the songs associations based on their co-occurrences in the

same user’s profile under the same latent space. Each user music preference is
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Figure 5.2: Graphical representation for PRM.

modeled as a multinomial distribution over a set of topics and each topic has a

distribution over a set of songs and texts. This model does not take the music

contents into account.

Evaluation Metrics In information retrieval, users are more interested in

results in the top positions. Therefore, we focus on the evaluation of top results

in terms of accuracy. Several standard information retrieval metrics are used,

including precision at k (Precision@k), Mean Average Precision (MAP) and

Normalized Discounted Cumulative Gain at k (NDCG@k) [57]. The relevance

levels (i.e., 0, 1, and 2) are used to compute NDCG. For Precision@k and

MAP, both relevant (i.e., 1) and highly-relevant (i.e., 2) results are regarded

as positive results.

Parameter Setting In our implementation, the Dirichlet hyper-parameters

of both topic models (DL-MPTM and PRM) are empirically set: α = 1.0,

γ = 1.0, βs = βt = βv = 0.01. We carefully tune the latent topic numbers in

both topic models. In DL-MPTM, the number of latent music dimension is

tuned in {5, 10, 20, 30, 40, 50, 60} and the number of latent sub-topics is tuned

in {20, 40, 60, 80, 100, 150}. The number of latent topics in PRM is tuned in

{20, 40, 60, 80, 100, 150}. Besides, the combination weight w in WLC retrieval

methods are both tuned from 0 to 1 in steps of 0.1.
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5.5 Experimental Results

This section reports the experimental results of our methods and other com-

petitors on retrieval performance. The reported results of DL-MPTM and

PRM are based on the optimal numbers of latent topics in each dataset. The

reported results based on MAP and NDCG in all the tables are truncated at

10, namely, MAP@10 and NDCG@10. The symbol (*) after a numeric value

denotes significant differences (p < 0.05, a two-tailed paired t-test) with the

corresponding second best measurement. All the results presented in below

are the average values of queries over all the users.

5.5.1 Retrieval Performance

5.5.1.1 Effectiveness

Table 5.3, Table 5.4 and Table 5.5 report the retrieval performance on different

queries consisting of one, two and three words on the two datasets, respectively.

As can be seen, the proposed model outperforms all the other algorithms over

both datasets. Larger performance gain can be achieved when considering

more results in the top positions; in particular, the improvements in P@10,

MAP and NDCG are statistically significantly compared to other algorithms.

After comparing the results gained using TAG, WLC, and PAR, it is easy

to find that for Lastfm-1K dataset, the consideration of audio features with

text can improve the search results. Besides, PAR obtains better results than

WLC does. However, in TPS dataset, the performance decreases when using

acoustic features for re-ranking. It is worth noticing that the results of WLC

in TPS are the same to TAG. It is mainly because the best performance of

WLC can be achieved by only using text feature in WLC. Notice that the size

of search dataset in Lastfm-1K is much larger than that of users in TPS (see

Sect. 5.4.2). Generally, it is difficult for the content-based method to achieve

better search results over a smaller dataset, because finding songs with similar
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contents in smaller datasets is harder. Thus, the audio feature does not work

well when being applied to support search over the TPS dataset.

Table 5.3: Retrieval performance for 1-word queries

Dataset Metric TAG WLC PAR PRM DL-MPTM

Lastfm-1K P@3 .669 .662 .741 .840 .842

P@5 .671 .654 .735 .818 .851*

P@10 .673 .658 .715 .792 .858*

MAP .668 .669 .728 .824 .852

NDCG .481 .495 .548 .611 .663*

TPS P@3 .550 .550 .492 .648 .667*

P@5 .600 .600 .470 .609 .640*

P@10 .557 .557 .455 .583 .633*

MAP .558 .558 .477 .621 .645

NDCG .434 .434 .365 .492 .520*

Table 5.4: Retrieval performance for 2-word queries

Dataset Metric TAG WLC PAR PRM DL-MPTM

Lastfm-1K P@3 .664 .652 .734 .839 .839

P@5 .657 .646 .724 .823 .845

P@10 .664 .653 .713 .795 .853

MAP .660 .658 .720 .826 .846

NDCG .483 .489 .541 .602 .663*

TPS P@3 .533 .533 .483 .633 .658*

P@5 .575 .575 .495 .565 .635*

P@10 .565 .563 .450 .545 .629*

MAP .564 .565 .468 .595 .639*

NDCG .425 .424 .362 .479 .534*

On the other hand, PRM and DL-MPTM achieve much better performance

than the other three methods (TAG, PAR, and WLC), which have not taken

the personal music preferences into account. It demonstrates the importance

of user’s music preference in facilitating effective music retrieval. DL-MPTM’s

performance improvement over PRM on both datasets demonstrates the effec-

tiveness of our proposed dual-layers topic model in capturing the correlation

among (user, song, term). In PRM, the correlation is modeled using the same
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Table 5.5: Retrieval performance for 3-word queries

Dataset Metric TAG WLC PAR PRM DL-MPTM

Lastfm-1K P@3 .643 .675 .714 .827 .846

P@5 .647 0669 .710 .814 .848*

P@10 .656 .669 .696 .789 .848*

MAP .649 .650 .704 .819 .851*

NDCG .482 .486 .551 .611 .664*

TPS P@3 .490 .490 .486 .567 .655*

P@5 .526 .526 .451 .555 .625*

P@10 .533 .531 .443 .557 .613*

MAP .516 .516 .469 .574 .619*

NDCG .412 .411 .363 .486 .517*

latent space, which is discovered based on both the co-occurrence of songs in

playlists and the co-occurrence contents of songs. In DL-MPTM, the correla-

tion is captured by two layers of connected latent spaces: the low-level latent

space (constructed by latent semantic subtopics) is discovered based on the

co-occurrence contents of songs, the high-level latent space (constructed la-

tent music dimensions) is discovered based on the co-occurrence of songs in

playlists and the co-occurrence of latent subtopics across songs.

Table 5.6 compares the performances of TAG, PAR, and DL-MPTM based

on the top five search results in the ranking lists of one representative query

in each type. The relevance level of each song in the top five positions is also

shown. The results demonstrate that DL-MPTM achieves much better per-

formance in task of searching user preferred songs with respect to the queries,

comparing to TAG and PAR methods. For example, in response to the query

“guitar, pop”, DL-MPTM places three high-relevant songs at the top rank,

compared with only one ranked by the TAG model at the 5th position and

two ranked at the 3rd and 4th positions by the PAR model.
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Table 5.6: The top 5 songs in the ranking lists obtained by the TAG, PAR,
and DL-MPTM models for 3 representative queries of a user “user 000477 ”.
The relevance level of each result is shown in the parentheses after each result,
e.g., “(2)” indicates high relevance (see Sect. 5.4.2).

Query Modal Top 5 Songs

Metal

TAG

System of a Down - thetawaves (1)

System of a Down - I-E-A-I-A-I-O (1)

Linkin Park - Valentine’s day (2)

Korn - Did my time (1)

Metallica - Nothing Else Matters (1)

PAR

Rage Against the Machine - Bullet in the head (1)

Linkin Park - Valentine’s day (2)

Audioslave - Set it off (1)

Goldfrapp - Cologne cerrone houdini (1)

Incubus - Anna molly (2)

DL-MPTM

Rammstein - Du hast (2)

A Perfect Circle - Over (1)

Nirvana - Smells like teen spirit (2)

Muse - Hysteria (1)

AC/DC - Back In Black (2)

Guitar,pop

TAG

Dread Zeppelin - Misty mountain hop (0)

Dire Straits - Sultans of swing (1)

Dire Straits - Money for nothing (1)

Dread Zeppelin - Your time is gonna come (0)

Dire Straits - Brothers in arms (2)

PAR

New Order - crystal (0)

Dire Straits - Romeo and juliet (1)

Linkin Park - Valentine’s day (2)

The Smashing Pumpkins - 1979 (2)

Red Hot Chili Peppers - Mellowship slinky in b major (1)

DL-MPTM

Oasis - Wonderwall (2)

The Smashing Pumpkins - 1979 (2)

The Cranberries - Zombie (2)

Blur - Song 2 (1)

Oasis - Live forever (1)

Guitar, rock, vocalists

TAG

Lez Zeppelin - Communication breakdown (0)

Dread Zeppelin - Misty mountain hop (0)

Lez Zeppelin - Whole lotta love (0)

Dire Straits - Sultans Of Swing (1)

Dire Straits - Money for nothing (1)

PAR

The Smiths - Stretch out and wait (0)

New Order - Crystal (0)

Interpol - The heinrich maneuver (0)

Klaxons - Two receivers (0)

Dire Straits - Romeo and juliet (1)

DL-MPTM

AC/DC - Back in black (2)

AC/DC - Highway to hell (2)

Dread Zeppelin - Heartbreaker (0)

The Cranberries - Zombie (2)

AC/DC - Hells bells (2)
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Table 5.7: Retrieval results for query categories. The best results for each
category are indicated in bold.

Category Metric TAG WLC PAR PRM DL-MPTM

Emotion

P@10 .684 .659 .721 .790 .863

MAP .677 .672 .732 .822 .858

NDCG .487 .498 .550 .606 .668

Genre

P@10 .649 .646 .701 .793 .852

MAP .639 .644 .718 .831 .836

NDCG .463 .474 .542 .616 .647

Instrument

P@10 .673 .651 .724 .803 .871

MAP .665 .669 .735 .835 .862

NDCG .474 .491 .552 .620 .673

Vocals

P@10 .657 .665 .717 .796 .842

MAP .651 .672 .720 .830 .841

NDCG .473 .488 .551 .623 .648

Others

P@10 .685 .671 .711 .787 .850

MAP .687 .683 .729 .808 .847

NDCG .497 .518 .547 .603 .666

5.5.1.2 Robustness

By comparing the results of different query types (one-, two- and three-word

queries), we can observe that the search performance is slightly decreased when

the query complexity increases. For different types of queries, DL-MPTM

achieves significant and consistent improvement over all metrics, showing a

superior robustness across multi-word queries.

Music is usually described by different categories of music concepts, such

as mood, instrument, genre, and vocals, which have been widely studied in

music retrieval related research, such as classification and annotation. We ex-

amine the search performance of our method over other methods on different

categories of music concepts. Table 5.7 presents evaluation results. One-word

queries are classified into different music concept categories as shown in the

table. We focus on the one-word queries, since the two- and three-word queries

could be the combination of different categories. The category “Other” con-
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Figure 5.3: Effects of the number of latent topics in topic model based retrieval
methods.

tains queries, such as “driving”, “slow”, “sexy”, which cannot be classified into

other four categories. The significant improvements over other methods on

P@10, MAP and NDCG show the effectiveness and robustness of DL-MPTM

over different music concept categories.

Comparing the search performances of all the methods on the two datasets,

they cannot achieve good performance when searching over the TPS dataset,

because of the limited size of relevant results in each user’s specific dataset.

Notice that the number of training samples in the TPS dataset is also much

smaller than that in the Last.fm-1K dataset. On the TPS dataset, the ab-

solute performance gain achieved by DL-MPTM over other methods for all

the metrics are at least comparable to those in the Lastfm-1K dataset. This

demonstrates a strong robustness of DL-MPTM on relatively small training

datasets.

5.5.2 Effects of the Number of Latent Topics

In topic models, it is hard to accurately pre-define the number of topics, which

has an important effect on the results. In the DL-MPTM model, there are

two sets of latent topics: the number of latent music dimensions in the first

layer, and the number of subtopics in the second layer. Fig. 5.3a and Fig. 5.3b
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illustrate the effects of the two parameters, respectively. From the results,

it can be observed that the number of latent music dimensions has strong

impacts on the final performance, and it is optimal to set the number of music

dimensions to [5, 20]. In contrast, we can observe the minor effects of sub-topic

number, especially for Lastfm-1K dataset.

5.6 Summary

In this chapter, we present a personalized text-based music retrieval system

which exploits the user listening behaviors in social music services. The system

can accurately estimate the relevance of a song with respect to a term subject

to user’s music preference. To achieve the goal, a Dual-Layer Music Prefer-

ence Topic Model is proposed to leverage the user listening logs and social

tags to learn the interactions among (user, song, term), which are applied for

personalized text-based music search. To evaluate the performance of the per-

sonalized retrieval system, comprehensive experiments have been conducted

on two public datasets. The comparisons with the state-of-the-art text-based

retrieval methods and existing personalized music retrieval methods in experi-

ments show that our method can significantly improve the search performance

in terms of accuracy. The results also demonstrate the importance of effective

integration of personal music preference in developing high-performance music

search engines, and verify the effectiveness of our proposed retrieval model.
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Conclusion

6.1 Thesis Summary

With personal mobile devices becoming the main music consuming platforms,

there is an impending requirement on intelligent music information retrieval

systems, which can provide personalized and context-aware music services.

Music retrieval and music recommendation techniques are two main tools to

help users find their favorite music. Text-based music retrieval is the most

common paradigm for users to search music with semantic concepts, which

could deliver user’s current situation or music needs. However, no existing

TBMR systems consider user’s long-term music preferences. As a result, the

search results cannot best satisfy different users. On the other hand, music

recommendation could automatically recommend music which matches user’s

long-term music preferences, while ignoring the influences of local contexts

on user’s short-term music preferences. In recent years, the importance of

local contexts on music preferences has been recognized and significant efforts

have been invested into the development of context-aware music recommender

(CAMR) systems. Although various CAMR systems have been developed,

many problems still remain (see Section 2.2.2 in Chapter 2). In this thesis,

we mainly focus on the development of personalized text-based music retrieval
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and context-aware music recommender systems.

Venue plays an important role in music selection. For example, in restau-

rants or gyms, music is often used to create a suitable atmosphere. Besides,

people also use music to facilitate their activities, such as meditation, running,

reading or sleeping, which are also related to different venues. However, the

effects of venue on music preferences have not been well explored in exist-

ing CAMR systems. Chapter 3 presents a venue-aware music recommender

(VAMR) system for recommending suitable music to different types of venues.

A latent topic model has been proposed to map both music and venues into

a latent semantic space, in which they can be directly matched. Besides, in

order to learn meaningful latent topics, a Music Concept Sequence Generation

scheme is designed to represent each song as a sequence of music concepts.

The VAMR system has been evaluated with an offline experiments on a small

constructed dataset and a user study on a large scale music dataset.

In Chapter 4, we report a user information aware music retrieval system.

The goal of the system is to leverage user demographic information (e.g., age

and gender), which is easy to be obtained in mobile devices, to improve the

search performance. Therefore, the system could be used for new users at the

early stage in a personalized retrieval system to collect user’s music listening

behaviors. In this system, we proposed a user information aware music inter-

est topic model to capture the influence of age and gender’s music preferences.

The music preferences related to age and gender are incorporated into a proba-

bilistic retrieval method to exploit the influence of age and gender in text-based

retrieval. An experimental study has been conducted and demonstrated that

the effectiveness of the system.

Chapter 5 presents a personalized text-based music retrieval system. The

relevance level of a song with respect to a query is subjective to different

users. In other words, the preference levels of users on a song with respect

to a query are different. Thus, it is crucial to capture the associations among
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(user, song, term). To achieve the goal, we propose a dual-layer topic model:

in the first layer, users music preferences are modeled with the latent topics

discovered based on the co-occurrences of songs liked by different users; in the

second layer, the latent topics are represented by the latent subtopics, which

are discovered based on the co-occurrences of music contents in different songs.

The correlations among user, song, and term can be well captured via the latent

topics and subtopics. Then a probabilistic retrieval method is developed based

on the dual-layer topic model. The system has been evaluated on two datasets

and compared with various competitors. The experimental results show that

the system can greatly improve the search accuracy with respect to user’s music

preference.

In summary, we develop a venue-aware music recommender system for

CAMR and two text-based music retrieval systems for user-aware music re-

trieval. Through the development of these systems, main contributions we

make include:

• To tackle the problem of “semantic gap” between high-level semantic

concepts (used to describe music by human) and low-level audio features

(used to represent music by computer), we use latent topic models to

associate the semantic concepts and audio features via latent topics.

• The music preferences of users and contexts (i.e., venue) are modeled by

the multinomial distributions of the latent topics. Besides, the character-

istics of music tracks (i.e., songs) are also represented by the multinomial

distributions of the latent topics. Therefore, in CAMR, the songs and

contexts can be directly mapped in the latent space; in user-aware text-

based music retrieval, the associations between user, song, and term (i.e.,

semantic concepts) are captured via the latent topics.

• For each system, we have constructed data collections and conducted

experiments for evaluations. We hope that the empirical studies could
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shed light on the methods of data construction and system evaluation

for personalized and context-aware music retrieval and recommendation.

6.2 Future Work

In the development of personalized and context-aware music recommender sys-

tems, we identify several interesting and promising research problems in this

direction for further exploration.

Construct a Comprehensive Musical Concept Vocabulary: A main

challenge in music retrieval and recommendation is how to represent user’s mu-

sic preference based on the audio signal of music. People often describe music

with semantic concepts. Thus, a general technique is to associate the audio fea-

tures extracted from music signal with music concepts to bridge the “semantic

gap”. Here music concepts refer to the concepts used to describe music, such as

era, mood, genre, instrument, etc. In Chapter 3, we use a small set of semantic

concepts (i.e., mood, genre and instrument) in our experiments to demonstrate

the effectiveness of our system. With more concepts being used, the charac-

teristics of music can be described more comprehensively and precisely, which

could improve the performance of the system. In Chapter 4 and Chapter 5,

the social tags of songs in Last.fm are used. Social tags have a good cover-

age on the concepts used in music description, but they contain noisy terms.

A good musical concept vocabulary is critical in modeling user’s (contextual)

music preference via the representation of semantic concepts. The important

questions are: which concepts are useful and how many music concepts are suf-

ficient. Thus, the construction of a comprehensive and concise music concept

vocabulary is very useful for music retrieval and recommendation.

Construct Datasets for Personalized and Context-aware Music

Retrieval and Recommendation: Datasets are critical for robust and re-

liable evaluation of information retrieval and recommender systems. In per-
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sonalized music retrieval and context-aware music recommendation, there are

no standard testbeds available, which makes the evaluation of related systems

very difficult. In our experiments, we constructed several datasets by crawling

multiple websites and through complex processing for system evaluation. The

corresponding process is very time-consuming. As user-centric music retrieval

and recommendation will be an important research direction in the future, it

is important to develop standard datasets for evaluating and comparing dif-

ferent systems. Typically, there are two methods to construct such datasets:

Web Mining and Crowdsourcing. Web mining is to crawl related data from

multiple data sources, and then performs cross-platform matching to identify

user’s personal information or context information. For example, we can crawl

the music-related tweets in Twitter, and then attempt to find out the places

where users posted the tweets via Foursquare. In this way, the location con-

text of music listening behaviors can be identified. Crowdsourcing is to rely

on large scale users to collect related data explicitly or implicitly by designing

webpages, games, and music applications (i.e., mobile music player) for users

to label or listening to music tracks.

Exploit Song’s Co-occurrence Patterns in Listening logs: Gener-

ally, a user likes different types of music/songs and the same song could be

played by many times at different dates or under different situations. Users lo-

cal music selection on songs is highly dependent on users local contexts, such as

activity, mood, and surrounding environment. Under a certain context, users

would like to listen to certain songs (a style of songs or a playlist of songs). The

set of songs which a user prefers (or users personal music collection) will not

be substituted/changed frequently. Instead, new songs will be gradually added

to users personal music collection. Common users have regular daily routines,

namely, a user will be often under several fixed contexts in his/her daily life.

Therefore, the same set of songs will be played by many times under the same

context at different dates. Consequently, there are co-occurrence patterns of
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the songs played under different contexts. The songs could be organized into

playlists based on their co-occurrence patterns, with the assumption that a

playlist is suitable for a certain context for the user. Based on the patterns,

users local music preferences could be inferred based on the songs they are

listening to, which could be leveraged for music recommendation or improve

the music search accuracy. For example, we could use the songs to which the

user current listens to infer users current contexts or music preference and thus

recommend suitable songs to the users or refine the search results.

Leverage the Correlations between User’s Preferences on Other

Media and User’s Preferences on Music: In psychology and cognition

studies, human perceptions of music and image are demonstrated to have a

strong correlation, e.g., brain information processing of visual and audio are

related [107] and music can stimulate of visual imagery [109]. In recent years,

cross-modality modelling attracts lots of research attentions [59, 64, 166, 161].

Although most of those studies focus on the modelling of text and image, these

techniques could be adapted to mine the relationship between text/image and

music, e.g., mapping different modalities into a latent space and construct cor-

relations among them in the latent space. There are also works modelling the

relationship between image and music [145, 164] or text and music [24]. How-

ever, most of existing cross-modality modelling methods have not considered

users personal preferences on documents (image, text, or music document). In

our context, we could use personal preferences as a constraint in the construc-

tion of latent space for cross-modality mapping. Another problem is how to

collect news/image and music data of users to train the model. In nowadays,

a user usually has social accounts on multiple social platforms, such as Flickr

(for image), Last.fm/Youtube (for music), Google news (for news). Thus, it

is possible to collect user data from multiple datasets to construct training

data. Based on the correlation between user’s preferences on news/images and

user’s music preference, we could (1) infer users music preference based on their
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news/image preferences; and (2) recommend suitable songs to users when users

are reading news or browsing images based on the contents of news/songs.
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Appendix A

Evaluation Metrics

This section introduces the evaluation metrics used in the dissertation.

Precision is the fraction of the documents retrieved that are relevant to the

query.

Precision@k (P@k) is the proportion of relevant documents in the top k re-

sults, computed as:

Precision@k =
No. of relevant items in top k results

k
(A.1)

Average Precision (AP) averages the precision at each point of a relevant

songs in the ranking list. It measures the quality of the whole ranking list.

AP@k =

∑k
i Precision@i · δ(reli = 1)

min(k, |rel|)
(A.2)

where reli indicates the relevance of the i-th song in the ranking list. If the i-th song

is relevant, reli = 1; otherwise, reli = 0. δ(·) is a binary indicator function. |rel| is

the number of relevant songs in the dataset.

Mean Average Precision (MAP) is the mean of the average precision scores

for a set of queries.

Normalized Discounted Cumulative Gain (NDCG) [57] uses a graded

relevance scale of documents from the result set to evaluate the usefulness of a

document based on its position in the result lists. NDCG@k is widely used for
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measuring the rank accuracy, defined as

NDCG@k =
1

Zk

k∑
j=1

2r(j) − 1

log2(j + 1)
(A.3)

where j is the rank position, r(j) is the rating value of j-th song in the ground-truth

rank list, Zk is the normalization factor which is the discounted cumulative gain in

the k-th position of the ground truth rank list. In the computation of NDCG@k, the

rating value of relevant, neutral and irrelevant items are 2, 1, and 0, respectively.

MRR averages the inverse of the rank of the first correct answer for each query.

It measures the level of the ranking list at which the information need of the user is

first fulfilled.
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