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Probabilistic Models for Semantic Visualization and Its Applications

by Le Van Minh Tuan

Abstract

Visualization of high-dimensional data, such as text documents, is useful to map

out the similarities among various data points. In the high-dimensional space, doc-

uments are commonly represented as bags of words, with dimensionality equal to

the vocabulary size. Classical document visualization directly reduces this into vi-

sualizable two or three dimensions. Recent approaches consider an intermediate

representation in topic space, between word space and visualization space, which

preserves the semantics by topic modeling. These approaches consider the problem

of semantic visualization which attempts to jointly model visualization and topics.

With semantic visualization, documents with similar topics will be displayed nearby.

This dissertation focuses on building probabilistic models for semantic visual-

ization by modeling other aspects of documents (i.e., document relationships and

document representations) in addition to their texts. The objective is to improve the

quality of similarity-based document visualization while maintaining topic quality.

In addition, we find applications of semantic visualization to various problems. For

document collection visualization, we develop a system for navigating a text corpus

interactively and topically via browsing and searching. Another application is single

document visualization for visual comparison of documents using word clouds.
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Chapter 1

Introduction

Text documents come in various flavors, such as Web pages, news articles, blog

posts, emails, or messages on social media such as Twitter. While much is in En-

glish, there are increasing amounts of content in various languages as well. With the

backdrop of the growth in volume, diversity, and complexity of various corpora, we

need more useful tools to analyze the wealth of text content. One form of analysis

which we will look into in this thesis is visualization.

There are two main research directions in document visualization. Research

works in the first direction focus on visualization techniques for showing the con-

tent of the text documents from different aspects and at different detail levels. Due

to this objective, visualization methods in this direction usually discuss more about

the effectiveness of visualization forms for displaying the content as well as the in-

teractions that can be performed on that display. The other research direction has

a different objective which is to visualize the document similarities. This objective

raises research questions such as how to represent the documents and learn their

similarities as well as how to map and preserve those similarities into the visualiza-

tion. Those questions are interesting to the machine learning community. Another

research question from the perspective of the visualization community is what vi-

sualization form we should use for displaying the similarities. A natural way to

encode the similarities is to use the distances. The closer the two documents are,
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the more similar they are. Therefore, there are many methods that display doc-

uments as points in a 2D/3D scatterplot visualization form and use the distances

among them to encode the similarities. We will give a review of these two research

directions in Chapter 2.

This thesis follows the second direction where we seek to visualize the docu-

ment similarities. We are interested in the scatterplot visualization form where we

can represent a collection of documents as coordinates on the same low-dimensional

space, so as to learn of the similarities and differences among documents based on

their distances on the visualization space. The scatterplot visualization form is use-

ful because of two reasons. First, it is convenient for users to perceive the similar-

ities by looking at distances. The second reason comes from the modeling aspect.

By representing documents as coordinates with real values, we have a capability of

building joint models that can learn the visualization automatically through numer-

ical analysis. More than that, by integrating visualization parameters to the model,

the visualization generated will reflect faithfully the information learned from the

data and could eventually serve as an interface for tuning the underlying model.

These two advantages of scatterplot visualization form are difficult to achieve using

other more complex forms of visualization that are more concerned with aesthetics

or document content.

We can treat the problem of visualizing document similarities on a scatterplot

as a dimensionality reduction problem. From this viewpoint, dimensionality reduc-

tion methods can be used for projecting or embedding the documents from high

dimensional representation (i.e., a vector of word counts) into lower dimensional

2D (or 3D) space. One pioneering technique is Multidimensional Scaling (MDS)

[70]. The goal is to preserve the distances in the high-dimensional space in the low-

dimensional embedding. When applied to documents, a visualization technique for

generic high-dimensional data, e.g., MDS, may not necessarily preserve the top-

ical semantics. Words are often ambiguous, with issues such as polysemy, when

the same word carries multiple senses, and synonymy, when different words carry

2



the same sense. Because the dimensions in the original representation (which are

words) may not accurately capture this ambiguity, this affects the quality of the

reduced representation (which is the visualization space) as well.

To model semantics in documents in a way that can resolve some of this am-

biguity, the current popular approach is by topic modeling, such as PLSA [57] or

LDA [14]. Each document is associated with a probability distribution over a set

of topics. Each topic is a probability distribution over words in the vocabulary. In

this way, polysemous words can be separated into different topics, and synonymous

words can be grouped into the same topic.

Topic modeling itself is another form of dimensionality reduction: from word

space to topic space. The word space refers to a document’s original representation,

which is usually a bag of words. The topic space refers to the simplex of topic

distributions. A document’s probability distribution over topics is effectively the

representation of this document in this topic space. However, a topic model by

itself is not designed for visualization. While one possible visualization is to plot

documents’ topic distributions on a simplex, a 2D visualization space could express

only three topics, which is very limiting.

Given its success in modeling semantics in documents, we therefore ask the

question of whether and how best to do both forms of dimensionality reductions

(visualization and topic modeling) for documents. The end goal is to arrive at a

visualization of documents that is consistent with both the semantic representation

(topics), as well as the original representation (words). This coupling is a distinct

task from topic modeling or visualization respectively, as it enables novel capabil-

ities. For one thing, topic modeling helps to create a richer visualization, as we

can now associate each coordinate on the visualization space with both topic and

word distributions, providing semantics to the visualization space. For another, the

tight integration potentially allows the visualization to serve as a way to explore and

tune topic models, allowing users to introduce feedback [59] to the model through

a visual interface [28]. These capabilities support several use case scenarios. One

3



potential use case is a document organizer system. The visualization could poten-

tially help in assigning categories to documents, by showing how closely related

documents have been labeled. Another is an augmented retrieval system. Given a

query, the results may include not just relevant documents, but also other similar

documents (neighbors in the visualization).

As a summary, this thesis looks at the problem of visualizing document simi-

larities on a scatterplot. It seeks to build probabilistic models for jointly modeling

topics and visualization, which is referred to as the task of semantic visualization.

The objective is to improve the quality of the scatterplot visualization while main-

taining topic quality. To achieve that, we propose semantic visualization models

for modeling document relationships and modeling document representations. The

main idea is that by modeling other aspects of documents (i.e., document relation-

ships and document representations) in addition to their texts, we could learn better

document similarities which, when being visualized on a scatterplot, help to im-

prove the visualization quality.

1.1 Semantic Visualization

1.1.1 Problem Statement

We refer to the task of jointly modeling topics and visualization as semantic visu-

alization. The input is a corpus of documents D = {d1, . . . , dN}. Every dn is a

bag of words, and wnm denotes the mth word in dn. For a specified number of

topics Z and visualization dimensionality (assumed to be 2D, without losing any

generality), the objective is to learn, for each dn, a latent distribution over Z topics

{P(z|dn)}Zz=1. Each topic z is associated with a parameter βz, which is a probability

distribution {P(w|βz)}w∈W over words in the vocabulary W . The words with the

highest probabilities for a given topic capture the semantic of that topic.

In semantic visualization, there is an additional objective for semantic visual-

ization, which is to learn, for each document dn, its latent coordinate xn on a low-

4



dimensionality visualization space. Similarly, each topic z is associated with a latent

coordinate φz on the visualization space. A document dn’s topic distribution is then

expressed in terms of the Euclidean distance between its coordinate xn and the dif-

ferent topic coordinates Φ = {φz}Zz=1. Intuitively, the closer is xn to a topic’s φz,

the higher is P(z|dn) or the probability of topic z for document dn. While we focus

on documents in our description, the same approach would apply to visualization of

other data types for which latent factor modeling, i.e., topic model, makes sense.

1.1.2 Approaches

A straightforward way is to undergo two-step reductions. In the first reduction,

the original representation for documents are reduced into topic distributions using

topic modeling. In the second reduction, documents’ topic distributions are further

reduced into visualization coordinates. This approach may have some value com-

pared to direct reduction from word space to visualization space. However, it is not

ideal, because the disjoint reductions could mean that errors may propagate from

the first to the second reduction, and the resulting visualization may not faithfully

capture the original representation.

A better way to solve this problem is to join up the two reductions into a single,

joint process that produces both topic distributions and visualization coordinates.

This approach was first pioneered by PLSV [62], which also showed that the joint

approach outperformed the disjoint approach. PLSV derives the latent parameters

by maximizing the likelihood of observing the documents. This goal is concerned

with the “error” between the model and the observation.

PLSV is built upon topic modeling technique Probabilistic Latent Semantic

Analysis (PLSA) [57] by incorporating visualization coordinates of documents and

topics. Similar to PLSA, PLSV makes following assumptions in its generative

model:

1. Documents are generated independently. This assumption implies that

PLSV is not concerned with the relationships among documents, though it
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can infer latent semantic relationships among documents by topic modeling

of text. However, besides text, documents can appear with other informa-

tion about their relationships such as neighborhood or network structures.

These relationship structures may contain important patterns among docu-

ments which should be captured and preserved for a faithful visualization of

documents. Therefore, in Part I of this thesis, we focus on modeling docu-

ment relationships with semantic visualization. The aim is to build models for

semantic visualization that preserve both latent semantic relationships learned

from topic modeling and the relationship structures exhibited in the data.

2. Documents are represented as bags of word counts. PLSV represents doc-

uments as bags of word counts. However, as pointed out by Reisinger et al.

[101], this type of representation cannot model word absences and it is also

sensitive to document lengths. We therefore want to investigate other types

of document representation for semantic visualization. In this thesis, we fo-

cus on two types of representation. The first is spherical representation where

documents are represented as unit vectors (i.e., L2-normalized vectors). The

second is bag of word vectors where each word is embedded as a vector in a

high dimensional space and a document is then represented as a bag of these

word vectors. These two types have some advantages over the bag of word

counts representation as pointed out in the next section.

1.2 Overview

Figure 1.1 shows a graphic overview of this thesis. In general, we propose two

approaches of semantic visualization, one for modeling document relationship and

the other for modeling document representation. Under each approach, we pro-

pose methods for modeling different kinds of document relationship and document

representation. Note that the two approaches are orthogonal in the sense that we

can combine a method from an approach to a method in the other approach. Next
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Figure 1.1: A graphic overview of this thesis

sections give an overview of different semantic visualization models and its appli-

cations for single document and document collection visualization.

1.2.1 Modeling Document Relationship

Neighborhood Structure. In the literature, it is found that algorithms that ensure

“smoothness” tend to perform better at learning tasks [128]. Smoothness concerns

preserving the observed proximity between documents. This objective arises natu-

rally from the assumption that the intrinsic geometry of the data is a low-rank, non-

linear subspace within the high-dimensional space. Therefore, preserving neighbor-

hood structure is important for learning tasks. This assumption is well-accepted in

the machine learning community [71], and finds application in both supervised and

unsupervised learning [9, 128, 129]. Recently, there is a preponderance of evidence

that this assumption also applies to text data in particular [17, 18, 60]. We therefore

propose an unsupervised probabilistic model that jointly derives topic distributions

and visualization coordinates while preserving neighborhood structure as well. Our

proposed model is called SEMAFORE, which stands for SEmantic Visualization with

MAniFOld REgularization. We build a neighborhood regularization framework into

a semantic visualization model. The framework involves new issues to resolve, in-
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cluding the regularization function, and the space in which regularization should

take place.

The model is evaluated on a series of real-life, publicly available datasets, which

are also benchmark datasets used in document classification task. An advantage of

a statistical method, such as ours, is that it is not dependent on a specific language.

Two of the datasets are in English, and one is in Brazilian Portuguese. While our

model is unsupervised (class label is neither required nor used in learning), to objec-

tively quantify the visualization quality, we leverage on the class label information.

It is a common assumption that documents of the same class are expected to be

neighbors on the original space [10, 128, 129], which suggests that they should also

be close on the visualization space. We investigate the effectiveness of SEMAFORE

in placing documents of the same class nearby on the visualization space, and sys-

tematically compare it to existing baselines without one or more of our properties,

namely: joint modeling of topic and visualization, or neighborhood regularization.

This work is presented in Chapter 3.

Network Structure. Besides text, we may observe links such as citations among

documents. This network structure may contain important patterns of document

relationships that should be discovered and preserved when doing visualization.

Network structure, on the other hand, can complement document visualization, by

providing more information about how documents are connected and related. To

visualize document networks, we can rely on graph embedding techniques such as

SPE [108], Fruchterman and Reingold layout [45] or Kamada and Kawai layout

[66]. However, these methods does not model text and thus the generated visual-

ization does not express semantic relationships among documents. PLSV, on the

other hand, does not model network, which may lose important information about

relationships of documents contained in the network. Therefore, we seek to model

both text and links in semantic visualization such that it preserves both semantic

and network relationships.

We propose an approach based on two key principles. The first principle is to
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embed both text and network representations of a document into a single unified

low-rank representation such that it preserves both semantic and network relation-

ships. The second principle is to incorporate both a topic model and an embedding

model within a single joint model. This principle is aligned with the spirit of seman-

tic visualization that aims to infuse the visualization with semantic interpretability.

We implement these two principles by proposing a generative model called PLANE,

which stands for Probabilistic LAtent Document Network Embedding. The genera-

tive model explains the process of generation of observable data (text and network)

from latent representations (topics and visualization coordinates). We validate this

model on four real-life document networks derived from a benchmark collection of

academic publications. We compare our model, quantitatively as well as qualita-

tively, against comparable baselines on both aspects (embedding and topic model-

ing) on a number of objective evaluation metrics. Chapter 4 presents the work in

detail.

1.2.2 Modeling Document Representation

While neighborhood structure and network structure are important for semantic vi-

sualization. Another important aspect is how documents are represented in semantic

visualization. Similar to LDA, PLSV represents each document as a bag of word

counts and relies on multinomial distribution to compute the likelihood of text data.

Multinomial modeling is known that it cannot model word absences and it is also

sensitive to document lengths [101].

Spherical Representation. The above-mentioned issues of word count rep-

resentation can be addressed by representing documents as unit vectors (i.e., L2-

normalized vectors) which lie on a unit hypersphere. In this spherical space, rela-

tionships between documents are measured as cosine similarity ∈ [0, 1], which is

the angular distance between two directional unit vectors. Firstly, two documents

would have higher cosine similarity, not only if some words in common are present,

but also if some other words in common are absent. Secondly, the normalization of
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all documents to unit vectors effectively neutralizes the impact of document lengths.

Moreover, there is indicative evidence from the literature that a spherical approach

will be promising in terms of dimensionality reduction. For instance, the spheri-

cal topic model SAM [101] performs significantly better than the multinomial topic

model LDA [14], when used as a dimensionality reduction technique. Therefore, in

Chapter 5, we propose a semantic visualization model for documents with spherical

representation.

In our model, documents and topics are represented as L2-normalized vectors

which lie on a unit hypersphere. For each document, its vector is drawn from a von

Mises-Fisher (vMF) distribution [84] with the mean equal to the average of topic

vectors weighted by the document’s topic distribution. Topic distribution of a doc-

ument is derived from its distances to topics in the visualization space. To combine

these, we propose a generative model which implies a mapping from visualization

space to topic space to original data space. The model is called SSE, which stands

for Spherical Semantic Embedding. We estimate the model parameters based on

variational inference and validate SSE through experiments on publicly available

real-life datasets, showing significant gains in visualization quality and topic inter-

pretability.

Bag of Word Vectors. Another type of document representation we are looking at

is the bag of word vectors. Word embedding models such as Word2Vec [88] and

GloVe [99] learn for each word a vector in an embedding space. They are usually

trained from a very large corpora (e.g. Wikipedia or Google News) to derive quality

word vectors which encode conceptual similarity of words. For topic modeling, it

infers topics based on the co-occurrence of words in the documents. Therefore, it

may not perform well for short texts due to the lack of word co-occurrences. Word

vectors can be used to alleviate the problem by providing auxiliary information

about word similarities. It has been proved that by modeling word vectors, topic

modeling can work well with corpus having sparsity problem [37, 58, 93].

In Chapter 6, we address the problem of semantic visualization for short texts.
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We present a method, called Gaussian Semantic Visualization or GaussianSV, as-

suming that each topic is characterized by a Gaussian distribution on the word em-

bedding space. Words in a document are then generated by a mixture of these Gaus-

sian distributions weighted by the document’s topic distribution. The experiments

show that GaussianSV outperforms pipelined baselines that derive topic models and

visualization coordinates as disjoint steps, as well as semantic visualization base-

lines that do not consider word vectors.

1.2.3 Applications of Semantic Visualization

Semantic visualization focuses on dimensionality reduction aspect of visualization

which aims to represent documents as points on a 2D/3D scatterplot. This itself

is an application where we can see document similarities based on the distances

among them. In this section, we present other applications of semantic visualization

for single document visualization and document collection visualization. Single

document visualization is mostly used to visualize content of a single document

for getting an overview. Meanwhile, document collection visualization focuses on

discovering and visualizing patterns such as similarities among documents. Below

we give an overview of these applications of semantic visualization.

Document Collection Visualization. We build a visualization system, called SemVis,

for interactive topical analysis of a document collection. The core of this system is

the semantic visualization model which is used to discover topics and learn an em-

bedding of documents in a 2D/3D visualization space. In Chapter 7, we illustrate

how SemVis could be used to navigate a text corpus interactively and topically via

browsing and searching.

Single Document Visualization. There are many methods which use different

kinds of visualization form for visualizing a document. Here, we focus on word

clouds visualization. Word clouds display a subset of words within a document, by

assigning greater visual prominence to more important words. The importance of

words is usually derived by their frequency in the document.
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In this work, we seek effective visual comparison of documents via word clouds.

Ideally, documents with similar contents have word clouds of similar appearances.

Traditional approaches fall short of this ideal, as word clouds of different docu-

ments are generated independently using a layout algorithm [106, 121]. Two doc-

uments may feature similar words that are placed in different colors and positions

within their respective word clouds, placing a burden on the viewer in corroborating

their similarities. To overcome these issues, we propose a technique called WORD

FLOCK that integrates two levels of “synchronization” principles for word clouds:

similar documents share similar word clouds, and related words of the same latent

aspects are displayed similarly. This work is presented in detail in Chapter 8.

1.3 Contributions

While visualization and topic modeling are, separately, well-studied problems, the

interface between the two, semantic visualization, is a relatively new problem, with

very few previous work. In summary, this thesis makes the following main contri-

butions.

1. Modeling Document Relationship:

(a) Modeling Neighborhood Structure: We propose incorporating neighbor-

hood structure in semantic visualization. In this respect, we propose a

probabilistic model SEMAFORE, with two integrated components. One

is a kernelized semantic visualization model, enabling the substitution

of the kernel functions that relate visualization coordinates to topic dis-

tributions (see Section 3.2.2). The other is a neighborhood graph reg-

ularization framework for semantic visualization as described in Sec-

tion 3.3.1.

This work was published in AAAI Conference on Artificial Intelligence

(AAAI) in 2014 and earned a honorable mention for outstanding paper

award [72]. The extension of this work was published in the award track
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of Journal of Artificial Intelligence Research (JAIR) in 2016 [75].

(b) Modeling Network Structure: We propose a semantic visualization model

called PLANE for embedding a document network. Our novelty arises

from the holistic approach to topic-based embedding of document net-

works. In comparison, previous works, reviewed in Section 4.1, have

attempted this as separate segments, namely: embedding of documents,

embedding of networks, or topic modeling, but have not recognized the

embedding a document network as a distinct problem to be addressed in

its own entirety. This work was published in IEEE International Con-

ference on Data Mining (ICDM) in 2014 [73].

2. Modeling Document Representation:

(a) Modeling Spherical Representation: We propose a generative model

called SSE, which stands for Spherical Semantic Embedding to embed

documents with spherical representation. To the best of our knowledge,

we are the first to address semantic visualization for spherical repre-

sentation. This work was published in Proceedings of the 20th ACM

SIGKDD International Conference on Knowledge Discovery and Data

Mining (KDD) in 2014 [74].

(b) Modeling Bag of Word Vectors: As far as we are aware, we are the

first to propose semantic visualization for short texts. We design a novel

semantic visualization model that leverages word vectors. Our model,

called Gaussian Semantic Visualization or GaussianSV, assumes that

each topic is characterized by a Gaussian distribution on the word em-

bedding space. This work has been accepted for publication in The 26th

International Joint Conference on Artificial Intelligence (IJCAI) in 2017

[77].

3. Application of Semantic Visualization:

(a) Document Collection Visualization: We build a semantic visualization
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system, called SemVis for interactive topical analysis. This is a demon-

strable system that is built on, and is generically compatible with PLSV

[62], SEMAFORE (Chapter 3), and SSE (Chapter 5). SemVis can be

used to navigate a text corpus interactively and topically via browsing

and searching.

(b) Single Document Visualization: We propose WORD FLOCK which is

the first to integrate two levels of “synchronization” principles for word

clouds: similar documents share similar word clouds, and related words

of the same latent aspects are displayed similarly. WORD FLOCK is

novel in employing latent variable analysis through joint usage of em-

bedding (synchronized positioning) and latent aspect modeling (color-

ing) among words of similar concepts. This work was published in Pro-

ceedings of the 25th International Joint Conference on Artificial Intelli-

gence (IJCAI) in 2016 [76].
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Chapter 2

Related Work

This chapter covers existing research related to document visualization problem.

The content is organized around the taxonomy shown in Figure 2.1. We divide doc-

ument visualization methods into two categories. The first category pays attention

to visualization of a document collection, which aims to display relationship pat-

terns among documents. Meanwhile, the second category focuses on visualization

of a single document in order to give an overview of the document content.

For document collection visualization, there is recently greater attention to ap-

proaches using topic modeling. Topic modeling is useful to discover abstract topics

in a collection of documents which can be used to enrich the visualization of doc-

uments with semantic information. From dimensionality reduction view, classic

visualization methods that are not based on topic modeling usually reduce the di-

mension directly from data space to visualization space. Meanwhile, methods based

on topic modeling introduce an intermediate topic space to reveal semantic relation-

ship among documents and then preserve it in the visualization space. Next sections

give an overview of these visualization methods.

For single document visualization, it can be divided further into two main cat-

egories which are independent visualization and coordinated visualization. Inde-

pendent visualization methods generate independent visualizations for documents

(i.e., each document will be visualized independently of others). Coordinated vi-
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Figure 2.1: Taxonomy for Document Visualization Methods

sualization methods, on the other hand, aim to coordinate visual attributes across

the visualizations of different documents. Through coordination, two similar doc-

uments will have similar visualizations, which is useful for visual comparisons of

documents.

2.1 Document Collection Visualization

In this section, we will give a review of two main research directions in document

collection visualization. Research in the first direction focuses on visualizing the

document similarities. Meanwhile, the other research direction has a different ob-

jective which is to visualize the content of the corpus from different aspects and at

different detail levels.

2.1.1 Document Similarities Visualization

The visualization methods reviewed in this section are closely related to us. They

focus on visualizing the document similarities by displaying documents as points in

2D/3D visualization space (see Figure 2.2 for examples). The distances among them

encode the similarities. There are two main approaches to this problem. The first is

to rely on dimensionality reduction methods to project or embed the documents into
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the visualization space. The second is to use topic modeling as an intermediate step

to learn the representation of documents in the topic space and then embed them

into the visualization space. We review these two approaches in the next sections.

Projection and Embedding Approaches

One way to perform visualization is by using a generic dimensionality reduction

technique. Such techniques come in several flavors, depending on the objective.

Principal component analysis (PCA) [65] identifies the components that explain

most of the variance in the data. Related to PCA is singular value decomposition

(SVD) [48]. Comparatively, independent component analysis (ICA) [32] identifies

the components that are independent of one another, whereas linear discriminant

analysis (Fisher’s LDA) [44] identifies the components that most discriminate be-

tween known class labels. Being generic, these techniques are more frequently

applied to feature extraction, as they are not optimized for visualization. They focus

more on the properties of the components (e.g., orthogonality, independence) rather

than on the intrinsic relationship among data instances. Furthermore, as they are

based on linear projections, they may not capture non-linearities in the data well.

Another category of techniques, which is more directly related to visualization,

is the embedding approach. It aims to preserve the high-dimensional similarities or

differences in the low-dimensional embedding. One pioneering such work is mul-

tidimensional scaling (MDS) [70]. Given a set of pairwise distances δij between

data points i and j, MDS determines coordinates xi and xj respectively, such that

the embedded visualization distance ||xi − xj|| approximates δij as much as pos-

sible. For MDS, the distance to be preserved δij is frequently the linear distance,

measuring the distance along a straight line between two points in the input space.

Instead of this linear distance, Isomap [115] seeks to preserve the geodesic distance,

by finding shortest paths in a graph with edges connecting neighboring data points.

LLE [104] seeks to preserve linear distances, but only among the neighboring points

and avoiding the need to estimate pairwise distances between widely separated data
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points.

Recently there are also works applying a similar concept to embedding but using

probabilistic modeling, such as GTM [12], PE [61], SNE [55] and t-SNE [117]. Yet

others are based on semi-definite programming [107, 108]. Alternatively, several

embedding techniques do not aim to preserve relationship among data instances,

but rather other properties such as local minima [67]. Importantly, all these tech-

niques are not optimized for semantic visualization, as they do not model topics at

all. The coordinates do not reflect any semantic meaning, other than reflecting the

optimization objective. We will give an overview of GTM, SNE, t-SNE and PE in

next paragraphs.

GTM takes as input a set of data coordinates in a high dimensional space and

assumes a parameterized function mapping from the embedding space to the origi-

nal data space. GTM adds a Gaussian noise model to the mapping and estimate the

parameters of the mapping function using the EM algorithm. SNE and t-SNE, on

the other hand, take as input the pairwise distances between data points and convert

these distances into a set of conditional probabilities that represent similarities. In

the embedding space, we can also compute a similar set of conditional probabilities

based on the distances among embedded points. SNE, t-SNE aim to preserve the

similarities among data points in the embedding space by minimizing the sum of

Kullback-Leibler divergences between these two set of conditional probabilities.

Different to these methods, PE considers a different kind of embedding prob-

lem for a set of points (or objects) X = x1, . . . , xN together with a set of classes

C = c1, . . . , cK . PE takes as input conditional probabilities p(ck|xn) associating

each object xn with each class ck and seeks to embed both objects and classes in

a low-dimensional space such that the distance between object xn and class ck is

consistent with the probability p(ck|xn). We define Y = {yn}Nn=1 as embedding

coordinates of objects and φ = {φk}Kk=1 as coordinates of classes. Based on embed-

ding coordinates, PE computes the conditional probabilities p(ck|yn) for each object

as in Equation 2.1. The objective of PE is then minimizing the sum of Kullback-
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Leibler divergences for each object:
∑N

n=1KL(p(ck|xn)||p(ck|yn)).

p(ck|yn) =
p(ck) exp(−1

2
‖ yn − φk ‖2)∑K

l=1 p(cl) exp(−1
2
‖ yn − φl ‖2)

(2.1)

Topic Modeling-based Approaches

Topic model involves statistical modeling of text (documents and words) in order to

discover some abstract concepts or “topics” that occur in a corpus. Beginning with

latent semantic indexing [41], topic model evolves into the modern probabilistic

treatments, such as Probabilistic Latent Semantic Analysis (PLSA) [57] and Latent

Dirichlet Allocation (LDA) [14]. Intuitively, a topic captures a collection of words

that tend to co-occur because they describe the same concept. This has the appeal of

producing highly interpretable statistical models that let users make semantic sense

of the corpus.

Topic model’s ability to model semantics in documents makes it a new way to

explore and understand text document collections. Meanwhile, a visualization with

a rich user interface supports users to conduct discovery and exploratory tasks effec-

tively. Therefore, it is interesting to combine topic model and visualization to take

advantage of their strengths. There have been many research works in this direction

and they are diverse in terms of which visualization aspects they are focusing on.

Some of them focus on effective visualization forms for visualization and build-

ing large systems with rich user interface for visual exploration using topic model

[40, 50, 123]. A few of them focus on visualizing a topic model itself (i.e. visualiz-

ing which topics are important in a corpus, or which words are important in a topic)

[23, 29] and may provide ways to interact with the underlying topic model for the

tuning purposes [28, 59].

Another line of work in this direction, which is closely related to us, focus on

the dimensionality reduction aspect of visualization as well as statistical modeling.

Here, we focus on methods which visualize documents in a Euclidean space where

each document is represented as a point in a 2D/3D scatterplot. There are two

approaches as follows.
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a. PE (LDA) b. PLSV

Figure 2.2: Scatterplot Visualizations by PE (LDA) and PLSV forReuters8 dataset

Pipeline Approach. We first conduct topic modeling using a topic model such as

Latent Dirichlet Allocation (LDA) [14] and then visualize documents’ topic dis-

tributions using a visualization method such as PE [61] or a Self-Organizing Map

(SOM) [69] as in LDA-SOM [89]. These methods include two separate steps that

optimize different objective functions. Therefore, errors from previous step may

be accumulated and cannot be fixed in the current step. LDA-SOM separately em-

beds the documents’ topic distributions learned from LDA on a self-organizing map

which is a different visualization space than the Euclidean space that we are in-

terested in. Below we give an overview for PE which is in short for Parametric

Embedding. In Figure 2.2a, we show an example visualization by PE (LDA) for

Reuters8 dataset.

PE is a method to embed class conditional probabilities in a Euclidean space.

When applying with LDA in a pipeline approach, PE takes topic proportions Λ as

input and for each topic z and document n, it finds their coordinates φz and xn

in the visualization space. To find coordinates, it minimize the following sum of

Kullback-Leibler divergences which aim to preserve the input probabilities:

N∑
n=1

Z∑
z=1

P(z|xn,Λ)log
P(z|xn,Λ)

P(z|xn,Φ)
(2.2)

where P(z|xn,Φ) is defined as:

θn,z = P(z|xn,Φ) =
exp(−1

2
||xn − φz||2)∑Z

z′=1 exp(−1
2
||xn − φz′||2)

(2.3)

Joint Approach. In this approach, we jointly model topics and visualization using
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a unique objective function. There are only a few related works so far that seek to

address the semantic visualization task directly. The closest previous work that does

both topic modeling and visualization in a single generative process is Probabilistic

Latent Semantic Visualization (PLSV) [62], which also shows that a joint approach

outperforms a separate approach. We briefly review PLSV, whose graphical model

is shown in Figure 2.3. The generative process of PLSV is as follows. For each

topic z, we draw its word distribution βz from a Dirichlet with parameter ζ , as well

as its coordinate φz from Normal distribution with mean 0 and variance ϕ−1. In

turn, for each document dn, we draw its coordinate from Normal with mean 0 and

variance γ−1. To generate each of the Mn words in dn, we draw a topic z based on

Equation 2.3, and then draw a word from the selected topic’s word distribution βz.

Figure 2.2b shows a visualization by PLSV for Reuters8 dataset.

Similar to PLSV, we build our model upon the foundation of the topic model-

ing technique Probabilistic Latent Semantic Analysis (PLSA) [57] by incorporating

visualization coordinates. The difference is that we also seek to model document

relationships and document representations together with semantic visualization.

Document relationships can be represented by neighborhood structure derived by

distances among documents or real networks of documents such as citation net-

works. For document representations, we investigate spherical representation and

bag of word vectors which are different from tradition word count representation in

terms of their expressiveness.
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Figure 2.4: A visualization by ThemeRiver for Associated Press news wire stores
from July and early August 1990. (The figure is taken from [52])

2.1.2 Corpus Content Visualization

Methods for visualizing corpus content have a common objective that is to give an

overview of the corpus by revealing its topics or themes. Some methods also provide

ways to track how topics are changing and evolving over time, which is useful for

detecting hot topics and discussion trends. Research in this direction often focuses

on designing appropriate visualization forms depending on which content informa-

tion we want to show. For example, for visualizing term distribution information,

TileBars [53] displays each document as a rectangle bar. Depending on the query

terms, the rectangle bars for retrieved documents will show the relative frequency

of the query terms, and how the terms are distributed in a document or across all

documents. For visualizing how topics are changing in the corpus, ThemeRiver [52]

makes use of river visualization form as shown in Figure 2.4. Each layer represents

a theme and the vertical width indicate the strength of the theme at any point in

time.

Recently, a large body of methods relying on topic modeling for building com-

plex topic analysis systems. They focus on building effective visualization forms

and providing rich user interface for visual exploration using topic model [36, 40,

50, 123]. TextFlow [36] uses a river-like visualization form for detecting the topic
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Figure 2.5: A graph of topics by Tiara for over 10,000 research articles crawled
from faculty pages at CalIT2. (The figure is taken from [50])

evolution trend, the critical event, and the keyword correlation. ParallelTopics [40]

uses a parallel coordinate visualization form to present the topic distributions of

documents. TopicNets [50] presents topics in a corpus as a graph. In this approach,

documents and topics are treated as connected nodes of different types in an interac-

tive graph. It uses the topic similarity to determine node positions and create visual

clusters of documents that are similar topically. Figure 2.5 showcases a visualiza-

tion by TopicNets for over 10,000 research articles crawled from faculty pages at

CalIT2. Tiara [123] provides a visual summary of documents’ topics over time. It

uses different layers to represent topics as shown in Figure 2.6. Each layer repre-

sents a topic described by a set of top words and the height of the layer indicates the

strength of that topic.

There are a few methods focus on visualizing a topic model itself (i.e. visualiz-

ing which topics are important in a corpus, or which words are important in a topic)

[23, 29] and may provide ways to interact with the underlying topic model for the

tuning purposes [28, 59].
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Figure 2.6: A visualization by Tiara for a dataset of 8000 emails. (The figure is
taken from [123])

2.2 Single Document Visualization

The objective of single document visualization is to visualize content of the doc-

ument using some forms of visualization (e.g., word clouds, graph, tree, ...) for

overview. Most of the methods generate the visualization for each document inde-

pendently and there is no consistent view across the documents. This makes the

comparison between multiple documents based on their visualizations inefficient.

To overcome this problem, some methods propose ways for coordinating the visual

attributes across the visualizations. The purpose of coordinating is to make a more

consistent view across the documents for easier visual comparison. We will review

these methods in the next sections.

2.2.1 Independent Visualization of Document Content

Independent visualization methods generate visualization for every single document

independently. They focus on giving an overview of the document content and

do not generate a consistent view for visualizations across documents. Therefore,

it is difficult for visual comparison to discover patterns among documents. Some

popular methods falling into this category are Tag Clouds [120], Word Clouds (such
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Figure 2.7: An example word cloud generated by Wordle

as those generated by Wordle [121]), TextArc [96], WordTree [122], and Phrase

Nets [119].

Tag Clouds, Word Clouds, and TextArc display prominent words in the docu-

ment based on the word frequency. A word with high frequency is likely an im-

portant word. Therefore displaying these important words can give a first glance of

what document is about. In Wordle [121], a document is visualized as a cloud of

prominent or important words and each word is displayed according to a number

of visual attributes. Figure 2.7 shows an example word cloud generated by Wor-

dle. There are various visual variables within a word cloud such as font size, color,

position, and orientation. To express different important weight of words, some vi-

sual attributes such as font size and colors are used. For example, more important

words will have bigger font size and may be assigned more contrast colors. For

the word positions, Wordle uses spiral algorithm (Algorithm 1) which works in a

greedy and incremental manner to layout the words. Basically, the algorithm has

two main steps. For each word in a document, first we will initialize the word with

a position (line 3) and then move the word along a spiral path until there is no in-

tersection with previous displayed words (line 4 & 5). We refer the reader to [110]

for a thorough discussion on how to initialize the word positions as well as how to

check the intersection efficiently. For the word orientation, it is usually random and

sometimes it is used to resolve the word intersection in the layout algorithm.

Different to previous methods, WordTree and Phrase Nets, while visualizing
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Algorithm 1 Spiral Algorithm
Require: Mn words that are to be displayed in cloud Cn for each document dn, and

optionally initial positions pn of Mn words.
Ensure: For each document dn, positions pn of Mn words in the word cloud of dn.

1: for all document dn, n ∈ {1, . . . , N} do
2: for all words w ∈ {w1, . . . , wMn} do
3: Initialize pw (e.g. sample from Gaussian) if initial position unsupplied
4: while pw intersects any previous words do
5: Move pw one step along a spiral path
6: end while
7: end for
8: end for

on Many Eyes, for instance, we would not have guessed at the 
popularity of religious analyses. Given the broad demand for text 
visualizations, however, it seems like a fruitful area of study. 
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Fig 10: Word Tree showing all occurrences of “I have a dream” in Martin Luther King’s historical speech. 
 

 

 

 

 

 

 

Fig 9. Word tree of the King James Bible showing all occurrences of “love the.” 

 

1 � � �WATTENBERG AND VIÉGAS: THE WORD TREE, AN INTERACTIVE VISUAL CONCORDANCE

Figure 2.8: An example of word tree rooted at the phrase “i have a dream” generated
by WordTree for Martin Luther Kings historical speech. (The figure is taken from
[122])

word frequency, they also take into account the word context. To display the context,

WordTree use a tree rooted at a word or a phrase to show all sentences that contains

that word or phrase. As an example, Figure 2.8 is the word tree rooted at the phrase

“i have a dream” drawn by WordTree for Martin Luther Kings historical speech.

Phrase Nets, on the other hand, use a graph whose nodes are words and whose edges

indicate that there is a context relationship between two words. The relationship is

characterized by a “phrase” pattern such as “Word A and Word B” or “Word A

at Word B” which can be found using either simple pattern matching or syntactic

analysis. Figure 2.9 shows phrase nets generated by the method when the user

selects the pattern “...A and B...” for James Joyces Portrait of the Artist as a Young

Man.

26



Figure 2.9: An example of phrase nets generated when the user selects the pattern
“...A and B...” for James Joyces Portrait of the Artist as a Young Man. (The figure
is taken from [119])

2.2.2 Coordinated Visualization for Visual Comparison of Doc-

uments

Coordinated visualization methods, while visualizing the document content, also

aim to coordinate visual attributes across documents to make sure that similar doc-

uments will have similar visualizations. Therefore, based on the visualizations, we

can perform visual comparison of documents efficiently. Some of these methods

are Word Storms [22], Docuburst [31] and Gist Icons [38]. Each of these focuses

on different types of visualization forms.

Word Storms [22] advances word clouds for visual comparison of documents by

introducing the coordination of similarity principle. Word clouds are coordinated

so that similar documents will have similar clouds, and dissimilar documents will

have visually different clouds. For example, words that appear in multiple clouds

will have similar font, similar colors and approximately the same position across

the clouds. Based on this, by quickly scanning the clouds, the viewer can visually
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Figure 2.10: A word storm contains three grants from Complexity Programme in
EPSRC Scientific Programs. Each cloud represents a grant abstract. (The figure is
taken from [22])

check which clouds do not contain shared words and assess the document similarity.

Figure 2.10 shows a word storm containing three grants from the Complexity Pro-

gramme in EPSRC Scientific Programs. There is a similarity between these three

clouds because they represent for grant abstracts from the same programme.

To coordinate the layout of different clouds, Word Storms uses an iterative al-

gorithm as shown in Algorithm 2. Here a word cloud Cn for document dn is a tuple

Cn = (Wn, {pnw},

{lnw}, {snw}), where Wn is the set of words that are to be displayed in cloud Cn,

and for any word w ∈ Wn, define pnw = (xnw, ynw) as the position of w in the cloud

Cn, lnw as the color, and snw as the font size. pn = {pnw|w ∈ Wn} is the set of

all word positions in Cn and Vw is the set of clouds that contain word w. The idea

of the iterative layout algorithm is that first we call the spiral algorithm (Algorithm

1) with the word positions are set randomly. Subsequently, for each shared word,

derive a new desired position by averaging the previous positions of the word in the

different clouds, i.e., the new desired position for word w is p′w ← 1
|Vw|
∑

vj∈Vw pjw.

This average ensures that word w has the same position across all clouds vj ∈ Vw.

After having new desired positions, the spiral algorithm is called again to resolve

any intersection among words. This process is repeated until we reach a terminate

condition.

Other approaches for document comparison deviate from the traditional word

cloud format, e.g., graph visualization [27], or topographic map [46]. Some show
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Algorithm 2 Word Storms: Iterative Layout Algorithm
Require: Storm vn = (Wn, {lnw}, {siw}) without positions
Ensure: Word storm {v1, . . . , vN} with positions.

1: for all document dn, n ∈ {1, . . . , N} do
2: pn ← SpiralAlgorithm(Wn)
3: end for
4: while Not Converged && count < Max Iteration do
5: for all document dn, n ∈ {1, . . . , N} do
6: p′nw ← 1

|Vw|
∑

vj∈Vw pjw,∀w ∈ Wn

7: pn ← SpiralAlgorithm(Wn, pn)
8: end for
9: count = count + 1

10: end while

comparisons in a modified format, e.g., intersecting or common words [33, 81],

different topics [95] or corpora [98, 103].

In the work presented in Chapter 8, we build a method called Word Flock for

visual comparison of documents using word clouds. Different to Word Storms, our

work models latent aspects of words and increases the coherence of word clouds

by displaying related words with similar colors and positions. Word similarity was

previously considered only in the context of an individual word cloud [11, 51, 68],

and based on similarity measures such as cosine [5, 35, 124]. In contrast, we model

the coherence of synchronized (rather than individual) word clouds for comparison

of documents. Moreover, we employ latent variable analysis to learn the probability

distribution over k latent aspects (rather than similarity).

Docuburst [31] shows the word lexical hyponymy relationship (i.e., IS-A rela-

tion) which are derived from a lexical database such as WordNet [43]. The word lex-

ical relationships are displayed by a radial tree layout. Given a document, Docuburst

draws a radial tree rooted at a word of interest. For example, Figure 2.11 shows a

visualization by Docuburst for a science textbook rooted at “thought”. In this radial

tree, a node is a synset. The angular width of a node is proportional to the occurrence

count of the document words in the subtree rooted at that node. By using radial tree

layout and sharing a lexical database, Docuburst can generate visualizations which

have a consistent view across documents for document comparison.
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Figure 2.11: DocuBurst of a science textbook rooted at “thought”. Node hue dis-
tinguishes the WordNet synsets containing “thought”. (The figure is taken from
[31])

Gist Icons [38] displays the histograms of words inside a document in a circular

pattern. The words are ordered to form a list of loosely defined concepts. The

shape of the histograms will show concepts described in the document and we can

compare documents by comparing these shapes. DocuBurst and Gist Icons both

provide word clustering into higher concepts (synsets). However, Gist Icons are

only one level deep while DocuBurst can have as many levels as the depth of the

synset tree.
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Part I

Modeling Document Relationship
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Chapter 3

Modeling Neighborhood Structure

In this chapter, we propose a semantic visualization model that incorporates neigh-

borhood structure of documents. Different to previous approaches, our model aims

at generating a visualization that preserves both the semantics learned from topic

modeling and the local neighborhood structure on the document manifold. We

achieve this by jointly modeling topics and visualization on the intrinsic document

manifold, modeled using a neighborhood graph. Each document has both a topic

distribution and visualization coordinate. Specifically, we propose an unsupervised

probabilistic model, called SEMAFORE, which aims to preserve the manifold in

the lower-dimensional spaces through a neighborhood regularization framework de-

signed for the semantic visualization task. To validate the efficacy of SEMAFORE,

our comprehensive experiments on a number of real-life text datasets of news arti-

cles and Web pages show that the proposed methods outperform the state-of-the-art

baselines on objective evaluation metrics.

3.1 Introduction

We focus on the task of semantic visualization which is formulated in Section 1.1.

The joint approach was attempted by PLSV [62], which derives the latent param-

eters by maximizing the likelihood of observing the documents. This objective

is known as global consistency, which is concerned with the “error” between the
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model and the observation.

Crucially, PLSV has not cared to meet the local consistency objective [128],

which is concerned with preserving the observed proximity or distances between

documents. This shortcoming is related to PLSVs assumption that the document

space is Euclidean (a geometrically flat space), by sampling documents coordinates

independently in a Euclidean space. The local consistency objective arises naturally

from the assumption that the intrinsic geometry of the data is a low-rank, non-linear

manifold within the high-dimensional space. This manifold assumption is well-

accepted in the machine learning community [71], and finds application in both

supervised and unsupervised learning [9, 128, 129]. Recently, there is a prepon-

derance of evidence that manifold assumption also applies to text data in particular

[17, 18, 60]. We therefore propose to incorporate this manifold assumption into a

new unsupervised, semantic visualization model by using a neighborhood regular-

ization framework.

Regularization as a technique to realize this assumption has a long history [10].

The specific form of the regularization function varies among applications. The

study of this assumption for unsupervised topic models begins with LapPLSI [17],

which introduces regularization to PLSA [57], by minimizing the Euclidean dis-

tance between neighboring documents’ topic distributions. Follow-up work intro-

duce other distance functions [18, 125]. While these previous work focus on main-

taining proximity of similar documents, DTM [60] adds a new criterion to also

maintain the distance among different documents. Our work is different in that we

also need to contend with the visualization aspects, and not just topic modeling.

3.1.1 Overview

We propose an unsupervised probabilistic model that jointly derives topic distri-

butions and visualization coordinates on the intrinsic geometry of the data. Our

proposed model is called SEMAFORE, which stands for SEmantic visualization with

MAniFOld REgularization. We build a neighborhood regularization framework into
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a semantic visualization model. The framework involves new issues to resolve, in-

cluding the regularization function, and the space in which regularization should

take place.

The model is evaluated on a series of real-life, publicly available datasets, which

are also benchmark datasets used in document classification task. An advantage of

a statistical method, such as ours, is that it is not dependent on a specific language.

Two of the datasets are in English, and one is in Brazilian Portuguese. While our

model is unsupervised (class label is neither required nor used in learning), to objec-

tively quantify the visualization quality, we leverage on the class label information.

It is a common assumption that documents of the same class are expected to be

neighbors on the original space [10, 128, 129], which suggests that they should also

be close on the visualization space. We investigate the effectiveness of SEMAFORE

in placing documents of the same class nearby on the visualization space, and sys-

tematically compare it to existing baselines without one or more of our properties,

namely: joint modeling of topic and visualization, or neighborhood regularization.

3.1.2 Contributions

While visualization and topic modeling are, separately, well-studied problems, the

interface between the two, semantic visualization, is a relatively new problem, with

very few previous work. In this work, we make the following contributions.

• We propose incorporating neighborhood structure in semantic visualization.

In this respect, we propose a probabilistic model SEMAFORE, with two in-

tegrated components. One is a kernelized semantic visualization model, en-

abling the substitution of the kernel functions that relate visualization coor-

dinates to topic distributions (see Section 3.2.2). The other is a neighbor-

hood graph regularization framework for semantic visualization as described

in Section 3.3.1.

• Realizing the neighborhood graph regularization involves an exploration of

how to incorporate the appropriate forms of the neighborhood structure. In
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this respect, we investigate the effects of neighborhood graph construction

techniques such as k-nearest neighbors (k-NN), ε-ball, and disjoint minimum

spanning trees (DMST), as well as different edge weight estimations such as

heat-kernel (see Section 3.3.2) in the context of semantic visualization.

• In Section 3.4, we describe the requisite learning algorithms based on maxi-

mum a posteriori (MAP) estimation using expectation-maximization (EM), in

order to fit the parameters for the various regularization functions and kernels

that we propose.

• Our final contribution is the evaluation of SEMAFORE’s effectiveness on a

series of real-life, public datasets described in Section 3.5, which shows that

SEMAFORE outperforms existing baselines on a well-established and objec-

tive visualization metric.

3.2 Semantic Visualization

Our focus in this paper is on the effects of the neighborhood graph structure on

the semantic visualization task. We figure that the clearest way to showcase these

effects is to design a neighborhood preservation framework over and above an exist-

ing generative process, such as PLSV [62], which we will review in Section 3.2.1.

In Section 3.2.2, we describe an innovation over the semantic visualization model,

which is an abstraction of the mapping between the topic space and the visualiza-

tion space using radial basis function (RBF) kernels. This allows the exploration of

various kernels, of which we identify two for further exploration. In the following

Section 3.3, we discuss how to incorporate neighborhood structure into semantic

visualization.

3.2.1 Generative Process

We now describe the generative process of documents based on both topics and vi-

sualization coordinates. Below we review PLSV whose graphical model is shown in
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Figure 2.3. Our eventual complete model is a generalization of this model, involv-

ing enhancements through kernelization (Section 3.2.2) and neighborhood structure

preservation (Section 3.3).

The generative process is as follows:

1. For each topic z = 1, . . . , Z:

(a) Draw z’s word distribution: βz ∼ Dirichlet(ζ)

(b) Draw z’s coordinate: φz ∼ Normal(0, ϕ−1I)

2. For each document dn, where n = 1, . . . , N :

(a) Draw dn’s coordinate: xn ∼ Normal(0, γ−1I)

(b) For each word wnm ∈ dn:

i. Draw a topic: z ∼ Multi({P(z|xn,Φ)}Zz=1)

ii. Draw a word: wnm ∼ Multi(βz)

Here, ζ is a Dirichlet prior, I is the identity matrix, ϕ and γ control the variance

of the Normal distributions. The parameters χ = {xn}Nn=1, Φ = {φz}Zz=1, β =

{βz}Zz=1, collectively denoted as Ψ = 〈χ,Φ,β〉, are learned from documents D

based on maximum a posteriori estimation. The log likelihood function is shown in

Equation 3.1.

L(Ψ|D) =
N∑
n=1

Mn∑
m=1

log
Z∑
z=1

P(z|xn,Φ)P(wnm|βz) (3.1)

We reiterate that our focus here is on incorporating neighborhood graph struc-

ture into semantic visualization. By building a neighborhood graph regularization

framework into an existing generative process, i.e., PLSV, we can clearly observe

that any improvement over PLSV arises from the neighborhood graph regulariza-

tion. In this sense, our work is in the tradition of introducing neighborhood graph

regularization to probabilistic topic modeling [17, 18, 60], where the contributions

relate to the neighborhood graph regularization, rather than the generative process.

That said, there is one significant difference to PLSV, which is our flexibility in

allowing various kernel functions, which we will discuss next.
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Figure 3.1: Topic distribution is expressed as a function of visualization coordinates
using Radial Basis Function (RBF) network.

3.2.2 RBF Kernels

In the Step 2(b)i of the above generative process, the topic z of a word is drawn

from the distribution {P(z|xn,Φ)}Zz=1. This distribution relates the coordinates of

topics in the visualization space Φ = {φz}Zz=1 and the coordinate xn of a document

dn with the document’s topic distribution {P(z|dn)}Zz=1.

This relationship can be formulated as a mapping problem where we want to find

a function G which maps a point in visualization space to a point in the topic space.

However, the form of G cannot be known exactly because both visualization space

and topic space are latent spaces and G may be different across different domains.

Therefore, to compute the topic distributions, we need a way to approximate G.

To build a function approximation of the unknown function G, we use the ab-

straction of Radial Basis Function (RBF) neural networks [13] because feedforward

multilayered RBF neural networks with one hidden layer can serve as a univer-

sal approximator to arbitrary continuous functions [97]. This property provides

the confidence that the model would have the ability to approximate any existing

relationship between visualization space and topic space with arbitrary precision.

Unlike PLSV [62] that defined a specific mapping function, our approach gener-

alizes the semantic visualization model by defining the mapping problem in terms

of kernelization, which admits several mapping functions within the family of RBF

kernels.

In our context, Radial Basis Function [16] will relate coordinate variables based
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on distances which defines a kernel function Λ(||xn−φz||) in terms of how far a data

point (e.g., xn) is from a center (e.g., φz). The kernel function Λ may take on var-

ious forms, e.g., Gaussian, multi-quadric, inverse quadratic, polyharmonic spline.

To express P(z|dn) as a function of xn, we consider the normalized architecture of

RBF network, with three layers as shown in Figure 3.1. The input layer consists

of one input node (xn). The hidden layer consists of Z number of normalized RBF

activation functions. Each is centered at φz and computes Λ(||xn−φz ||)∑Z
z′=1 Λ(||xn−φz′ ||)

. The lin-

ear output layer consists of Z output nodes. Each output node yz(xn) corresponds

to P(z|dn), which is a linear combination of the RBF functions, as shown in Equa-

tion 3.2. Here, wz,z′ is the weight of influence of the RBF function of z′ on the

P(z|dn), with the constraint
∑Z

z′=1wz,z′ = 1.

P(z|dn) = yz(xn) =

∑Z
z′=1 wz,z′ · Λ(||xn − φz′ ||)∑Z

z′=1 Λ(||xn − φz′ ||)
(3.2)

While Equation 3.2 is the general form, to instantiate a specific mapping func-

tion, we need to determine both the assignment of wz,z′ and the form of the function

Λ. For wz,z′ , we will experiment with a special case wz,z′ = 1 when z = z′ and 0

otherwise.

For the kernel function Λ, one variation we consider is Gaussian, which yields

the function in Equation 3.3, where Φ refers to the collective set of φz’s. Note that

here we set variance of Gaussian to 1. However, its true value is not really important

because a different variance value just produces a re-scaled visualization with the

scaling factor equal to that variance.

P(z|dn)Gaussian = P(z|xn,Φ)Gaussian =
exp(−1

2
||xn − φz||2)∑Z

z′=1 exp(−1
2
||xn − φz′||2)

(3.3)

Another variation of Λ being considered is Student-t. This distribution is also

used by t-SNE [117] in the context of non-semantic, direct embedding to miti-

gate the effects of crowding. Due to mismatched dimensionalities, the points are

crunched together in the center of the visualization, which prevents gaps from form-

ing between the clusters. Therefore, we hypothesize that using Student-t as radial
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basis function, which yields the function in Equation 3.4, can help to improve the

performance of our model if crowding becomes an issue. Note that the Student-t

distribution with one degree of freedom yields a radial basis function having the

form similar to the inverse quadratic.

P(z|dn)Student−t = P(z|xn,Φ)Student−t =
(1 + ||xn − φz||2)−1∑Z
z′=1(1 + ||xn − φz′||2)−1

(3.4)

The Gaussian function (Equation 3.3) was also used previously in the baseline

PLSV [62] that we will compare to. Its inclusion helps to establish parity for com-

parative purposes, both to investigate the effectiveness of the alternative Student-t

kernel (described above), as well as that of the neighborhood regularization (de-

scribed in the next section).

3.3 Neighborhood Graph Regularization Framework

There are recent works [17, 18, 60] trying to preserve the local neighborhood struc-

ture when learning low-dimensional topic representations of documents. These

works assume that documents are sampled from a nonlinear low-dimensional sub-

space that are embedded in a high-dimensional space. Therefore, the local neigh-

borhood structure is important for revealing the hidden topics of documents and

should be preserved when learning topic representations of documents [3]. In the

generative process for semantic visualization described in Section 3.2, the document

parameters are sampled independently, and may not necessarily reflect the underly-

ing local neighborhood structure. We therefore seek to realize this assumption for

semantic visualization. In particular, we assume that when two documents di and

dj are close in the original space, then their parameters ψi and ψj of the low-rank

representation are similar as well. Coupled with the kernelized semantic visual-

ization model described in Section 3.2, the neighborhood preservation approach

described in this section constitutes our proposed model, SEMAFORE, which stands

for SEmantic visualization with MAniFOld REgularization.
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3.3.1 Neighborhood Regularization

The neighborhood structure can be represented by a neighborhood graph. Given a

set of data points in the Euclidean space, a neighborhood graph is constructed with

the input data points as vertices. By definition, edges are symmetric, i.e., ωij = ωji,

and weighted. The collection of edge weights are collectively denoted as Ω = {ωij}.

For the moment, we will assume that we have the neighborhood graph, and

address the issue of how this neighborhood graph may be incorporated into our

semantic visualization framework. In actuality, the neighborhood graph construc-

tion itself is an important component, whose construction is described in detail in

Section 3.3.2.

One effective means to incorporate a neighborhood structure into a learning

model is through a regularization framework [10]. This leads to a re-design of the

log-likelihood function in Equation 3.1 into a new regularized function L (Equa-

tion 3.5), where Ψ consists of the parameters (visualization coordinates and topic

distributions), and D and Ω are the documents and neighborhood structure.

L(Ψ|D,Ω) = L(Ψ|D) + λ · R(Ψ|Ω) (3.5)

The first component L is the log-likelihood function in Equation 3.1, which re-

flects the fit between the latent parameters Ψ and the observation D. The second

component R is a regularization function, which reflects the consistency between

the latent parameters Ψ of neighboring documents in the neighborhood structure

Ω. λ is the regularization parameter, commonly found in neighborhood based algo-

rithms [10, 17, 18], which controls the extent of regularization (we will experiment

with different λ’s in experiments).

Proposed Regularization Function

We now turn to the definition of theR function. The intuition is that the data points

that are close in the high-dimensional space, should also be close in their low-rank

representations, i.e., local consistency, also known as smoothness. One function
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that satisfies this isR+ in Equation 3.6. Here, F is a distance function that operates

on the low-rank space. Minimizing R+ leads to minimizing the distance F(ψi, ψj)

between neighbors (ωij = 1).

R+(Ψ|Ω) =
N∑

i,j=1;i 6=j

ωij · F(ψi, ψj) (3.6)

The above level of local consistency is still insufficient, because it does not reg-

ulate how non-neighbors (i.e., ωij = 0) behave. For instance, it does not prevent

non-neighbors from having similar low-rank representations. Another valid objec-

tive in visualization is to keep non-neighbors apart, which is satisfied by another

objective function R− in Equation 3.7. R− is minimized when two non-neighbors

di and dj (i.e., ωij = 0) are distant in their low-rank representations. The addition

of 1 to F is to prevent division-by-zero error.

R−(Ψ|Ω) =
N∑

i,j=1;i 6=j

1− ωij
F(ψi, ψj) + 1

(3.7)

We hypothesize that neither objective is effective on its own. A more complete

objective would capture the spirits of both keeping neighbors close, and keeping

non-neighbors apart. Therefore, we put Equation 3.6 and Equation 3.7 together

using summation and maximize the objective function as shown in Equation 3.8.

Note that the coefficient 1
2

in Equation 3.8 is for simplifying the formula of the

derivative ofR∗(Ψ|Ω).

R∗(Ψ|Ω) = −1

2
(R+(Ψ|Ω) +R−(Ψ|Ω)) (3.8)

Summation preserves the absolute magnitude of the distance, and helps to im-

prove the visualization task by keeping non-neighbors separated on a visualizable

Euclidean space. Taking the product is unsuitable, because it constrains the ratio

of distances between neighbors to distances between non-neighbors. This may re-

sult in the crowding effect, where many documents are clustered together, because

the relative ratio may be maintained, but the absolute distances on the visualization

space could be too small.

Other than the proposed regularization function above, it is also possible to con-
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Figure 3.2: Example of how the same topic distribution may have different visual-
ization coordinates. Any points on the red line have same topic distributions.

sider other regularization functions. For instance, we have also experimented with

modifying the regularization function adapted from Discriminative Topic Model

(DTM) [60], which addressed topic modeling but not semantic visualization. Note

that while in the original DTM formulation, the distance function F(ψi, ψj) op-

erates in the topic space, we adapt it for semantic visualization by redefining the

distance function F(ψi, ψj) so that it will operate in the visualization space instead.

This modified DTM formulation is shown to underperform the proposed regulariza-

tion function above [72].

Enforcing Neighborhood Structure: Visualization vs. Topic Space

We now turn to the definition of F(ψ1, ψ2). In neighborhood-based models [10,

17, 18], there is only one low-rank representative space. For semantic visualiza-

tion, there are two: topic and visualization spaces. We look into where and how to

enforce the neighborhood graph structure.

At first glance, they seem equivalent. After all, they are representations of the

same documents. However, this is not necessarily the case. Consider a simple

example of two topics z1 and z2 with visualization coordinates φ1 = (0, 0) and

φ2 = (2, 0) respectively. Meanwhile, there are three documents {d1, d2, d3} with

coordinates x1 = (1, 1), x2 = (1, 1), and x3 = (1,−1). If two documents have

the same coordinates, they will also have the same topic distributions. In this ex-

ample, x1 and x2 are both equidistant from φ1 and φ2, and therefore according to
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Equation 3.3, they have the same topic distribution P(z1|d1) = P(z1|d2) = 0.5, and

P(z2|d1) = P(z2|d2) = 0.5. If two documents have the same topic distributions,

they may not necessarily have the same coordinates. d3 also has the same topic dis-

tribution as d1 and d2, but a different coordinate. In fact, any coordinate of the form

(1, ?) will have the same topic distribution. This example is illustrated in Figure

3.2.

This suggests that enforcing neighborhood structure on the topic space may not

necessarily lead to having data points closer on the visualization space. We pos-

tulate that regularizing the visualization space is more effective. There are also

advantages in computational efficiency to doing so, which we will describe further

shortly. Therefore, we defineF(ψi, ψj) as the squared Euclidean distance ||xi−xj||2

between the corresponding visualization coordinates.

3.3.2 Neighborhood Graph

We discuss how the neighborhood graph may be approximated, which concerns the

two issues of how the graph edges are defined, as well as how they are weighted.

The neighborhood graph is constructed in the original data space where we represent

each document as a tf-idf vector [82]. We also experiment with different vector

representations, including word counts and term frequencies, and find tf-idf to give

the best results. The distance between two document vectors is measured using

Euclidean distance.

Graph Construction

There have been research studies on the properties and methods for construction of

neighborhood graphs [21, 127]. Since the construction of neighborhood graph is

a critical step that may affect the performance of various graph-based algorithms,

this problem itself is a research issue of independent interest. Our scope is in ex-

ploring how some well-established graph construction techniques may apply to the

case of semantic visualization. We will investigate these various graph construction
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methods empirically in Section 3.5.

In the following, we briefly review two categories of graph construction meth-

ods.

1. Neighborhood-based Graphs. In this formulation, edges are formed between

data points that are deemed to be sufficiently close to each other. This admits

different definitions of “sufficient closeness”. The most common definitions

found in the literature include the two below.

(a) ε-ball: The neighborhood graph contains an edge connecting two docu-

ments di and dj , if di and dj have a distance less than a threshold ε.

(b) k-nearest neighbors (k-NN) graph: The neighborhood graph contains an

edge connecting two documents di and dj , if di is in the set Nk(dj) of

the k−nearest neighbors of dj , or dj is in the set Nk(di).

ε-ball and k-NN both have strongly data-dependent parameters (i.e., ε and

k) and it is not straightforward to choose the best value for these parame-

ters. Neither guarantees that the graph would be connected. They also need

to be carefully selected or tuned, as to some extent they also affect the “bal-

ance” between the contribution of neighbors R+ and non-neighbors R− to

the neighborhood regularizationR∗ in Equation 3.8.

ε-ball suffers from another issue that it tends to produce many edges for the

points located at high-density regions, and thus has little restriction on the

maximum degree of a vertex. k-NN does not suffer from that problem and is

one of the most commonly used types of graphs.

In our subsequent development and experiments, we will experiment with

both ε-ball and k-NN graph as there may be some variance in the performance

of different graph construction techniques for different datasets [30, 54, 116].

2. Minimum Spanning Tree-based Graphs. While ε-ball and k-NN are quite sen-

sitive to noise and sparsity, graph construction based on combining multiple

minimum spanning trees can help to reduce sensitivity to noise of the output
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graph [127]. There are two variations based on this approach.

(a) Perturbed Minimum Spanning Trees (PMST): PMST builds a neighbor-

hood graph by generating T > 1 perturbed copies of the whole dataset

according to the local noise model and fitting an MST to each perturbed

copy. A weight eij ∈ [0, 1] will be assigned to the edge between points

xi and xj equal to the average number of times that edge appears on the

trees.

(b) Disjoint Minimum Spanning Trees (DMST): DMST produces a neigh-

borhood graph by finding a deterministic collection of r minimum span-

ning trees that satisfies the property that no tree in the collection uses any

edge of other trees. The neighborhood graph is the union of all edges of

trees and contains r(N − 1) edges.

As the representative of this category, we use DMST, which is deterministic

and easier to construct than PMST while showing similar efficacies.

Graph Weighting

The next issue is how to assign weights to the edges in the neighborhood graph. In

this respect, we consider two variations of edge weights.

1. Simple Minded:

ωij =

{
1, if only if di and dj are connected,
0, otherwise.

(3.9)

This is the simplest approach where we use binary weighting to assign the

weights to the edges. However, this approach to assign uniform weights to

edges can be sensitive to errors, because of the “cliff effect” from 1 immedi-

ately to 0. Moreover, since the weights are not smoothed, it could result in

some loss of information. We hypothesize that among the connected nodes,

there may still be some differences in terms of degrees of similarity, which

are expressed by their mutual distances. This motivates the second approach
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below.

2. Heat Kernel:

ωij =

{
exp(− ||di−dj ||

2

τ
), if only if di and dj are connected,

0, otherwise.
(3.10)

An alternative approach is using the Heat Kernel function [8] [63]. Heat Ker-

nel has the advantage over Simple Minded by allowing smoother weights for

the edges, which helps address the issues of sensitivity and loss of informa-

tion. However, while Simple Minded is not parameterized, Heat Kernel has

one parameter that needs to be determined (i.e., τ ). Note that for τ =∞, Heat

Kernel degenerates into Simple Minded, i.e., the former is the more general

formulation. The exact value of τ is not important in our model because it

would effectively be absorbed by the regularization parameter. For simplic-

ity, we set τ = 2.

3.4 Model Fitting

We now discuss how the parameters of the model described in Sections 3.2 and 3.3

can be learned. One well-accepted framework to learn model parameters using

maximum a posteriori (MAP) estimation is the Expectation-Maximization or EM

algorithm [39].

For our model, the regularized conditional expectation of the complete-data log

likelihood in MAP estimation with priors is:

Q(Ψ|Ψ̂) =
N∑
n=1

Mn∑
m=1

Z∑
z=1

P(z|n,m, Ψ̂) log
[
P(z|xn,Φ)P(wnm|βz)

]
+

N∑
n=1

log(P(xn)) +
Z∑
z=1

log(P(φz)) +
Z∑
z=1

log(P(βz))

+ λ · R(Ψ|Ω),

where Ψ̂ is the current estimate. P(z|n,m, Ψ̂) is the class posterior probability

of the nth document and the mth word in the current estimate. P(βz) is a sym-
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metric Dirichlet prior with parameter ζ for word probability βz. P(xn) and P(φz)

are Gaussian priors with a zero mean and a spherical covariance for the document

coordinates xn and topic coordinates φz. We set the hyper-parameters to ζ = 0.01,

ϕ = 0.1N and γ = 0.1Z following PLSV [62].

In the E-step, P(z|n,m, Ψ̂) is updated as follows:

P(z|n,m, Ψ̂) =
P(z|x̂n, Φ̂)P(wnm|β̂z)∑Z

z′=1 P(z′|x̂n, Φ̂)P(wnm|β̂z′)
.

In the M-step, by maximizingQ(Ψ|Ψ̂) w.r.t βzw, the next estimate of word prob-

ability βzw is as follows:

βzw =

∑N
n=1

∑Mn

m=1 I(wnm = w)P(z|n,m, Ψ̂) + ζ∑W
w′=1

∑N
n=1

∑Mn

m=1 I(wnm = w′)P(z|n,m, Ψ̂) + ζW
,

where I(.) is the indicator function. φz and xn cannot be solved in a closed form,

and are estimated by maximizing Q(Ψ|Ψ̂) using quasi-Newton [79].

The computation of the gradients of Q(Ψ|Ψ̂) w.r.t φz and xn depend on the

specific kernel used (see Section 3.2.2).

• For the Gaussian kernel, we have the following gradients:

∂Q(Ψ|Ψ̂)

∂φz
=

N∑
n=1

Mn∑
m=1

(
P(z|xn,Φ)− P(z|n,m, Ψ̂)

)
(φz − xn)− βφz,

∂Q(Ψ|Ψ̂)

∂xn
=

Mn∑
m=1

Z∑
z=1

(
P(z|xn,Φ)− P(z|n,m, Ψ̂)

)
(xn − φz)− γxn

+ λ · ∂R(Ψ|Ω)

∂xn
.

• For the Student-t kernel, we have the following gradients:
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∂Q(Ψ|Ψ̂)

∂φz
=

N∑
n=1

Mn∑
m=1

2
(
P(z|xn,Φ)− P(z|n,m, Ψ̂)

)
(φz − xn)

1 + ||xn − φz||2
− βφz,

∂Q(Ψ|Ψ̂)

∂xn
=

Mn∑
m=1

Z∑
z=1

2
(
P(z|xn,Φ)− P(z|n,m, Ψ̂)

)
(xn − φz)

1 + ||xn − φz||2
− γxn

+ λ · ∂R(Ψ|Ω)

∂xn
.

The gradient of R(Ψ|Ω) w.r.t. xn is computed depending on the form of the

regularization functionR(Ψ|Ω). When we use the proposed regularization function

R∗(Ψ|Ω) described in Section 3.3.1, we have the following gradient:

∂R(Ψ|Ω)

∂xn
=
∂R∗(Ψ|Ω)

∂xn

= −1

2

∑
j=1;j 6=n

(
4ωnj(xn − xj)

)
−

∑
j=1;j 6=n

(
4(1− ωnj)

(xn − xj)
(F(ψn, ψj) + 1)2

)
.

As mentioned earlier, there is an efficiency advantage to regularizing on the

visualization space. R(Ψ|Ω) does not contain the variable φz if we do regularization

on visualization space. The complexity of computing all ∂R(Ψ|Ω)
∂xn

is O(N2). In

contrast, if we do regularization on topic space, we have to take the gradient of

R(Ψ|Ω) w.r.t to φz. That contributes towards a greater complexity of O(Z2 ×N2)

to compute all ∂R(Ψ|Ω)
∂βz

. Therefore, regularization on topic space would run much

slower than on visualization space.

3.5 Experiments

The main objective of our experiments is to evaluate the effectiveness of neighbor-

hood regularization for semantic visualization model. After describing the exper-

imental setup, we first examine the different design choices of the model relating

to kernel, graph construction, and regularization function. Thereafter, we compare

SEMAFORE against the baseline methods that also aim to address both visualization

and topic modeling, quantitatively and qualitatively, first in terms of visualization
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and then in terms of topic modeling.

3.5.1 Experimental Setup

In this section, we give a description of benchmark datasets as well as suitable

metrics that are used for evaluation.

Datasets. We use three real-life, publicly available datasets [19] for evaluation.

• 20News contains newsgroup articles (in English) from 20 classes.

• Reuters8 contains newswire articles (in English) from 8 classes.

• Cade12 contains web pages (in Brazilian Portuguese) classified into 12 classes.

These are benchmark datasets used for document classification. While our task

is fully unsupervised, the ground-truth class labels are useful for an objective eval-

uation. We create balanced classes by sampling fifty documents from each class,

following the practice in PLSV [62]. This results in, for one sample, 1000 docu-

ments for 20News, 400 for Reuters8, and 600 for Cade12. The vocabulary sizes

are 5.4K for 20News, 1.9K for Reuters8, 7.6K for Cade12. As the algorithms

are probabilistic, we generate five samples for each dataset. For each sample, we

conduct five independent runs. Therefore, the result reported for each setting is the

average over a total of 25 runs.

Metrics. For a suitable metric, we return to the fundamental principle that a good vi-

sualization should preserve the relationship between documents (in high-dimensional

space) in the lower-dimensional visualization space. For an objective evaluation, we

rely on two types of quantitative analysis:

• Classification: This evaluation relies on the ground-truth class labels found in

the datasets.

The basis for this evaluation is the reasonable assumption that documents of

the same class are more related than documents of different classes. Therefore

a good visualization would place documents of the same class as neighbors

on the visualization.

49



For each document dn, we hide its true class cn, and generate a prediction

for its class Ĉt(n) by taking the majority class among its t-nearest neighbors,

as determined by Euclidean distance on the visualization space. Classifica-

tion accuracy Classification Acc(t) is defined as the fraction of documents

whose predicted class Ĉt(n) matches the true class cn. More specifically, we

have:

Classification Acc(t) =
1

N

N∑
n=1

δ(Ĉt(n) = cn),

where δ is the delta function that equals 1 if the prediction matches and 0

otherwise.

This metric can be considered as an approximation for human evaluation

when class labels are assigned by human. The essence of visualization is to

show document similarity which is reflected by distances between documents

in the visualization. To evaluate this, we need some ground truth that reflects

human evaluation of document similarity. Here we assume that the ground

truth similarity is provided by sharing the same class labels. Since class la-

bels are often assigned by human, this metric which is based on distances

indirectly approximates the degree to which document similarity is evaluated

by human. This metric is also well-accepted and heavily used in the literature

for the same evaluation [62],[114], [118].

While accuracy is computed based on documents’ coordinates, the same trends

will be produced if computed based on topic distributions (due to their cou-

pling through the kernels described in Section 3.2.2).

• Neighborhood Preservation: This evaluation does not rely on the ground-

truth class labels but on the local neighborhood structure in the input data.

The assumption is that a good visualization would be able to preserve the

local structure in the input data as much as possible. If two documents are

neighbors in the input data, they should still be neighbors in the visualization
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space.

For every document dn, we compute sets of t-nearest neighbors Yt(n) and

Xt(n) of document dn in the input data and the visualization respectively. The

neighborhood preservation accuracy Preservation Acc(t) is then defined as

the average fraction of the overlap size of Yt(n) and Xt(n) over the size of

Yt(n) (i.e. t), where n = 1, . . . , N . More specifically, we have:

Preservation Acc(t) =
1

N

N∑
n=1

|Yt(n) ∩ Xt(n)|
t

,

where |Yt(n) ∩ Xt(n)| is the size of the overlap set Yt(n) ∩ Xt(n).

A similar measure can be found in the literature [2], where it is called the “rate

of agreement in local structure” or “agreement rate” and is used to measure

how well the local structure is preserved between the input data and the low

dimensional embedding. It is also used for tuning the parameters of a non-

linear dimensionality reduction method [26].

In the subsequent experiments, we let t vary in the range [5, 50] with the step

size 5 and report the accuracies. Since different methods may behave differently

at different t’s, choosing a specific t for comparison may be unfair for some meth-

ods. Moreover, a method that consistently does well for different t’s would also

have a “smoother” local structure. Therefore, when comparing various methods,

we present the preservation or classification accuracies averaged across t ∈ [5, 50],

denoted Preservation Acc(Avg) and Classification Acc(Avg) respectively.

3.5.2 Parameter Study

In this section, we study the effects of graph parameters on our model. Specifically,

the parameters concern the graph construction, including the number of neighbors k

in k-NN graph, the distance threshold ε in ε-ball graph, and the number of minimum

spanning trees r in DMST. For each type of graph, we use the Simple Minded

weight. For the following figures, the regularization function is R∗ with λ = 10
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and the number of topics Z = 20. We use neighborhood preservation accuracy

Preservation Acc(t) to show the effects of graph parameters because this metric

does not need ground-truth class labels, which are not always available for tuning

these graph parameters.

In Figure 3.3, we show the performance of our model with different neigh-

borhood size k in k-NN graph for different datasets. For every k, we vary t and

plot the Preservation Acc(t). Figure 3.3 shows that the optimum k for 20News,

Reuters8, and Cade12 is 10, 10, and 5 respectively. We compute the average ac-

curacy Preservation Acc(Avg) and it confirms that the optima are indeed at those

k values. From now on, we will use k=10 for 20News and Reuters8, and k=5 for

Cade12 when k-NN graph is used.

For DMST graph, we plot the Preservation Acc(t) for different number of

minimum spanning trees r with different datasets in Figure 3.4. It is difficult to see

which r is the best in the figure because the differences between them are not much.

The Preservation Acc(Avg) is computed and it shows that for all three datasets,

the optimum is about at r=5,6,7. Subsequently, we will use r=6 for DMST graphs

for all three datasets.

0.2

0.3

0.4

0.5

P
re
se
rv
a
ti
o
n
_
A
cc

(t
)

k=5 k=10 k=20 k=30 k=40 k=50 k=100

0.2

0.3

0.4

0.5

P
re
se
rv
a
ti
o
n
_
A
cc

(t
)

0.2

0.3

0.4

0.5

P
re
se
rv
a
ti
o
n
_
A
cc

(t
)

0

0.1

0 10 20 30 40 50

P
re
se
rv
a
ti
o
n
_
A
cc

t

0

0.1

0 10 20 30 40 50

P
re
se
rv
a
ti
o
n
_
A
cc

t

0

0.1

0 10 20 30 40 50

P
re
se
rv
a
ti
o
n
_
A
cc

t

a. 20News b. Reuters8 c. Cade12

Figure 3.3: Preservation accuracy of SEMAFORE when using k-NN graph with dif-
ferent neighborhood size k for (a) 20News, (b) Reuters8, and (c) Cade12.

For ε-ball graph, in Figure 3.5 we plot the Preservation Acc(t) for different

values of ε in the range [1.32, 1.40]. We choose that range because ε=1.32 and

ε=1.40 roughly give an average number of neighbors of 5 and 100 respectively. The
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Figure 3.4: Preservation accuracy of SEMAFORE when using DMST graph with
different number of minimum spanning trees r for (a) 20News, (b) Reuters8, and
(c) Cade12.
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Figure 3.5: Preservation accuracy of SEMAFORE when using ε-ball graph with dif-
ferent values of distance threshold ε for (a) 20News, (b)Reuters8, and (c)Cade12.

Preservation Acc(Avg) shows that the optimum ε for 20News, Reuters8, and

Cade12 is 1.34, 1.35, and 1.33 respectively.

3.5.3 Model Analysis

In this section, we study the various design choices involved in designing the SE-

MAFORE model, before finally concluding on the eventual synthesis of design choices

to be used for comparison against the baselines. To keep the discussion focused and

organized, in each of the following sub-section, we vary a single design choice, in

order to isolate its effects. When unvaried, the model has the following setup by
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default: the number of topics is Z = 20, the graph construction method is k-NN,

the graph weighting method is simple minded, the RBF kernel is Gaussian, and the

regularization function isR∗ with λ = 10.

Neighborhood Graph Construction

We investigate three graph construction methods: k-NN, ε-ball and DMST, which

are representatives of neighborhood-based and minimum spanning tree-based meth-

ods respectively. For each graph, its parameter is tuned as shown in Section 3.5.2.

For the regularization parameter λ, we try different settings of λ on each dataset.

It so happens that λ = 10 performs the best for all the graph construction methods

across the three datasets.

In Figure 3.6, we run SEMAFORE with different types of graph on the three

datasets and report the Preservation Acc(Avg) at different number of topics Z.

The results show that different types of graph behave differently with different

datasets. In 20News, ε-ball and DMST give our model highest performance. Since

the difference between the two are not statistically significant, we choose to use

DMST for subsequent experiments on 20News. For Reuters8, since ε-ball outper-

forms the others (significant at 0.05 level), it is going to be the default choice for

subsequent experiments. For Cade12, the choice is DMST, which is slightly better

than k-NN (statistically significant for Z = 10, 40, 50).
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Figure 3.6: The effects of different graph construction methods on our model’s
performance.
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Figure 3.7: The effects of different graph weighting schemes on our model’s per-
formance. The graph used in this experiment is k-NN graph with specific k’s for
different datasets as studied in Section 3.5.2.
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Figure 3.8: The effects of Gaussian and Student-t RBF kernels on our model’s per-
formance.

Neighborhood Graph Weighting

We now compare two variations of graph weighting methods, namely: Simple

Minded and Heat Kernel methods. In this experiment, we use k-NN graph with

specific k’s for different datasets as studied in Section 3.5.2. The regularization

parameter λ is set to 10 after trying various settings and picking the best one.

In Figure 3.7, we compare Simple Minded method and Heat Kernel method

to see their influences on our model at different number of topics Z. We observe

that Heat Kernel is significantly and consistently better than Simple Minded method

across all the cases in 20News and Reuters8. The difference is statistically signif-

icant at 0.01 level. One explanation is that Heat Kernel assigns smoother weights to

55



the graph edges, and thus is more robust than Simple Minded. For Cade12, Simple

Minded is slightly better, though the differences are statistically significant at 0.05

level only for Z = 40. Subsequently, we will use Heat Kernel for 20News and

Reuters8, and Simple Minded for Cade12 as part of the final synthesis.

RBF Kernel

As described in Section 3.2.2, we express topic distributions as a function of visu-

alization coordinates using RBF network as an abstraction. In this section, we show

how different RBF kernels affect our model’s performance. The two kernels we are

exploring are Gaussian (Equation 3.3) and Student-t (Equation 3.4). We tune the

regularization term λ for each kernel and see that the best one for the two kernels

are λ = 10.

Figure 3.8 shows the results for different number of topics Z. Student-t kernel

has a slight edge over Gaussian kernel consistently across different number of top-

ics. The difference is small, but is statistically significant (at 0.05 level) in a majority

of the cases (for 20News at Z = 10, 20, 30, 50, for Reuters8 at Z = 30, and for

Cade12 at Z = 10, 30, 50). The slight improvement could be a sign that crowding

problem does exist in the model. Student-t kernel would be even more useful when

there is more extreme crowding issues, such as when the number of documents to be

visualized is even larger. Subsequently, due to its slight edge, we will use Student-t

as part of the final synthesis. As we will see shortly, using Student-t within the

synthesized model results in a significant improvement overall.

Synthesised SEMAFORE Model

Based on the model analysis in the preceding paragraphs, we combine the design

choices into a final synthesis model called SEMAFORE. The synthesized model is

slightly different for different datasets, as listed in Table 3.1. We will use these syn-

thesized models in the comparisons against the baseline methods in the following

section.
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20News Reuters8 Cade12
Regularization function R∗ R∗ R∗
Graph construction DMST ε-ball DMST
Graph weighting Heat Kernel Heat Kernel Simple Minded
RBF kernel Student-t Student-t Student-t

Table 3.1: Synthesized Model for Each Dataset.

Visualization Topic model Joint model Neighborhood
SEMAFORE X X X X
PLSV X X X
PE (LDA) X X

Table 3.2: Comparative Methods.

3.5.4 Comparison of Visualizations

We now compare our proposed model with several baselines. First, we outline the

set of comparative methods. Thereafter, we discuss quantitative evaluation (in terms

of accuracy), as well as qualitative evaluation (in terms of example visualizations).

Finally, we will show that the gains in visualization quality does not come at the

expense of topic modeling.

As semantic visualization seeks to ensure consistency between topic model and

visualization, the comparison focuses on methods producing both topics and visu-

alization coordinates which are listed in Table 3.2.

• SEMAFORE is our proposed method that incorporates neighborhood structure

into semantic visualization.

• PLSV [62] is the state-of-the-art, representing the joint approach without

neighborhood structure preservation.

• PE (LDA) represents the pipeline approach involving topic modeling with

LDA [14], followed by visualizing documents’ topic distributions with PE

[61]. This pipeline is better than the LDA/MDS that appeared in our earlier

work [72]. There are other pipeline methods, shown inferior to PLSV [62],

which are not reproduced here to avoid duplication.
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Accuracy

In this section, we compare our model with several baselines in terms of classifica-

tion accuracy (Figure 3.9) and neighborhood preservation accuracy (Figure 3.10).

In the two figures, only the standard deviations for SEMAFORE are shown.

Classfication Accuracy. Figure 3.9(a), 3.9(c) and 3.9(e) show theClassfication Acc(t)

at different t’s for Z = 20 for 20News,Reuters8, andCade12 respectively. At any

t, the comparison shows outperformance by SEMAFORE over the baselines consis-

tently. All four methods show the same behavior that their performances decrease

when t increases. As t increases, they may lose accuracy in predicting labels for

documents near to the border of each “cluster”.

Now, we vary the number of topics Z. In Figure 3.9(b), we show the perfor-

mance in Classfication Acc(Avg) on 20News. Figure 3.9(d) and 3.9(f) show

the same for Reuters8 and Cade12 respectively. From these figures, we draw the

following observations about the comparative methods:

• SEMAFORE performs the best on all datasets across various numbers of top-

ics (Z). SEMAFORE beats PLSV by 25% to 51% on 20News, by 6–13%

on Reuters8, and by 22–32% on Cade12. These margins of performance

with respect to PLSV are statistically significant at 0.01 significant level or

lower in all cases. This effectively showcases the utility of neighborhood

regularization in enhancing the quality of visualization. By preserving local

consistency, SEMAFORE achieves a good accuracy even at small number of

topics (e.g., 10).

• PLSV performs better than PE (LDA) , which shows that there is utility to

having a joint, instead of separate, modeling of topics and visualization. PE

(LDA) is worse than PLSV because it embeds documents by using two-step

reductions that optimize separately two different objective functions. There-

fore, the errors from the previous step may propagate to the next, without an

opportunity for correction. This may cause distortions in the visualization.
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• In some cases, PLSV, PE (LDA) tend to have decreasing accuracies when the

number of topics increases. This may be because when number of topic in-

creases, the topic distributions and the word probabilities may overfit the data

and thus the accuracy is reduced. In contrast, SEMAFORE shows a quite sta-

ble performance across different numbers of topics. This may be explained by

the utility of neighborhood regularization, which helps to prevent overfitting

when the number of topics increases.
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Figure 3.9: Classification Accuracy Comparison.

Neighborhood Preservation Accuracy. While having better classification ac-

curacy, SEMAFORE also preserves well the local structure of the input data in the
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visualization space. The Preservation Acc(t) results in Figure 3.10(a),3.10(c)

and 3.10(e) show that SEMAFORE is consistently better than the other baselines

in terms of neighborhood preservation across different t’s and different datasets.

In Figure 3.10(b), 3.10(d) and 3.10(f), we vary the number of topics Z and report

the Preservation Acc(Avg) results. SEMAFORE beats PLSV by 41% to 76% on

20News, by 24–36% on Reuters8, and by 29–45% on Cade12 in terms of neigh-

borhood preservation accuracy. The improvements of SEMAFORE over PLSV are

statistically significant at 0.01 significant level or lower in all cases.

The above accuracy results are based on visualization coordinates. We have also

computed accuracies based on topic distributions, which have similar trends.

Visualizations

To provide an intuitive appreciation, we briefly describe a qualitative comparison of

visualizations. For each method on each dataset, a visualization is shown as a scat-

terplot (best seen in color). Each document has a coordinate, and is assigned a shape

and color based on its class. Each topic also has a coordinate, drawn as a black, hol-

low circle. A legend is provided, mapping each symbol to the corresponding class

label.

Note that this is an illustrative, rather than a comparative discussion, as an ob-

jective evaluation should not rely on eyeballing alone. However, as we have shown

the quantitative results in the preceding section, in this section, we focus on the

qualitative study of the output visualizations.

20News. Figure 3.11 shows a visualization of 20News dataset. SEMAFORE’s

Figure 3.11(a) shows that the different classes are well separated. There are distinct

clusters of blue squares and purple diamonds at the top for hockey and baseball

classes respectively, clusters of orange triangles and pink asterisks at the bottom for

cryptography and medicine, etc. Beyond individual classes, the visualization also

places related classes nearby. Computer-related classes are found on the lower left.

Politics and religion are on the lower right.
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Figure 3.10: Preservation Accuracy Comparison.

Comparatively, Figure 3.11(b) by PLSV shows crowding at the center. For in-

stance, motorcycle (green dashes) and autos (red dashes) are mixed at the center

without a good separation. Figure 3.11(c) by PE (LDA) is worse. PE (LDA) does

not give good separation for not similar classes. It mixes autos (red dashes) and

space (green circles) together at the center. Medicine (pink asterisks) is also mixed

with other classes in PE (LDA) while SEMAFORE and PLSV give a good separation

for it.

Reuters8. Figure 3.12 shows the visualization outputs for Reuters8 dataset.

SEMAFORE in Figure 3.12(a) is better at separating the eight classes into distinct
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Figure 3.11: Visualization of documents in 20News for number of topics Z = 20.
Each point represents a document and the shape and color represent document class.
Each topic is drawn as a black, hollow circle.

clusters. In an anti-clockwise direction from the top, we have navy blue diamonds

(money-fx), red dashes (interest), red squares (crude), light blue pluses (earn), green

triangles (acq), purple crosses (ship), blue asterisks (grain), and finally orange cir-

cles (trade).

In comparison, PLSV in Figure 3.12(b) shows that several classes are intermixed

at the center, including red dashes (interest), orange circles (trade), and navy blue

diamonds (money-fx). PE (LDA) in Figure 3.12(c) is also worse when it mixes

differentiated classes such as red dashes (interest) and navy blue diamonds (money-

fx) together.

Cade12. Figure 3.13 shows the visualization outputs for Cade12. This is the

most challenging dataset. Even so, SEMAFORE in Figure 3.13(a) still achieves a

better separation between the classes, as compared to PLSV in Figure 3.13(b). Par-

ticularly, SEMAFORE gives better separation for esportes (green triangles) as well

as compras-on-line (orange circles) than PLSV and PE (LDA).
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money-fx crude acq ship grain trade earn interest topics

Legend

Figure 3.12: Visualization of documents in Reuters8 for number of topics Z = 20.
Each point represents a document and the shape and color represent document class.
Each topic is drawn as a black, hollow circle.

3.5.5 Comparison of Topic Models

One question is whether SEMAFORE’s gain in visualization quality over the closest

baseline PLSV is at the expense of the quality of its topic model. To investigate

this, we will compare the topic models of SEMAFORE and PLSV, which share a

core generative process. For parity, in this comparison, we only include the joint

models, whereby the visualization coordinates affect the topic models as well.

The metric we use to measure the quality of topic models is pairwise mutual

information or PMI. It measures topic interpretability, based on coocurrence fre-

quencies of the top words in each topic in a large external corpus. Although other

metrics such as perplexity or held-out likelihood can show the generalization ability

of a learned topic model on unseen test data, these traditional metrics do not capture

whether topics are coherent [25]. Therefore, in this comparison, we rely on PMI,

which can measure the quality of topic words in terms of their interpretability to a

human. To human subjects, interpretability is closely related to coherence [91], i.e.,

how much the top keywords in each topic are “associated” with each other. After an

extensive study of evaluation methods for coherence, Newman et al. 2010 identify

Pointwise Mutual Information (PMI) as the best measure, in terms of having the

greatest correlation with human judgments.

PMI is based on term cooccurrences. For a pair of words wi and wj , PMI is
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Figure 3.13: Visualization of documents in Cade12 for number of topics Z = 20.
Each point represents a document and the shape and color represent document class.
Each topic is drawn as a black, hollow circle.

defined as log
p(wi,wj)

p(wi)p(wj)
. For a topic, we average the pairwise PMI’s among the top

10 words of that topic. For a topic model, we average PMI across the topics. Intu-

itively, PMI is higher (better), if each topic features words that are highly correlated

with one another.

Key to PMI is the use of an external corpus to estimate p(wi, wj) and p(wi).

Following Newman et al. 2009, we use Google Web 1T 5-gram Version 1 [15], a

huge corpus of n-grams generated from 1 trillion word tokens. p(wi) is estimated

from the frequencies of 1-grams. As recommended by Newman et al., p(wi, wj) is

estimated from the frequencies of 5-grams. We obtain PMI for the English-based

20News andReuters8, but not for Cade12 because we do not possess a large-scale

n-gram corpus specifically for Brazilian Portuguese.

In Figure 3.14, we plot the PMI score for various number of topics Z. SE-

MAFORE performs better than PLSV across most of the topics settings. In Fig-

ure 3.14(a) for 20News, except for the case at Z = 10, all cases of SEMAFORE’s

outperformance are significant at 0.05 level or lower. In Figure 3.14(b) for Reuters8,

all cases of SEMAFORE’s outperformance are significant at 0.05 level or lower ex-
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Figure 3.14: Topic Interpretability of SEMAFORE and PLSV in terms of PMI Score
(higher is better).

cept for the Z = 30. These results show that SEMAFORE improves visualization

while not sacrificing the topic interpretability of learned topics.

3.6 Conclusion

In this paper, we address the semantic visualization problem, which jointly con-

ducts topic modeling and visualization of documents. We propose a new frame-

work to incorporate neighborhood structure within a probabilistic semantic visual-

ization model called SEMAFORE. The model is carefully designed to reflect the

context of semantic visualization, leading to a number of design choices related to

the RBF kernel for mapping topic and visualization spaces, the approximation of

neighborhood graph through construction and weighting, as well as the appropri-

ate regularization functions and spaces. Experiments on real-life datasets show that

SEMAFORE significantly outperforms the baselines in terms of visualization quality

and accuracy, while having a similar, if not slightly better topic model. This pro-

vides evidence that neighborhood structure, together with joint modeling of topics

and visualization, is important for semantic visualization.
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Chapter 4

Modeling Network Structure

A document network refers to a data type that can be represented as a graph of ver-

tices, where each vertex is associated with a text document. Examples of such a

data type include hyperlinked Web pages, academic publications with citations, and

user profiles in social networks. Such data have very high-dimensional representa-

tions, in terms of text as well as network connectivity. In this chapter, we study the

problem of embedding, or finding a low-dimensional representation of a document

network that “preserves” the data as much as possible. These embedded representa-

tions are useful for various applications driven by dimensionality reduction, such as

visualization or feature selection. While previous works in embedding have mostly

focused on either the textual aspect or the network aspect, we advocate a holistic

approach by finding a unified low-rank representation for both aspects. Moreover,

to lend semantic interpretability to the low-rank representation, we further propose

to integrate topic modeling and embedding within a joint model. The gist is to join

the various representations of a document (words, links, topics, and coordinates)

within a generative model, and to estimate the hidden representations through MAP

estimation. We validate our model on real-life document networks, showing that

it outperforms comparable baselines comprehensively on objective evaluation met-

rics.
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4.1 Introduction

Due to their importance and wide applicability, document networks have been an

intensive subject of research, particularly in information retrieval and link analysis.

Relatively less attention has been paid to much-needed methods for conducting ex-

ploratory analysis on document networks. Analyzing a document network is very

challenging because of the high-dimensional nature of the data. In one sense, a

document can be expressed in terms of the occurrences of words (i.e., the dimen-

sionality of text). In another sense, a document can also be expressed in terms of its

connectivity to the other documents (i.e., the dimensionality of network).

Problem. In this work, we focus on the embedding problem. Given a document

network, our objective is to “embed” (or reduce) the documents’ high-dimensional

representations (both in terms of text as well as network connnectivity) in a low-

dimensional space that would still preserve as much of the “properties” of the orig-

inal data as possible. Embedding is a well-recognized problem in machine learning

(see Section 4.2). However, existing methods have not been designed with a doc-

ument network in mind. We identify two issues that affect the fittingness of these

methods for embedding a document network. The first issue is the lack of connec-

tion between text and network. Most methods have been designed either for embed-

ding text documents, or for embedding a network. Obtaining either one embedding

alone may offer a potentially distorted or incomplete view of the data. Obtaining

both embeddings separately may produce two different representations that are not

easily reconciled.

The second issue is the relative lack of semantic interpretability. Previous em-

bedding methods produce low-dimensional representations that are not easily in-

terpretable (other than as axes of the scatterplot visualization). In this respect, we

are inspired by topic modeling [14], which obtains low-rank representations (i.e.,

topics) that are semantically interpretable (through high-probability words of each

topic). However, topic modeling is not a solution to the embedding problem. For

instance, to produce two-dimensional (2D) visualization, we can represent docu-
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ments’ topic distributions on a 2D simplex space, but this is only possible for three

topics, which would be severely limiting as most applications of topic modeling

require tens, if not hundreds, of topics [14].

4.1.1 Overview

To address the above issues, we propose a holistic and integrated approach based on

two key principles. The first principle is to embed both text and network representa-

tions of a document into a single unified low-rank representation. This is grounded

in the intuition that text content and network connectivity can inform each other.

On one hand, text content can help to resolve ambiguities in the network. For in-

stance, unobserved edges in a network may indicate either a genuine absence or a

missing presence. If two documents are different in text content, the former is more

likely than the latter. On the other hand, network connectivity can help to resolve

the ambiguities in text through observed edges among documents that use different

words for the same concept (synonymy), or missing edges among documents that

use common words to refer to different concepts (polysemy).

The second principle is to incorporate both a topic model and an embedding

model within a single joint model. To make our discussion more concrete, without

loss of generality, we assume that the low-rank embedding takes the form of 2D

visualization coordinates. This joint modeling is mutually beneficial to both topic

modeling and visualization. By incorporating a topic model, we can infuse the

visualization with semantic interpretability. Each point on a 2D scatterplot can be

associated with the most likely topics or words [62]. By incorporating an embedding

model, the mapping between topics and visualization may eventually offer a natural

interface for user interaction to tune the underlying topic model [28].

We are thus motivated to tie together the four representations of each document

in a document network, namely: the two high-dimensional representations in terms

of word occurrences and network connectivity respectively, the intermediate repre-

sentation in terms of a topic distribution as in topic modeling, as well as the low-rank
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representation in terms of visualization coordinates as in embedding. One frame-

work to join these disparate representations is generative modeling, a probabilistic

model for the generation of observable data through modeling random variables

(that encode the representations mentioned above). Generative modeling has been

the bedrock for much of the topic modeling works that build on [14], though it has

not been as widely applied to embedding.

4.1.2 Contributions

First, our novelty arises from the holistic approach to topic-based embedding of

document networks. In comparison, previous works, reviewed in Section 4.2, have

attempted this as separate segments, namely: embedding of documents, embedding

of networks, or topic modeling, but have not recognized the embedding of a docu-

ment network as a distinct problem to be addressed in its own entirety.

Second, to address this problem, we develop a generative modeling approach,

and propose a model called PLANE, which stands for Probabilistic LAtent Docu-

ment Network Embedding. In Section 4.3, we describe the process of generation

of observable data (text and network) from latent representations (topics and visu-

alization coordinates). In Section 4.4, we outline an MAP inference algorithm to

estimate the hidden parameters of this model through EM.

Third, to validate this model, we conduct comprehensive experiments (Sec-

tion 4.5) on four real-life document networks derived from a benchmark collec-

tion of academic publications. We compare our model, quantitatively as well as

qualitatively, against comparable baselines on both aspects (embedding and topic

modeling) on a number of objective evaluation metrics.

4.2 Related Work

In terms of embedding. While we focus on embedding a document network, there

are previous efforts on embedding documents, or embedding a network, which we
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Figure 4.1: Graphical Models of PLSV (a), RTM (b) and PLANE (c)

review below.

To embed documents, we can employ embedding techniques, which take as in-

put N high-dimensional vectors {vi}Ni=1 and generate as output N low-rank vectors

{xi}Ni=1. For instance, the vi’s may be the bag-of-words representations of docu-

ments, and the xi’s may be visualization coordinates. Good embedding produces

xi’s that represent the vi’s “faithfully”. In traditional embedding [70, 104, 115],

this criterion is frequently formulated as preserving the distances among vi’s in the

distances among xi’s. More recent approaches [61, 117] formulate this in terms of

probabilities.

Recent works advocate having an intermediate representation, which is the topic

space. The closest one to ours is PLSV [62], which pioneers the integration of topic

modeling and visualization in a joint model. Figure 4.1(a) shows the graphical

model of PLSV. Its generative process is as follows. For each topic z, we draw its

word distribution βz from a Dirichlet with parameter ζ , as well as its coordinate φz

from a Normal distribution with mean 0 and variance ϕ−1. For each document vi,

we draw its coordinate xi from Normal with mean 0 and variance γ−1. To generate

each of the Mi words in vi, we draw a topic zi,m based on the relative distance

between xi and topic coordinates, and draw a word from the selected topic’s word

distribution βzi,m . Since PLSV models only documents, our model builds on it by

integrating a network model.
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To embed a network, we can employ graph embedding techniques, of which

there are broadly two main categories of approaches. The first category is spectral

embedding, where the focus is on dimensionality reduction. For instance, the adja-

cency matrix representing the graph can be used as input to SVD [48] or PCA [65],

whose objective is compressibility (preserving the variance in the data). To produce

a low-dimensional embedding, the first few principal eigenvectors (with the largest

eigenvalues) can be used as the coordinates {xi}Ni=1. This approach has been widely

used for various large-scale graphs [113]. Building on this, SPE [108] attempts to

preserve the neighboring structure as well, but since it is formulated as semidefinite

programming, it is computationally very expensive for large-scale graphs [113].

The second category is spring embedding, also known as force-directed graph

drawing. One example is the Fruchterman and Reingold layout [45] (FR-layout),

which simulates a force system where spring-like attractive forces on links pull

connected nodes together. The simulation is repeated iteratively till a mechanical

equilibrium state is reached (energy minimization). Another approach Kamada and

Kawai layout [66] (KK-layout) is also based on the idea of a balanced spring system

and energy minimization, but achieves faster convergence due to the use of deriva-

tives. These layouts are commonly found in graph visualization programs [6, 42].

In terms of topic modeling. Topic modeling is originally designed for documents

[14], where each document is associated with a topic distribution, and each topic is

associated with a word distribution. There also exists similar statistical modeling

of networks as surveyed in [47]. For instance, in mixed membership stochastic

blockmodel [1], each user is associated with a distribution over “communities”,

which explain the generation of links among users.

Recognizing the wide availability and applicability of document networks as

a distinct data type, subsequent works seek to combine text and networks. One

example is through a regularization framework [86], which however is not a joint

model, and therefore does not model the generation of links. Yet others [24, 80, 90,

111] focus on modeling the generation of both text documents and network links
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jointly.

Our work builds on the Relational Topic Model (RTM) [24], which we review

briefly below. Its graphical model is shown in Figure 4.1(b). Each document vi is

associated with a topic distribution θi. To generate themth word in vi, we first pick a

topic zi,m from θi, then pick a word wi,m from zi,m’s topic multinomial βzi,m . θi and

βz have Dirichlet priors of α and ζ respectively. In turn, each link yij between a pair

of documents vi and vj is generated from a link probability function based on the

topics that occur in vi and vj . The more they share common topics, the more likely

there to be a link between them. There are a number of key differences between

RTM and PLANE. Most importantly, we need to consider the low-rank embedding

objective. We also model link generation based on coordinates instead of topic

distributions. In our model likelihood, we also incorporate “virtual” negative links,

not just observed positive links (see Section 4.3).

There are also some works on visualizing topic models [23, 29, 50, 123], where

the focus is on visualizing which topics are important in a corpus, or which words

are important in a topic. While they convey some information visually, they are

orthogonal to our objective. They are not low-rank embedding techniques, and do

not produce a low-rank representation for each document, which can also be used

in non-visualization applications such as dimensionality reduction or compression.

4.3 Generative Model

Here, we describe the framework and the generative process of our proposed model

PLANE, whose graphical representation in terms of a plate diagram is shown in

Figure 4.1(c).

Framework. We consider as input a document network, represented as a graph

G = (V,E). V is a set of N vertices. Each vertex vi ∈ V refers to a document,

and is associated with a bag of words. We denote wi,m to be the mth word token in

vi, and Mi to be the total number of word tokens in vi. Each token has a symbol
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drawn from the vocabulary of words W . In turn, E is a set of edges in G, where

each edge eij ∈ E connects two vertices vi and vj . In this work, we would model an

undirected graph, i.e., eij = eji, as our emphasis is on connectivity, rather than on

directionality. The model could still apply to directed graphs by dropping the edge

directions. In this paper, we use the term “edge” and ”link” interchangeably.

As output, we aim for dual objectives as follows.

• Embedding: For each vertex vi, we seek to learn its low-rank representation

xi, expressed as coordinates on a D-dimensional space. In this paper, which

is framed in terms of embedding in a visualization space, we assume D = 2,

without loss of generality.

• Topic Modeling: For each vertex vi, we also seek to learn its representa-

tion in the topic space, expressed as a probability distribution {P(z|vi)}Zz=1

over a specified number of Z topics, where D � Z � |W | is expected in

most cases. Correspondingly, each topic z is associated with βz, a probability

distribution over words {P(w|βz)}w∈W , where words with high probabilities

provide semantic meaning to the topic.

To unify the dual objectives above, we need to concretely define how the two ob-

jectives are correlated with each other. This can be achieved by a mapping function

from the visualization space to the topic space. Towards realizing this mapping, we

associate each topic z with a visualization coordinate φz in the sameD-dimensional

space. If we model each φz to be the mean of a unit-variance Gaussian, and xi to

have been drawn from a mixture of Gaussians centered at φz’s (with uniform mix-

ture weights), we can express P(z|vi) as the responsibility of the z’s component of

the Gaussian mixtures [13], as shown in Equation 4.1, which has also been used in

[61, 62]. Here, || · || is the Euclidean norm defined on the visualization space, and

Φ = {φz}Zz=1 refers to the collection of all topic coordinates.

P(z|vi) = P(z|xi,Φ) =
exp(−1

2
||xi − φz||2)∑Z

z′=1 exp(−1
2
||xi − φz′||2)

(4.1)

This mapping has an intuitive meaning. The closer is xi to φz in the visualiza-
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tion space, the greater is the probability of topic z in vertex vi. It follows that if

two vertices are close in the visualization space, they will also share similar topic

distributions, thus encoding the above-mentioned embedding objective of finding

similar low-rank representations for documents with similar high-dimensional rep-

resentations.

Generative Process. We now describe the full generative process of our proposed

model PLANE below.

1. For each topic z = 1, . . . , Z:

(a) Draw z’s word distribution: βz ∼ Dirichlet(ζ)

(b) Draw z’s coordinate: φz ∼ Normal(0, ϕ−1I)

2. For each vertex vi, where i = 1, . . . , N :

(a) Draw vi’s coordinate: xi ∼ Normal(0, γ−1I)

(b) For each word wi,m, where m = 1, . . . ,Mi:

i. Draw a topic: zi,m ∼ Categorical({P(z|xi,Φ)}Zz=1)

ii. Draw a word: wi,m ∼ Categorical(βzi,m)

3. For each pair of vertices vi and vj:

(a) Draw eij’s binary indicator: yij ∼ Bernoulli (P(yij = 1|xi, xj, η))

Step 1 shows the generation of the parameters for each topic z. Like classical

topic models [14], its word distribution βz has a Dirichlet prior (with hyper pa-

rameter ζ). Its visualization coordinate φz has a Normal prior (centered at 0 with

precision ϕ). The mean at 0 determines the locality of the visualization.

Step 2a shows the generation of parameter for each vertex vi, which is its vi-

sualization coordinate xi, from a Normal distribution with mean 0 and precision γ.

Following Equation 4.1, this coordinate is mapped to vi’s representation in the topic

space, which is a probability distribution over the Z topics, i.e., {P(z|xi,Φ)}Zz=1.

Step 2b encodes the document embedding step, where the “embedded” low-

dimensional representation xi generates the high-dimensional text representation
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(bag of words). Based on xi’s topic space representation, we repeatedly draw a

topic zi,n from {P(z|xi,Φ)}Zz=1, followed by drawing a word wi,m from the topic’s

word distribution βzi,m .

Step 3 encodes the network embedding step, where the “embedded” low-dimensional

representation xi generates the high-dimensional network representation (i.e., which

other vertices vi is connected to). We associate each edge eij with a binary random

variable denoted by yij , with a value of 1 if the edge is present (eij ∈ E), and 0 oth-

erwise (eij /∈ E). This random variable is drawn from a Bernoulli distribution. The

Bernoulli parameter is denoted by P(yij = 1|xi, xj, η) ∈ [0, 1], which determines

the probability that an edge exists between two vertices based on the vertices’ latent

coordinates xi and xj , and a parameter η (to be defined shortly).

Naturally, for network embedding, we desire that connected vertices would

share similar embedded parameters. In that sense, the more similar are xi and xj ,

the higher is the P(yij = 1|xi, xj, η). Since xi and xj are coordinates, their “sim-

ilarity” can be measured in terms of Euclidean distance ||xi − xj||. To transform

this distance into a probability value, we adopt the exponential probability function

[13], as shown in Equation 4.2, where η is a parameter to be learned. In this work,

we seek to study the connectivity hypothesis itself. While there could be other ways

to realize the edge probability function, we keep the exploration in that direction to

future work.

P(yij = 1|xi, xj, η) = exp(−η · ||xi − xj||2) (4.2)

Our modeling of edge probability function based on distance ties together all the

representations (document, networks, visualization coordinates, topics). This sets

us apart from others that model only subsets of these representations (e.g., docu-

ments and networks but not visualization [24], documents and visualization but not

networks [62]).

Model Likelihood. PLANE’s graphical model in Figure 4.1(c) shows how the var-

ious representations are related to one another. Importantly, the observed (shaded)

variables are only the words {wi,m} in vertex vi, as well as the edges’ indicators
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{yij}. Equation 4.3 shows the log-likelihood function for generating these observed

variables in the input graph G = (V,E) based on the hidden parameters, such as

embedding coordinates {xi} and topic multinomials {βz}. The first component

corresponds to the text associated with vertices in V . The second component corre-

sponds to the edges.

L(G) =
N∑
i=1

Mi∑
m=1

log
Z∑
z=1

P(wi,m|βz)P(z|xi,Φ)+∑
ij

log P(yij|xi, xj, η) (4.3)

We need to decide how to model observed and unobserved edges. One way is

to set yij = 1 when an edge is observed between vertices vi and vj , and yij = 0

otherwise. As stated in [24], this approach may be inappropriate when the absence

of an edge cannot be used as evidence for yij = 0. To resolve this, they decided

to model only observed edges (i.e, yij is either 1 or unobserved) [24]. While doing

so can speed up computation, it falls short of the full discriminating power because

the hidden structure of the corpora cannot be described fully only based on the

positive observations (yij = 1). The negative observations (yij = 0) should also be

considered.

Due to the reason above, we decide to model both observed and unobserved

edges. We treat observed edges as positive observations (yij = 1). For unobserved

edges, we assume that only a subset of them would be negative (yij = 0). It is

not necessary to specify which particular edges are negative. Let ρ be the expected

number of these “virtual” negative observations (to be learned from the data), and

U = N×(N−1)
2

− |E| be the total number of unobserved edges. The expected log

likelihood of these negative observations is as follows.

ρ

U

∑
eij /∈E

log P(yij = 0|xi, xj, η) (4.4)

Therefore, the final log-likelihood of our model will be computed as follows.
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L(G) =
N∑
i=1

Mi∑
n=1

log
Z∑
z=1

P(wi,m|βz)P(z|xi,Φ)+∑
eij∈E

log P(yij = 1|xi, xj, η)+

ρ

U

∑
eij /∈E

log P(yij = 0|xi, xj, η) (4.5)

4.4 Parameter Estimation

We estimate the parameters based on maximum a posteriori (MAP) estimation using

EM algorithm [39]. The parameters that need to be estimated are the word prob-

abilities {βz}Zz=1, the topic coordinates Φ, the vertex coordinates {xi}Ni=1. η and ρ

will also be learned from data. Since η and ρ are positive, let η = η2
sqr and ρ = ρ2

sqr.

Instead of directly learning η and ρ, we will learn ηsqr and ρsqr to avoid imposing

the positivity constraints when optimizing the likelihood. We denote the collection

of the unknown parameters as Ψ.

The conditional expectation of the complete-data log likelihood in MAP estima-

tion with priors is:

Q(Ψ|Ψ̂) =
N∑
i=1

Mi∑
n=1

Z∑
z=1

P(z|i,m, Ψ̂) log
[
P(z|xi,Φ)P(wi,m|βz)

]
+

N∑
i=1

log(P(xi)) +
Z∑
z=1

log(P(φz)) +
Z∑
z=1

log(P(βz))

+
∑
eij∈E

log P(yij = 1|xi, xj, η)+

+
ρ

U

∑
eij /∈E

log P(yij = 0|xi, xj, η)

Ψ̂ is the current estimate. P(z|i,m, Ψ̂) is the class posterior probability of the ith

document and the mth word in the current estimate. P(βz) is a symmetric Dirichlet

prior with parameter ζ for word probability βz. P(xi) and P(φz) are Gaussian priors

with a zero mean and a spherical covariance for the document coordinates xi and

topic coordinates φz. We set the hyper-parameters to ζ = 0.01, ϕ = 0.1N and
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γ = 0.1Z as in [62].

In the E-step, P(z|i,m, Ψ̂) is updated as follows.

P(z|i,m, Ψ̂) =
P(z|x̂i, Φ̂)P(wi,m|β̂z)∑Z

z′=1 P(z′|x̂i, Φ̂)P(wi,m|β̂z′)

In the M-step, by maximizingQ(Ψ|Ψ̂) w.r.t βzw, the next estimate of word prob-

ability βzw is as follows.

βzw =

∑N
i=1

∑Mi

m=1 I(wi,m = w)P(z|i,m, Ψ̂) + ζ∑W
w′=1

∑N
i=1

∑Mi

n=1 I(wi,m = w′)P(z|i,m, Ψ̂) + ζW

I(.) is the indicator function. φz and xi cannot be solved in a closed form, and

are estimated by maximizing Q(Ψ|Ψ̂) using quasi-Newton [79].

We compute the gradients of Q(Ψ|Ψ̂) w.r.t φz, xi, ρsqr, ηsqr respectively as

follows.

∂Q

∂φz
=

N∑
i=1

Mi∑
m=1

(
P(z|xi,Φ)− P(z|i,m, Ψ̂)

)
(φz − xi)− ϕφz

∂Q

∂xi
=

Mi∑
m=1

Z∑
z=1

(
P(z|xi,Φ)− P(z|i,m, Ψ̂)

)
(xi − φz)− γxi

−
∑
eij∈E

4η2
sqr(xi − xj)

+
4ρ2

sqrη
2
sqr

U

∑
eij /∈E

(xi − xj)
exp(−η2

sqr · ||xi − xj||2)

(1− exp(−η2
sqr · ||xi − xj||2))

∂Q

∂ρsqr
=

2ρsqr
U

∑
eij /∈E

log(1− exp(−η2
sqr · ||xi − xj||2))

∂Q

∂ηsqr
= −2ηsqr

∑
eij∈E

||xi − xj||2

+
2ρ2

sqrηsqr

U

∑
eij /∈E

||xi − xj||2
exp(−η2

sqr · ||xi − xj||2)

(1− exp(−η2
sqr · ||xi − xj||2))

4.5 Experiments

The objective of experiments is to validate the effectiveness of our topic-based em-

bedding method PLANE. First, we describe the setup, in terms of the datasets (4.5.1)
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as well as the comparable baselines (4.5.2). Thereafter, we conduct the primary

comparison in terms of the goodness of embedding coordinates (4.5.3). This is

done both quantitatively by using the coordinates as features in a classification task,

as well as qualitatively by inspecting some example visualizations. Finally, we com-

pare the effectiveness of PLANE as a topic model for document network (4.5.4).

4.5.1 Datasets

For repeatability, we rely on a publicly-available benchmark data source, which is

a representative example of document networks. Cora1 is a collection of academic

publications and their citation networks from various categories [85]. Each docu-

ment is an abstract. Two documents are connected by an undirected edge if one

document cites the other. Documents in Cora are divided into general categories.

Following [130], we use the following categories as four separate datasets: Data

Structure (DS), Hardware and Architecture (HA), Machine Learning (ML), and

Programming Language (PL).

For each dataset, each document is further classified into one of several sub-

fields. For DS, the nine sub-fields are: Computational Complexity, Computational

Geometry, Formal Languages, Hashing, Logic, Parallel, Quantum Computing, Ran-

domized, and Sorting. The other three datasets each have their own respective sub-

fields as well. We treat these sub-fields as class labels, which are not used as input,

but rather for evaluation in Section 4.5.3. We also remove documents that are not

connected to any document within the same dataset.

Table 4.1 lists the sizes of these datasets in terms of the number of classes,

documents, edges, and the vocabulary sizes.

4.5.2 Comparative Methods

In Table 4.2, we list the methods that we will be comparing, and highlight the prop-

erties of each method.
1http://people.cs.umass.edu/˜mccallum/data/cora-classify.tar.gz
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Table 4.1: Datasets of Cora
#classes #documents #edges vocabulary

Data Structure (DS) 9 570 1336 3085
Hardware and Architecture (HA) 6 223 515 2073
Machine Learning (MA) 7 1980 5638 4431
Programming Language (PL) 9 1553 4851 4105

Table 4.2: Comparative Methods
Document
embedding

Network
embedding

Topic model Joint model

PLANE X X X X
RTM+PE X X X
PLSV X X X
KK X
SVD X

Proposed approach. As a topic-based embedding model, PLANE is our method

that models both document and network embeddings, as well as topic model in a

joint manner.

Pipelined approach. Since there is no other existing model with all the proper-

ties, the most direct baseline is a composite approach that pipelines two methods.

First, a document network is reduced into a set of topic distributions (one for each

document) by the relational topic model RTM [24]. As recommended in [24], α

is set such that the total mass of the Dirichlet hyperparameter is 5. ζ is set to 0.01

(same as PLANE and PLSV) following [62]. Then, these topic distributions are em-

bedded in a 2D visualization space using PE [61], an embedding approach designed

for probability distributions. This composite, called RTM+PE, is our primary base-

line that allows us to validate the utility of modeling both topics and embedding

jointly, as opposed to modeling them separately.

Document embedding. While document embedding is not a direct baseline, be-

cause it does not model the network aspect, a comparison to it allows us to evaluate

the contribution of network embedding to our model. As a representative of docu-

ment embedding, the closest one to ours is PLSV [62], which models topic-based

document embedding.
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Figure 4.2: Accuracy at k = 10 nearest neighbors for varying number of topics Z

Network embedding. Network embedding is not a direct baseline either, because

it models neither documents nor topics. For completeness, we include a comparison

to two categories of network embedding. As a representative of spring embedding,

we use KK layout [66]. As a representative of spectral embedding, we use SVD

[48]. These are among the most popular methods in their respective categories.

For the probabilistic methods (i.e., PLANE, RTM+PE, PLSV), we average the

performance numbers across ten independent runs. For each run, the parameter

estimation is based on 100 learning iterations. We set the number of iterations for

each Gibbs sampling E-step of RTM to 1000. As much as possible, we have used

public implementations. For RTM, we use its original authors’ implementation2.

For KK, we use the implementation in the JUNG library3. For SVD, we use the

implementation in R software4. We implement our own method PLANE, as well as

the baselines PE and PLSV5.

4.5.3 Embedding

As our primary objective is to embed a document network in a low-dimensional

space, we first evaluate the quality of the resulting embedding coordinates against

all the baselines.

Metric. Since embedding seeks to “preserve” the original data as much as pos-

sible in the reduced dimensions, one well-accepted means for embedding evaluation

2http://cran.r-project.org/web/packages/lda/
3http://jung.sourceforge.net/
4http://stat.ethz.ch/R-manual/R-devel/library/base/html/svd.html
5We could not find a public or an original implementation by their authors.
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Figure 4.3: Accuracy at varying k nearest neighbors for Z = 20 topics

is to use the low-dimensional coordinates as features in a learning task [62, 108].

Since class labels are available (but not used as input), we conduct evaluation based

on classification. The more the features help to predict the classes, the more the

low-dimensional coordinates (features) have preserved the properties of the data

(embedding objective). Because what is evaluated are the features, we use a sim-

ple k-nearest neighbor classification. For each document, we hide its true label,

and predict its label as the majority label among its k-nearest neighbors (based on

Euclidean distance in the embedding coordinates). The metric accuracy(k) is the

fraction of documents for which the predicted label matches the hidden true label.

Vary number of topics. First, we investigate the effect of the number of topics

Z on accuracy. Figure 4.2 shows the accuracy(10) values for the four datasets. Sim-

ilar observations regarding the relative standings of various methods can be made

for other k values as well.

The accuracy values are relatively stable across different numbers of topics. Fig-

ure 4.2(b) for HA shows a small increase from Z = 10 to Z = 20, after which

accuracies remain flat. For subsequent experiments, we will use Z = 20 by default.

In absolute terms, PLANE achieves high accuracies of around 0.8 for HA, and

0.7 for DS, ML, and PL. This is notable as PLANE only uses 2-dimensional features

for the k-NN classification. This helps to validate the quality of the embedding in

preserving the high-dimensional representations.

In relative terms, PLANE has higher accuracies than all the baselines. This out-

performance is statistically significant in all cases. It outperforms RTM+PE, which

helps to validate the utility of having a joint modeling of embedding and topics.
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It also outperforms document embedding (PLSV) and network embedding (KK,

SVD), which justifies embedding documents and network with a unified low-rank

representation.

Among the baselines themselves, there is no consistent ordering across datasets

in terms of which is better. For the network embedding KK and SVD, accuracies

are flat across different Z’s because they are not topic-based approaches.

Vary neighborhood size. We now investigate how the accuracy is affected

by different neighborhood sizes for the k-NN classification. Figure 4.3 shows the

accuracy(k) values for the four datasets when Z = 20. As shown by the earlier

consistency among different Z’s, similar observations can be made for other num-

ber of topics as well. For all the methods, there is a general tendency that accuracy

decreases at larger k’s. This is reasonable, because as k increases, we use a greater

number of neighbors to arrive at the classification, which dilutes the quality of clas-

sification. Importantly, in relative terms, the outperformance by PLANE still stands

across different k’s, for the reasons explained above.

Visualization. To gain a sense of the visualization quality obtained by embed-

ding the documents in a two-dimensional scatterplot, we show several examples for

the various datasets.

We begin with the Data Structure (DS) dataset. Figure 4.4(a) shows the visu-

alization generated by PLANE. Each document is a dot placed in the scatterplot

according to their 2D embedding coordinates. Each dot is painted with a color that

represents its sub-field or class. The legend specifies the colors assigned to each

class. Edges are lines between two connected documents. There are two key ob-

servations. First, note how the different classes are quite well-separated from one

another (the class information itself was never used for learning). The red Parallel

documents are at the lower right, while the grey Sorting documents are at the cen-

ter. Second, note how the edges are hardly visible, which is a good sign because

it means connected documents are placed as close neighbors in the visualization

space. Otherwise, we would have witnessed criss-crossing lines all over. These
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(a) PLANE (b) RTM+PE

(c) PLSV (d) KK

Figure 4.4: Visualizations of Data Structure (DS) dataset for Z = 20 (best seen in
color)

observations support the hypothesis that having a joint model for embedding docu-

ments and network results in better embedding overall.

Still for the DS dataset, Figure 4.4(b) for RTM+PE does not show a good sep-

aration between classes, and has many criss-crossing edge lines. This is because

while the network is used to influence the topic distributions, because of the disjoint

embedding through PE, the network effect does not get enforced in the embedding

process. PLSV in Figure 4.4(c) looks more coherent than RTM+PE, but not as

clean as PLANE. For one thing, the grey sorting documents are spread apart, while

in PLANE they are clustered together. For another thing, there are still criss-crossing

edges due to separation of connected documents as PLSV models text content only.

In contrast, KK in Figure 4.4(d) models only network embedding. Thus connected

edges are tightly clustered together. However, because it does not model content,

documents of the same class without connection to each other are spread far apart

(e.g., the red parallel). Due to space constraint, here we do not show SVD (which
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has the lowest accuracy for DS in Figure 4.3(a)).

To show that the observations for PLANE apply to other datasets as well, in

Figure 4.5, we show PLANE’s visualization for HA, ML, and PL datasets. Evidently,

PLANE can group together documents of the same class well, and place connected

documents as neighbors in the visualization space.

4.5.4 Topic Modeling

While our main objective is to improve the embedding of document networks, it is

important to ensure that the gains in embedding and visualization quality have not

come at the expense of the topic model. Since ours is a topic model for a document

network, the appropriate comparison is to a baseline that also models the generation

of both words and links, namely RTM [24]. In the following, we compare PLANE

and RTM, in terms of the topic words, as well as the links.

Topic Interpretability

As modeling topics with embedding is to improve the interpretability of embedding,

we evaluate the topics on how interpretable the topic words are.

Metric. Pointwise Mutual Information (PMI) is an established measure for how

coherent the top words in a topic are [92]. PMI for two words wi and wj is defined

in Equation 4.6.

PMI(wi, wj) = log
p(wi, wj)

p(wi)p(wj)
(4.6)

PMI uses an external corpus to estimate p(wi, wj) and p(wi). As in [92], we use

Google Web 1T 5-gram Version 1 [15], a corpus of n-grams generated from 1 trillion

word tokens. p(wi) is estimated from the frequencies of 1-grams. p(wi, wj) is

estimated from the frequencies of 5-grams. For each topic, we average the pairwise

PMI’s among the topic’s top 10 words. For each model, we average the topic-level

PMI’s. Higher PMI indicates that the words in a topic are correlated, and the topic

is more coherent and interpretable.
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Table 4.3: PMI Scores for Topic Interpretability (Z = 20)
DS HA ML PL Average

PLANE 0.59 0.53 0.43 0.51 0.51
RTM 0.54 0.48 0.51 0.50 0.50

PMI Scores. Table 4.3 shows the PMI scores for the four datasets for Z = 20

topics. The figures for other numbers of topics are consistent as well. Averaging

across the four datasets, PLANE and RTM have very similar PMI’s of around 0.5.

This suggests that PLANE is at least not inferior to RTM, even with the constraint

of modeling embedding coordinates. This shows a great promise by PLANE in

enriching the visualization with coherent semantic interpretability.

Link Generation Probability

In addition to words, both PLANE and RTM also model edges or links. In order

to evaluate their effectiveness in modeling link generation, we compare the two

methods in terms of link prediction. Note that this is confined to an evaluation task,

and our goal is not to propose or compare to state-of-the-art link prediction methods.

For each document (with at least three links), we randomly hide one link. In

total, we have around 13%-14% of all links hidden. The task is thus to predict these

hidden links based on the observations on the texts and the remaining links. To es-

timate these hidden links, for PLANE, we use the document coordinates to compute

the probability of a hidden link according to Equation 4.2. For RTM, we compute

the probability of a hidden link according to [24], which shares a comparable expo-

nential link probability function but based on topic distributions (instead of latent

coordinates).

Metric. One possibility is to compute the likelihood of generating these hid-

den links. However, this may not be an appropriate measure, because we will be

computing only the likelihood of some links being present (but not of links being

absent), thus favoring a model that simply produces higher probability values across

the board for all possible links. For instance, consider how in Equation 4.2, one can
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(a) Hardware and Architecture (HA)

(b) Machine Learning (ML)

(c) Programming Language (PL)

Figure 4.5: PLANE’s Visualizations for Z = 20 (best seen in color)

87



Table 4.4: MRR Scores for Link Prediction (Z = 20)
DS HA ML PL Average

PLANE 0.328 0.207 0.194 0.219 0.237
RTM 0.005 0.009 0.0001 0.002 0.004

produce a higher likelihood simply with a lower η, even while keeping all xi and

xj’s the same, which is inappropriate because the model complexity is in deriving

the coordinates to determine which documents should (or should not) be neighbors.

Therefore, a more appropriate metric is to evaluate whether the model assigns

a higher probability to the hidden link (which is factually present, though not used

for learning) than to other unobserved links. For each document with a hidden

link, we rank all the unobserved links of this document in terms of their generation

probabilities. The highest rank is 1. Intuitively, the hidden link is expected to have

a rank as close to 1 as possible, because it is indeed a factual link that was simply

hidden from the model. We borrow a metric from information retrieval, called mean

reciprocal rank [34] or MRR, which is defined in Equation 4.7, where E ′ is the

set of hidden links, and rank(eij) is the ranking of the hidden link eij among the

unobserved links of the document from which it is hidden. The higher is the MRR

of a method, the better is the method at placing the hidden links in the high ranks.

MRR =
1

|E ′|
∑
eij∈E′

1

rank(eij)
(4.7)

MRR Scores. Table 4.4 shows the MRR scores for the four datasets for Z = 20

topics. The figures for other numbers of topics are consistent as well. We see that

PLANE produces significantly higher MRR scores than RTM across all the datasets.

Averaging across the datasets, PLANE has a score of 0.237, which implies that it

generally places the hidden links in the top 5 in terms of link generation probability.

In contrast, RTM’s score of 0.005 implies that the hidden links tend to be placed

around the two hundredths’ rank positions.

We attribute PLANE’s higher performance in this task to the way we infer the

parameters of the model. As discussed in Section 4.3, by modeling some amount of

“virtual” negative links we force the model to discriminate between close neighbors
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(more likely to be positive links) and distant documents (more likely to be negative

links). In contrast, by modeling only positive links, RTM is not as able to sharply

discriminate genuine neighbors from unrelated documents. The trade-off is that

PLANE requires more run time than RTM, because the former models both positive

as well as “virtual” negative links, whereas RTM models positive links only (of

which there are relatively few in a sparse network).

4.6 Conclusion

We address the problem of embedding a document network’s high-dimensional rep-

resentations in terms of text and network connectivity in a low-dimensional space.

We formulate this as a generative model tying together the various representations of

a document (words, links, topics, and coordinates), which we call PLANE. Through

comprehensive experiments on four real-life datasets extracted from the Cora col-

lection, we show that it outperforms existing baselines in topic modeling, document

embedding, and network embedding, especially in terms of the quality of embed-

ding coordinates (as features in classification and scatterplot visualization). For

future work, we plan to consider extensions such as generalizing to directed graph,

and pursuing computational optimizations such as hyper-threading or parallel pro-

cessing.
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Part II

Modeling Document Representation
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Chapter 5

Modeling Spherical Representation

In this chapter, we address the semantic visualization problem. Given a corpus of

documents, the objective is to simultaneously learn the topic distributions as well

as the visualization coordinates of documents. We propose to develop a semantic

visualization model that approximates L2-normalized data directly. The key is to

associate each document with three representations: a coordinate in the visualiza-

tion space, a multinomial distribution in the topic space, and a directional vector in a

high-dimensional unit hypersphere in the word space. We join these representations

in a unified generative model, and describe its parameter estimation through varia-

tional inference. Comprehensive experiments on real-life text datasets show that the

proposed method outperforms the existing baselines on objective evaluation metrics

for visualization quality and topic interpretability.

5.1 Introduction

In this chapter, we propose a semantic visualization model for data with spherical

representation. This refers to data whose instances can each be represented as a

vector of unit length in a high-dimensional hypersphere [4], with dimensionality

commensurate with the number of features. In other words, we are dealing with

L2-normalized feature vectors as input. One important category of such data that

we focus on in this work is text document. A document can be naturally repre-
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sented as a normalized term vector, as done in the classical vector space model

[105]. Stated more formally, the input to the problem is a corpus of documents

D = {d1, d2, . . . , dN}, where every dn is represented by anL2-normalized term vec-

tor νn. We seek to learn, for each dn, a probability distribution θn over Z topics (se-

mantic), and a coordinate xn on a low-dimensional space (visualization). While we

frame the discussion here in terms of documents and words, our technique is appli-

cable to other data types for which both visualization and semantic interpretability

are important, as long as they can be expressed in terms of spherical representation.

Previous Approach. Jointly modeling topics and visualization coordinates is

pioneered by PLSV [62] (reviewed briefly in Section 2.1.1). It is aimed at dyadic

data, whereby every observation involves a couple (d, w) of word w’s occurrence

in document d. The observations for a document can be summarized as an in-

teger vector of word counts in N|W |, where W is the vocabulary. Like its topic

modeling predecessors [14, 57], PLSV uses the word count vectors to maximize

the likelihood of generating individual words based on the learned latent multi-

nomial distribution over words {P(w|dn)}w∈W . Here, P(w|dn) is obtained from

topics’ word distribution P(w|z) and document’s topic distribution P(z|dn), i.e.,

P(w|dn) =
∑Z

z=1 P(w|z)P(z|dn).

The stated aim of most visualization approaches is to recover a low-dimensional

manifold embedded within the high-dimensional space of the original data [55, 70,

104, 117]. Key to manifold learning is the capacity for approximating the similari-

ties and differences among data instances [9]. In this respect, multinomial modeling

of dyadic data has a couple of downsides [101]. For one thing, it primarily models

word presences, but does not directly model word absences. The likelihood of a

document is defined over only words present in the document. For another thing, it

is also sensitive to document lengths. If one document were to contain two copies

of each word in another document, the two documents would have different like-

lihoods, even though the word distributions in the two documents are effectively

identical.
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Proposed Approach. Spherical representation could address the above-mentioned

issues, leading towards better approximation of similarities among documents, and

thus towards better manifold learning and visualization. In the spherical space, re-

lationships between documents are measured as cosine similarity ∈ [0, 1], which is

the angular distance between two directional unit vectors. Firstly, two documents

would have higher cosine similarity, not only if some words in common are present,

but also if some other words in common are absent. Secondly, the normalization of

all documents to unit vectors effectively neutralizes the impact of document lengths.

Moreover, there is indicative evidence from the literature that a spherical approach

will be promising in terms of dimensionality reduction. For instance, the spheri-

cal topic model SAM [101] performs significantly better than the multinomial topic

model LDA [14], when used as a dimensionality reduction technique.

There are further advantages to spherical representation. For one thing, there is

a greater degree of flexibility in admitting different L2-normalized representations,

e.g., term frequency tf or tf-idf or other feature vectors. For another thing, there is a

greater degree of expressiveness, as an L2-normalized vector can have both positive

and negative elements, representing the degrees of word presences and absences

respectively. Inspired by [101], this expressiveness engenders a change in the topic

definition, from multinomial word distribution to a unit term vector. Given a topic,

we no longer associate a word with a probability value, but rather with a real value

that expresses the word’s presence or absence (the sign) and relative importance (the

weight).

Contributions. Our problem formulation is novel because to the best of our

knowledge, we are the first to address semantic visualization for spherical represen-

tation (first contribution). We propose a generative model called SSE, which stands

for Spherical Semantic Embedding. In Section 5.2.1, we develop the full gener-

ative process of SSE (second contribution). To learn its parameters, we describe

an estimation based on variational inference in Section 5.2.2 (third contribution).

In Section 5.3, we validate SSE through experiments on publicly available real-life
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datasets, showing significant gains in visualization quality and topic interpretability

(fourth contribution). We conclude in Section 5.4.

5.2 Spherical Semantic Embedding

5.2.1 Generative Model

Document Representations. We associate each document with representations in

three different spaces.

• We model the visualization space as a Cartesian plane, where relationships

can be visualized spatially in terms of Euclidean distances. This space is low-

dimensional, and without loss of generality, we assume it has two dimensions

(2D). Each document dn is associated with 2D coordinates xn. This is consis-

tent with visualization techniques oriented towards dimensionality reduction

[55, 117].

• We model the topic space as a (Z − 1)-simplex, where Z is the number of

topics. This is consistent with the practice in most topic models [14, 57, 101].

Each document dn occupies a point θn in the simplex, which codes for a

multinomial distribution over the topics {P(z|dn)}Zz=1.

• We model the word space as a (|W | − 1)-dimensional unit sphere in R|W |,

where W is the vocabulary. Each document dn is associated with a direc-

tional, unit-length vector νn. For instance, νn could be a tf-idf vector, or other

L2-normalized vector. This is consistent with the vector space model [105],

and spherical models [4, 101].

Of the three representations of dn, only νn is observed, while xn and θn are

latent. A key step towards integrating visualization and topic modeling is to define

a mapping between the spaces to ensure a consistency among the representations.

In defining the mapping, we associate each topic z with representations in both the

visualization space φz and the word space τz. The coordinate φz reveals where
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a topics is in the visualization space, allowing users to observe the relationships

between documents and topics. The word vector τz reveals the topic semantics in

terms of the relative importance of various words within τz.

Visualization Space to Topic Space. As both documents and topics have co-

ordinates in the visualization space, their relationship can be expressed in terms of

distances ||xn − φz||. Intuitively, the closer is xn to a topic’s φz, the higher is θn,z

or the probability of topic z for document dn. One framework to relate variables

based on distances is Radial Basis Function or RBF [16], which defines a function

λ(||xn − φz||) in terms of how far a data point (e.g., xn) is from a center (e.g., φz).

The function λ may take on various forms, e.g., Gaussian, multi-quadric, polyhar-

monic spline.

RBF network [13] is frequently used to build a function approximation. We use

an RBF network as a “kernel” for the mapping between coordinates and topic distri-

butions. To express θn as a function of xn, we consider the normalized architecture

of RBF network, with three layers. The input layer consists of one input node (xn).

The hidden layer consists of Z number of normalized RBF activation functions.

Each is centered at φz and computes λ(||xn−φz ||)∑Z
z′=1 λ(||xn−φz′ ||)

. The linear output layer con-

sists of Z output nodes. Each output node yz(xn) corresponds to θn,z, which is a

linear combination of the RBF functions, as shown in Equation 5.1. Here, wz,z′ is

the weight of influence of the RBF function of z′ on the θn,z, with the constraint∑Z
z′=1wz,z′ = 1.

θn,z = yz(xn) =

∑Z
z′=1wz,z′ · λ(||xn − φz′||)∑Z

z′=1 λ(||xn − φz′||)
(5.1)

While Equation 5.1 is the general form, to instantiate a specific mapping func-

tion, we need to determine both the assignment of wz,z′ and the form of the function

λ. In this work, we will experiment with a special case (λ is Gaussian and wz,z′ = 1

when z = z′ and 0 otherwise), which yields the function in Equation 5.2, where Φ

refers to the collective set of φz’s. This specific function has appeared previously in

the baseline [62] that we will compare to, and this design decision helps to estab-
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lish parity for comparative purposes. In future work, we will explore other function

instantiations.

θn,z = P(z|xn,Φ) =
exp(−1

2
||xn − φz||2)∑Z

z′=1 exp(−1
2
||xn − φz′||2)

(5.2)

Topic Space to Word Space. For dn, we also need to bridge θn to its word

space representation νn. As introduced previously, each topic z also has a word

space representation τz. Because θn is essentially a topic distribution, we adopt

a similar practice as in conventional topic model, which represents a document’s

word distribution as a weighted average (based on topic distribution) of the topics’

word distributions. In our context, it means taking a weighted average of the topics’

spherical unit vectors τz’s, weighted by θn,z, followed by L2-normalization to return

the mean vector to unit length, i.e., τn =
∑Z

z=1 θn,z ·τz
||
∑Z

z=1 θn,z ·τz ||
.

To avoid overfitting, instead of equating νn to τn, we assume a probabilistic

process where νn is drawn from a distribution centered at τn. Because νn and τn

are both directional vectors, we turn to directional statistics [83]. In particular,

von Mises-Fisher (vMF) distribution [84] was previously used to model documents

[4, 101]. Equation 5.3 specifies the probability density function (p.d.f.) for a ran-

dom unit vector ν, given mean directional vector µ, and concentration parameter

κ. Note how the p.d.f. is parameterized by the cosine similarity µTν between the

mean direction µ and ν, which is effectively the angular distance between the two

unit vectors. The higher the κ, the more concentrated the distribution is around µ.

The distribution is unimodal for κ > 0, and is uniform for κ = 0. CD is the nor-

malization constant, defined in Equation 5.4, where Ir denotes the modified Bessel

function of the first kind and order r.

vMF(ν;µ, κ) = CD(κ) exp(κµTν) (5.3)

CD(κ) =
κD/2−1

(2π)D/2ID/2−1(κ)
(5.4)

We can then express νn as a draw from a vMF distribution with mean direction

τn, i.e., νn ∼ vMF(τn, κ).
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Figure 5.1: Graphical Model of SSE

Generative Process. We join the three representations into a generative model,

with graphical representation as in Figure 5.1. The generative process of SSE is as

follows:

1. Draw the corpus mean direction: µ ∼ vMF(m,κ0)

2. For each topic z = 1, . . . , Z:

• Draw z’s coordinate: φz ∼ Normal(0, β−1I)

• Draw z’s spherical direction: τz ∼ vMF(µ, ξ)

3. For each document dn, where n = 1, . . . , N :

• Draw dn’s coordinate: xn ∼ Normal(0, γ−1I)

• Derive dn’s topic distribution:

θn,z = P(z|xn,Φ) =
exp(− 1

2
||xn−φz ||2)∑Z

z′=1 exp(− 1
2
||xn−φz′ ||2)

• Derive dn’s spherical average: τn =
∑Z

z=1 θn,z ·τz
||
∑Z

z=1 θn,z ·τz ||

• Draw dn’s spherical direction: νn ∼ vMF(τn, κ)

In Step 1, we draw the corpus mean direction µ. In Step 2, we draw, for each

topic, a visualization coordinate φz and a spherical direction τz. In Step 3, we draw,

for each document, a visualization coordinate xn, which we use to compute topic

distribution θn as a function of document and topics’ coordinates. θn together with

different topics’ τz’s are used to compute the weighted average of topics’ directions,

denoted τn. After normalizing τn to a unit-length vector, we draw νn from a vMF

with mean τn. Though the observed νn is usually positive (e.g., tf-idf ), the latent τn

may contain negative elements, which reflect unlikely words.
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5.2.2 Parameter Estimation

To estimate the parameters in SSE, we employ variational EM with maximum a

posteriori (MAP) estimation. The unknown parameters are the coordinates for

documents (collectively χ = {xn}) and for topics (collectively Φ = {φz}), the

directional vectors for topics (collectively T = {τz}) and the hyperparameters

ξ,m. Given a corpus D, which are represented as L2−normalized term vectors

V = {νn}Nn=1, we infer the posterior distribution P(T , µ|V , χ,Φ, β, γ, ξ,m, κ0, κ)

of the directional vectors for topics (collectively T = {τz}) and the corpus mean

direction µ.

We approximate the posterior using the following variational distribution:

q(T , µ|µ̃, ξ) = q(T |µ̃, ξ)q(µ|m̃, κ0)

where q(τz) = vMF(τz|µ̃, ξ), q(µz) = vMF(µz|m̃z, κ0) and the variational

parameters are µ̃, m̃. Given this variational distribution q, we have a lower bound

L(µ̃, m̃) on the log likelihood with priors over the document and topic visualization

coordinate xn, φz, as follows:

L(µ̃, m̃) = Eq
[

log p(V , T , µ)
]
− Eq

[
log q(T , µ|µ̃, ξ)

]
+

N∑
n=1

log p(xn) +
Z∑
z=1

log p(φz)

= Eq
[

log p(V|T , χ,Φ)
]

+ Eq
[

log p(T |µ, ξ)
]

+ Eq
[

log p(µ)
]
− Eq

[
log p(T |µ̃, ξ)

]
− Eq

[
log p(µ|m̃, κ0)

]
+

N∑
n=1

log p(xn) +
Z∑
z=1

log p(φz)

In the E-step, we optimize the lower bound L(µ̃, m̃) with respect to the varia-

tional parameters µ̃, m̃. In the M-step, the lower bound is optimized with respect

to the parameters χ,Φ, ξ,m. We alternate E and M-steps until some appropriate

convergence criterion is reached. We use gradient-based numerical optimization

method such as the quasi-Newton method to update µ̃, χ,Φ, ξ.

E-step. Let ρn = E
[
τn
]T
νn where n ∈ {1...N} ranges over the documents.
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Taking the gradients of L(µ̃, m̃) w.r.t µ̃, we have:

5µ̃zL = AW (ξ)AW (κ0)ξm̃z + κ

N∑
n=1

5µ̃zρz

where Ap(c) denotes the mean resultant length of a vMF distribution of dimension

p with concentration c. Since E
[
τn
]

does not have a closed form, following [101]

we approximate it as:

E
[
τn
]
≈ E

[ Z∑
z=1

θn,z · τz
]
E
[
||

Z∑
z=1

θn,z · τz||2
]−1/2

We refer to E
[
||
∑Z

z=1 θn,z · τz||2
]

as Sn. ρn will be approximated as:

ρn ≈ AW (ξ)S−1/2
n (µ̃θn)Tνn

where

Sn = (1− AW (ξ)2)
∑
z

θ2
nz + AW (ξ)2||µ̃θn||2

Taking the gradients of ρn w.r.t µ̃j , yields:

5µ̃jρn = AW (ξ)
(θn,jνn√

Sn
− (µ̃θn)Tνn

2S
3/2
n

.5µ̃j Sn
)

where

5µ̃jSn = 2AW (ξ)2θn,jµ̃θn

The variational corpus mean m̃ has a closed form update rule:

m̃ ∝ κ0m+ AW (ξ)ξ
Z∑
z=1

µ̃z

M-step. In the M-step, taking gradients of L(µ̃, m̃) w.r.t ξ, we have:

5ξL = (5ξAW (ξ)ξ + AW (ξ))(AW (κ0)m̃T
∑
z

µ̃z − Z) + κ

N∑
n=1

5ξρn
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where

5ξρn =
(
5ξ AW (ξ)S−1/2

n − 1

2
AW (ξ)S−3/2

n 5ξ Sn
)
(µ̃θn)Tνn

and

5ξSn = 2AW (ξ)5ξ AW (ξ)(||µ̃θn||2 −
∑
z

θ2
nz)

The corpus mean m has a closed form update rule as follows:

m ∝
∑
z

µ̃z

Taking the gradients of L(µ̃, m̃) w.r.t xn, we have:

5xnL = κAW (ξ)
(
− 5xnSn

2S
3/2
n

µ̃θn +
µ̃5xn θn√

Sn

)T
νn − γxn

where

5xnSn = 2(1− AW (ξ)2)
∑
z

5xnθnzθnz + 2AW (ξ)2θTn µ̃
T µ̃5xn θn

Taking the gradients of L(µ̃, m̃) w.r.t φz, we have:

5φzL = κAW (ξ)
(
− 5φzSn

2S
3/2
n

µ̃θn +
µ̃5φz θn√

Sn

)T
νn − βφz

where

5φzSn = 2(1− AW (ξ)2)
∑
z′

5φzθnz′θnz′ + 2AW (ξ)2θTn µ̃
T µ̃5φz θn

5.3 Experiments

We conduct comprehensive experiments to evaluate the effectiveness of SSE, in

terms of the quality of its outputs (primarily visualization, but also topic model).
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5.3.1 Experimental Setup

Datasets. We rely on three publicly-available1, real-life datasets which are 20News,

Reuters8 and Cade12 [20]. The description of the three datasets as well as how we

process the data are given in Section 3.5.1.

L2-normalized Representation. SSE admits different options for the L2 represen-

tation of a document. The option that is most well-recognized in the information

retrieval literature is tf-idf. We experimented with several alternatives, such as word

count or term frequency (tf ), and found tf-idf to give the best results. This echoes

the finding in [101], which concluded that tf-idf was a better document representa-

tion than tf. Thus, we will use tf-idf in the experiments.

5.3.2 Comparative Methods

The comparative methods, and their attributes, are summarized in Table 5.1. SSE

is our proposed method. A proper comparison is to another approach that jointly

models visualization and topics, i.e., PLSV [62], which we use as the primary base-

line. For completeness, we include other baselines in visualization (PE). While not

direct competitors, they allow us to highlight certain aspects of our model.

PLSV [62] is a semantic visualization method based on multinomial modeling

for dyadic data. Therefore, it is the proper baseline to SSE, allowing us to investigate

the effects of SSE’s modeling of spherical representation. For PLSV, we use the

same settings as in the original paper [62] (β = 0.1N and γ = 0.1Z, which we

apply to SSE as well). We implement PLSV on our own (its authors have not

made their implementation available), and verify that the results are similar to those

reported in the original paper [62].

PE [61] stands for Parameteric Embedding. It is also one of the state-of-the-art

approaches in visualization, but is aimed at visualizing discrete probability distri-

butions (e.g., class or topic distributions). PE cannot stand alone, as it needs to be

coupled with a method that produces topic distributions. Including PE allows us to

1http://web.ist.utl.pt/acardoso/datasets/
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Visualization Topic model Joint model Spherical Representation
SSE X X X X
PLSV X X X
PE (SAM) X X X
PE (LDA) X X

Table 5.1: Comparative Methods

investigate the effects of modeling visualization and topic model jointly, as opposed

to obtaining topic model separately before feeding it into PE. To produce the topic

distributions, we experiment with two other topic models, as follows. PE (LDA)

couples PE with LDA [14], which operates in the simplex word space. For LDA,

we use the implementation2 by its first author D. Blei. PE (SAM) couples PE with

SAM [101], which operates in the spherical word space. For SAM, we use the im-

plementation3 by an author A. Waters with default settings (κ0 = 10, κ = 5000,

which we apply to SSE as well). [62] showed that PE with PLSA [57] is inferior to

PLSV.

For visualization, we will be comparing SSE against PLSV, PE (SAM) and PE

(LDA). We also investigate the topic models, comparing SSE against PLSV, and

the two topic models used with PE, i.e., SAM and LDA. As input, for models with

spherical representation (see Table 5.1), we use tf-idf vector (as explained in Sec-

tion 5.3.1). For the multinomial models, we use their regular inputs (word counts).

5.3.3 Visualization Quality

Metric. The utility of a scatterplot visualization is in allowing the user to perceive

similarities between documents through their distances in the visualization space.

Our emphasis is on the strength of the dimensionality reduction, rather than on the

user interface aspect. There exists established metrics to measure dimensionality

reduction objectively.

One such approach is to rely on the available class labels as ground truth. Intu-

itively, documents of the same class are more likely to be similar than documents

2http://www.cs.princeton.edu/ blei/lda-c
3https://github.com/austinwaters/py-sam
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Figure 5.2: Visualization Quality: Vary Number of Topics Z
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Figure 5.3: Visualization Quality: Vary Number of Neighbors k

from different classes. A good visualization will “encode” this intuition, by plac-

ing documents of the same class nearby, and documents of different classes apart

in the visualization space. Since dimensionality reduction means that the lower-

dimensional representation still preserves the “properties” of the data, we can mea-

sure how well a visualization output reflects this intuition, by employing each doc-

ument’s visualization coordinates as a reduced “feature vector” in a classification

task.

The choice of the classification method is not germane, because it is the feature

vector that is being evaluated. In favor of simplicity, we employ kNN classification.

For each document, we hide its class label, and predict a label by majority voting

among its k-nearest neighbors as determined by Euclidean distance on the visual-

ization space. The accuracy at k or accuracy(k) is the fraction of documents whose

predicted label based on kNN matches the true label. The higher the accuracy, the

better is a visualization at encoding the class information. 1 is the highest possible

accuracy, and 0 the lowest. The same metric was also used in [62].
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For relative comparison, we set k = 50, i.e., measuring accuracy(50), which is

appropriate, as the datasets contain 50 documents from each class. Setting k << 50

may not sufficiently penalize a visualization that splits documents of the same class

into multiple small clusters in different localities.

Vary Number of Topics Z. We now compare the performance of various meth-

ods. In Figure 5.2, we plot the accuracy(50) as we vary the number of topics Z

from 10 to 50. The three sub-plots (a), (b), and (c) correspond to the three datasets

20News, Reuters8, and Cade12 respectively.

In terms of SSE’s performance as the number of topics varies:

(#1) As the number of topics Z increases, initially there is an improvement in

accuracy, most notably between Z = 10 and Z = 30. Thereafter, accuracies either

remain flat or drop slightly as Z increases further. The best performance by SSE is

0.66 on 20News (at Z = 30), 0.77 on Reuters8 (at Z = 20), and 0.41 on Cade12

(at Z = 30).

(#2) SSE achieves a drastic reduction in dimensionality from thousands (vocab-

ulary size) to two (visualization), while preserving the relationship between data

points. The above accuracies as measured in the reduced dimensionality (visual-

ization) approach closely the accuracies of kNN when using the full dimensionality

(i.e., tf-idf input vectors), which are 0.73 on 20News, 0.85 on Reuters8, and 0.52

on Cade12. This shows that SSE’s low-dimensional representation has high ap-

proximation ratios of 90% for 20News and Reuters8 and 78% for Cade12 in kNN

accuracies, underlining the quality of dimensionality reduction achieved.

(#3) The varying accuracies across datasets indicate their relative difficulties,

with 20News in between Reuters8 (the least difficult) and Cade12 (the most diffi-

cult).

In terms of SSE’s comparison to baselines:

(#1) SSE has significantly higher accuracies than PLSV (the main baseline). In

relative terms, SSE improves upon PLSV’s accuracy by 30–48% on 20News, by

12–16% on Reuters8, and by 22–36% on Cade12. This indicates that spherical

104



representation of word space helps to improve the visualization.

(#2) SSE also outperforms PE (SAM) by a large margin. Since SSE and SAM

share a spherical representation of topics in the word space, this outperformance

by SSE can be attributed to jointly modeling topics and visualization. This is fur-

ther suported by how PLSV (which also jointly models topics and visualization)

outperforms PE (LDA), even as they share multinomial modeling of topic words.

Vary Number of Neighbors k. In Figure 5.3 we investigate the effects of dif-

ferent neighborhood size k’s at specific settings of topics (Z = 30 for 20News,

Z = 20 for Reuters8, and Z = 30 for Cade12). These are Z settings where SSE

performs best, but similar observations can be drawn for other Z settings. The focus

here is on the number of neighbors, rather than on the relative comparison against

the baselines again, so we apply the same Z for all methods.

(#1) As k increases from 10 to 50, the accuracy(k) tends to decrease. This is

expected because a small k is very conservative, where we are only concerned with

the immediate neighbors, which tend to be very similar. As k increases, the neigh-

borhood considered in the kNN is larger, with a higher chance of having neighbors

of a different class.

(#2) The gradients of the decrease vary among methods. Most methods, such as

SSE, are relatively stable. This stability across different k’s is a good sign, indicat-

ing that documents of the same class are placed in the same general locality.

In summary, the experiments show that SSE overall produces a significant gain

in visualization quality over the baselines, as measured in terms of its accuracy in

kNN classification with coordinates as features.

5.3.4 Topic Interpretability

We also investigate whether the gain in visualization comes at the expense of the

topic model. We compare SSE with baselines PLSV, LDA, and SAM in terms of

topic model.
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Metric. There are several evaluation methods for topic models proposed in the

literature. One is perplexity [14], which measures the log-likelihood on unseen test

data. Perplexity is intrinsic, i.e., dependent on the specific probability model, and

may be inappropriate when comparing models with drastically different probability

models, e.g., PLSV or LDA that uses multinomial models, versus SSE or SAM that

uses vMF distributions. We thus need an extrinsic evaluation that compares these

models using external validation.

In our setting, interpretability is important, because the topic model serves to

provide semantics to the visualization of the data at hand. To human subjects, inter-

pretability is closely related to coherence [91], i.e., how much the top keywords in

each topic are “associated” with each other. After an extensive study of evaluation

methods for coherence, [91] identifies Pointwise Mutual Information (PMI) as the

best measure, in terms of having the greatest correlation with human judgments. We

therefore adopt PMI as a metric. PMI is based on term cooccurrences. For a pair

of words wi and wj , PMI is defined as log
p(wi,wj)

p(wi)p(wj)
. For a topic, we average the

pairwise PMI’s among the top 10 words of that topic. For a topic model, we aver-

age PMI across the topics. Intuitively, PMI is higher (better), if each topic features

words that are highly correlated with one another.

Key to PMI is the use of an external corpus to estimate p(wi, wj) and p(wi).

Following [92], we use Google Web 1T 5-gram Version 1 [15], a corpus of n-grams

generated from 1 trillion word tokens. p(wi) is estimated from the frequencies of

1-grams. p(wi, wj) is estimated from the frequencies of 5-grams, as recommended

in [92]. We show the PMI for the English-based 20News in Figure 5.4(a) and

Reuters8 in Figure 5.4(b). Cade12 is not included because we do not possess a

large-scale n-gram corpus for Brazilian Portuguese.

Vary Number of Topics Z. From Figure 5.4, we draw the following obser-

vations on topic interpretability. (#1) SSE outperforms PLSV, and SAM outper-

forms LDA, in terms of PMI scores, across various topic settings, on 20News and

Reuters8. It indicates that spherical models (SSE and SAM) produce topics that are
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Figure 5.4: Topic Interpretability (PMI Score)

more coherent and interpretable than multinomial models (PLSV and LDA). This

is consistent with the conclusion reached in [101], which conducts an evaluation of

coherence using human judges. This concurrence helps to show that our automatic

evaluation on an external corpus is consistent with human judgments.

(#2) SSE performs similarly to SAM, with slightly higher PMI scores on 20News,

but comparable scores onReuters8. This can be explained by their common model-

ing of topics in the spherical space. Since SSE also needs to deal with visualization

constraints, it is notable that the gains in visualization quality have not hurt, and

have even sometimes helped the topic model.

(#3) PLSV performs similarly to LDA on 20News, but slightly worse onReuters8,

which is not surprising since they both share a similar multinomial modeling of top-

ics but PLSV also faces constraints to fit the visualization task.

In summary, the experiments show that by incorporating spherical represen-

tation, SSE’s significant gain in visualization does not come at the expense of the

topic model.

5.3.5 Qualitative Comparison

To gain a sense of the visualization quality, we show example visualization outputs

for 20News and Reuters8. Cade12 is not shown here due to space constraint.

20News. The visualizations for 20News are shown in Figure 5.5 for Z = 30.

Each document has a coordinate in the scatterplot. To aid identification, documents
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a. SSE b. PLSV

d. PE (SAM) c. PE (LDA)

Figure 5.5: Visualization of 20News for Z = 30 topics (best viewed in color)

are drawn with a colored marker based on their class (see legend). Topics are drawn

as black, hollow circles.

SSE’s visualization in Figure 5.5(a) shows better separation of different classes.

For instance, there are distinct blue cluster and purple cluster on the right for rec.sport.hockey

and rec.sport.baseball classes respectively, green and red clusters on the lower right

for rec.motorcycles and rec.autos, etc. Interestingly, not only are documents of the

same class placed nearby, but related classes are also neighboring one another, with

recreational classes rec.* on the lower right, computer classes comp.* on the lower

left, science clases sci.* at the center and upper left, while classes related to politics

and religion are on the upper right. Comparatively, PLSV in Figure 5.5(b) suf-

fers from greater crowding at the mid-section. PE (LDA) in Figure 5.5(d) and PE

(SAM) in in Figure 5.5(e) are weaker. The relative ranking in visualization quality

largely mirrors the earlier finding on quantitative accuracy, with SSE being the best,

followed by PLSV, and then the two PE approaches.
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a. SSE b. PLSV

d. PE (SAM) c. PE (LDA)

Figure 5.6: Visualization of Reuters8 for Z = 20 topics (best viewed in color)

Topic 0 Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8 Topic 9
5 Most Positive Weights

hockey bike car window apple jesus god israel doctor space
team dod engine software sale christ religion israeli patient launch
cup motorcycle mile product monitor christian truth arab treatment moon
playoff ride ford price computer god belief jew medicine flight
nhl rider mustang user price sin existence jewish symptom nasa

5 Most Negative Weights
pitch ford circuit video scsi-2 scholar reporter encryption objective algorithm
pitcher detector amp bus scsi-1 addition government armenian religion file
inning oort board slot burst wingate livesey algorithm jew driver
bullpen sensor lady wiretap scsi sea corruption science key nice
giant firearm 1983 ide 16-bit livesey theological armenia god motorcycle

Table 5.2: Positive and Negative Words in Each Topic for 20News by SSE for
Z = 30 (a selection of 10)

To show that the SSE’s visualization is backed by a good topic model, we show

some topic words in Table 5.2. One property of spherical representation is that

each topic may have both positive and negative words. We show the five most

positive words, and the five most negative words. Only 10 topics out of 30 are

shown due to space constraint. Looking at the positive words, we see that the topics

cover some classes very well, such as hockey, motorcycle, car, windows, apple,
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christianity, religion, middle eastern politics, medicine, and space. Looking at the

negative words, we see that the topics also define what classes they are not. Topic 0

is about hockey, and not baseball. Topic 1 is about motorcycles, and not cars. Topic

3 is about software, and not hardware.

Reuters8. The visualizations for Reuters8 are shown in Figure 5.6 for Z = 20.

Generally, it is an easier dataset, and most methods perform better than for 20News.

Comparatively, SSE still produces the clearest separation between classes, and sim-

ilar observations apply as before.

5.4 Conclusion

In this work, we address the problem of semantic visualization that jointly mod-

els visualization and topics. Our model, Spherical Semantic Embedding or SSE

is designed for data with spherical representation, i.e., L2−normalized term vec-

tors. Its generative model associates each document with a triplet of representations,

namely: a coordinate in the Euclidean visualization space, a multinomial topic dis-

tribution in the topic space, as well as a normalized term vector in the spherical

word space. Comprehensive experiments on benchmark datasets show that SSE

shows significantly improved performance when compared to existing state-of-the-

art baselines in terms of visualization quality, as well as topic interpretability.
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Chapter 6

Modeling Bag of Word Vectors

In this chapter, we address the problem of semantic visualization for short texts.

Such documents are increasingly common, including tweets, search snippets, news

headlines, or status updates. Due to their short lengths, it is difficult to model seman-

tics as the word co-occurrences in such a corpus are very sparse. Our approach is to

incorporate auxiliary information, such as word embeddings from a larger corpus,

to supplement the lack of co-occurrences. This requires the development of a novel

semantic visualization model that seamlessly integrates visualization coordinates,

topic distributions, and word vectors. We propose a model called GaussianSV,

which outperforms pipelined baselines that derive topic models and visualization

coordinates as disjoint steps, as well as semantic visualization baselines that do not

consider word embeddings.

6.1 Introduction

As formulated in Section 1.1, semantic visualization refers to jointly modeling top-

ics and visualization. Given a corpus of documents, we seek to learn for each doc-

ument, its coordinate in a 2D Euclidean space for visualization, as well as its topic

distribution. Of primary concern in this chapter is semantic visualization for short

texts, which make up an increasing fraction of texts generated today, owing to the

proliferation of mobile devices and prevalence of social media. For instance, tweets
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are limited to 140 characters. Other types of short text, e.g., search snippets, news

headlines, or status updates are not much longer. Short text’s limitation in modeling

semantics is well-documented in various contexts [87, 109, 112].

Existing semantic visualization models are not designed for short texts. For ex-

ample, PLSV [62] represents documents as bags of words, and topic distributions

are inferred from word co-occurrences in documents. This assumes sufficiency in

word co-occurrences to discover meaningful topics. This may be valid for regular-

length documents, but not for short texts, due to the extreme sparsity of words in

such documents. Methods based on tf-idf vectors, such as SSE [74] would also suf-

fer, because tf-idf vectors are not efficient for short text analysis [126]. Many words

appear only once in a short document, and may appear in only a few documents.

Consequently tf and idf are not very distinguishable in short texts.

Approach. There are several possible directions to deal with short text. Not

all are suitable for semantic visualization. For instance, it is possible to combine a

few short texts into a longer “pseudo-document”, e.g., grouping tweets of one user.

However, this would not allow us visualize individual short texts, in order to view

their relationships, as they are now aggregated into one pseudo-document displayed

as a single element. For another instance, we could constrain the topic model to

assign one topic to all words within a short text to enforce word co-occurrences.

However, this still would not fully resolve the issue of the sparsity of word co-

occurrences.

The direction taken in this chapter is to attack the main issue of sparsity, by

supplementing short texts with auxiliary information from a larger external corpus.

Outside of semantic visualization, this was explored in the context of topic modeling

(without visualization), by incorporating topics learned from Wikipedia [100] or

jointly learning two sets of topics on short and auxiliary long texts [64].

Specifically, we seek to leverage word embeddings, which have gained increas-

ing attention for their ability to express the conceptual similarity of words. Models

such as Word2Vec [88] and GloVe [99] learn a continuous vector in an embedding
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space for each word. They are trained on a large corpora (e.g., Wikipedia, Google

news). We postulate that word vectors would be a useful form of auxiliary infor-

mation in the context of semantic visualization for short texts, as the conceptual

similarities learned from the huge corpus and encoded in word vectors can supple-

ment lack of word co-occurrences in short-texts.

There are two potential approaches to using word vectors. The first is what we

term a pipelined approach, by employing topic models that work with word vectors

[37, 58] to produce the topic distributions of short texts, which are then mapped to

visualization coordinates using an appropriate dimensionality reduction technique.

The second is what we term a joint approach, by designing a single model that

incorporates visualization coordinates, topic distributions, and word vectors within

an integrated generative process. Inspired by the precedence established by previous

semantic visualization works on bag of words [62] showing the advantage of a joint

approach, we surmise that joint modeling is a promising approach for semantic

visualization using word embeddings.

Contributions. We make the following contributions. Firstly, as far as we are

aware, we are the first to propose semantic visualization for short texts. Secondly,

we design a novel semantic visualization model that leverages word embeddings.

Our model, called Gaussian Semantic Visualization or GaussianSV, assumes that

each topic is characterized by a Gaussian distribution on the word embedding space.

Section 6.2 presents the model in detail including its generative process as well as

how to learn its parameters based on MAP estimation. Thirdly, we evaluate our

model on two public real-life short text datasets in Section 6.3. To validate our

joint modeling, one class of baselines consist of pipelined approaches that apply

dimensionality reduction to the outputs of topic models with word embeddings. To

validate our modeling of word embeddings, the other class of baselines consist of

semantic visualization models not using word vectors.
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Figure 6.1: Graphical Model of GaussianSV

6.2 Gaussian Semantic Visualization

In this section, we describe our proposed model GaussianSV, whose graphical model

is shown in Figure 6.1.

Our input is a corpus of documents D = {d1, . . . , dN}. Each document dn is

a bag of words. Denote wnm to be the mth word in document dn, and Mn to be

the number of words in dn. Each word w in the vocabulary W is represented as a

p-dimensional continuous vector, which has been learned from an external corpus

using some word embedding model. For popular word embeddings [88, 99], p is

usually in the hundreds.

Our objective is two-fold. First, we seek to derive as output the visualization

coordinate xn for each document dn. Without loss of generality, in the following,

we assume xn is 2-dimensional for visualization. Second, we also seek to derive

each document’s topic distribution over Z topics {P(z|dn)}Zz=1. Each topic z is as-

sociated with a probability distribution {P(w|z)}w∈W over words in the vocabulary

W . The words with the highest probabilities given a topic usually help to provide

some interpretable meaning to a topic.

6.2.1 Generative Process

In a conventional topic model, such as LDA [14] or PLSA [57], a topic is repre-

sented by a multinomial distribution over words. Some previous works on semantic

visualization [62, 75] are also based on such topic representation.

The key difference is that in our context a word is not just a discrete outcome of

a multinomial process, but rather a continuous vector in the embedding space. We

need another way to characterize a topic, as well as to model the generation of words
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due to that topic. Inspired by [37], we associate each topic z with a continuous

vector µz resident in the same p-dimensional word embedding space. This allows

us to model the word generation due to a topic as a Gaussian distribution, centered

at the µz vector, with spherical covariance. In other words, a word wnm belonging

to topic z will be drawn according to the following probability:

P(wnm|µz, σ) =
( σ

2π

) p
2 exp(−σ

2
‖ wnm − µz ‖2), (6.1)

where σ is a hyper-parameter.

To derive the visualization, in addition to the coordinate xn associated with each

document dn, we also assign each topic z a latent coordinate φz in the same visu-

alization space. With documents and topics residing in the same Euclidean space,

spatial distances between documents and topics can represent their relationship. In-

tuitively, documents close to each other would tend to talk about the same topics

(that are also located near those documents). We thus express a document dn’s

distribution over topics, in terms of the Euclidean distances between xn and topic

coordinate φz, as follows:

P(z|xn,Φ) =
exp(−1

2
||xn − φz||2)∑Z

z′=1 exp(−1
2
||xn − φz′||2)

(6.2)

where P(z|xn,Φ) is the probability of topic z in document dn and Φ = {φz}Zz=1 is

the set of topic coordinates.

Our objective is to derive the coordinates of documents and topics in the vi-

sualization space, as well as the distribution over Z topics {P(z|dn)}Zz=1 for each

document dn. We also derive the mean µz for each topic z. Note that we do not

derive word vectors, but consider them as input to our model.

The generative process is now described as follows:

1. For each topic z = 1, . . . , Z:

(a) Draw z’s mean: µz ∼ Normal(µ, σ−1
0 I)

(b) Draw z’s coordinate: φz ∼ Normal(0, ϕ−1I)
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2. For each document dn, where n = 1, . . . , N :

(a) Draw dn’s coordinate: xn ∼ Normal(0, γ−1I)

(b) For each word wnm ∈ dn:

i. Draw a topic: z ∼ Multi({P(z|xn,Φ)}Zz=1)

ii. Draw a word: wnm ∼ Normal(µz, σ
−1I)

The first step concerns the generation of topics’ mean vectors and visualization

coordinates. The second step concerns the generation of documents’ coordinates,

and words (represented as word vectors) within each document.

Notably, by representing documents and topics in the same visualization space,

as well as words and topics in the same word embedding space, the topics play a

crucial role as conduits between the two spaces. Therefore, documents that contain

similar words are more likely to share similar topics. Here, “similar” words could

be the same words, frequently co-occurring words, and owing to the use of word

embeddings: also different words that are close in the word embedding space. For

short texts in particular, the latter is expected to be especially significant, because

of lower word frequencies and weaker role of word co-occcurrences.

6.2.2 Parameter Estimation

The parameters are estimated based on maximum a posteriori estimation (MAP) us-

ing EM algorithm [39]. The unknown parameters that need to be estimated include

document coordinates χ = {xn}Nn=1, topic coordinates Φ = {φz}Zz=1, and topic

mean vectors Π = {µz}Zz=1, collectively denoted as Ψ = {χ,Φ,Π}.

Given the generative process described earlier, the log likelihood can be ex-

pressed as follows:

L(Ψ|D) =
N∑
n=1

Mn∑
m=1

log
Z∑
z=1

P(z|xn,Φ)P(wnm|µz, σ) (6.3)

The conditional expectation of the complete-data log likelihood with priors is as
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follows:

Q(Ψ|Ψ̂) =
N∑
n=1

Mn∑
m=1

Z∑
z=1

P(z|n,m, Ψ̂) log
[
P(z|xn,Φ)P(wnm|µz, σ)

]
+

N∑
n=1

log(P(xn)) +
Z∑
z=1

log(P(φz)) +
Z∑
z=1

log(P(µz)),

where Ψ̂ is the current estimate. P(z|n,m, Ψ̂) is the class posterior probability

of the nth document and the mth word in the current estimate. P(xn) and P(φz)

are Gaussian priors with a zero mean and a spherical covariance for the document

coordinates xn and topic coordinates φz:

P(xn) =
( γ

2π

)D
2

exp
(
− γ

2
‖ xn ‖2

)
, (6.4)

P(φz) =
( ϕ

2π

)D
2

exp
(
− ϕ

2
‖ φz ‖2

)
, (6.5)

where we set the hyper-parameters to γ = 0.1Z and ϕ = 0.1N following PLSV

[62].

We put a Gaussian prior over µz with hyper-parameter σ0 and mean µ which is

set to the average of all word vectors in the vocabulary.

P(µz) =
(σ0

2π

) p
2 exp(−σ0

2
‖ µz − µ ‖2) (6.6)

We use EM algorithm to estimate the parameters. In the E-step, we compute

P(z|n,m, Ψ̂) as in Equation 6.7. We then update Ψ = {χ,Φ,Π} in the M-step.

µz is updated using Equation 6.8. To update φz and xn, we use gradient-based

numerical optimization method such as the quasi-Newton method [79] because the

gradients cannot be solved in a closed form. We alternate the E- and M-steps until

some appropriate convergence criterion is reached.

E-step:

P(z|n,m, Ψ̂) =
P(z|x̂n, Φ̂)P(wnm|µ̂z, Σ̂z)∑Z

z′=1 P(z′|x̂n, Φ̂)P(wnm|µ̂z′ , Σ̂z′))
(6.7)
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M-step:

∂Q(Ψ|Ψ̂)

∂φz
=

N∑
n=1

Mn∑
m=1

(
P(z|xn,Φ)− P(z|n,m, Ψ̂)

)
(φz − xn)− βφz

∂Q(Ψ|Ψ̂)

∂xn
=

Mn∑
m=1

Z∑
z=1

(
P(z|xn,Φ)− P(z|n,m, Ψ̂)

)
(xn − φz)− γxn

µz =

∑N
n=1

∑Mn

m=1

(
P(z|n,m, Ψ̂)σwnm

)
+ σ0µ∑N

n=1

∑Mn

m=1 P(z|n,m, Ψ̂)σ + σ0

(6.8)

6.3 Experiments

The objective is to evaluate the effectiveness of GaussianSV for visualizing short

texts and the quality of its topic model.

6.3.1 Experimental Setup

Datasets. We use short texts from two real-life public datasets. The first is BBC1

[49], which consists of 2,225 BBC news articles from 2004-2005, divided into 5

classes. The second is SearchSnippet2 [100], which consists of 12,340 Web search

snippets categorized into 8 classes. For each BBC article, we only use its title and

headline, which is comparable in length to SearchSnippet. For word embedding,

we use the pre-trained 300-dimensional word vectors from Word2Vec trained on

Google News3. For each dataset, we remove stopwords, perform stemming, and

remove words that do not have pre-trained word vectors. The average document

length is 14.1 words for BBC and 14.9 words for SearchSnippet.

Although the datasets have classes, the class information is not used for learn-

ing, as semantic visualization is an unsupervised task. The classes are used later for

validation, with the hypothesis that a good visualization would tend cluster docu-

ments of the same class. Following the practice in previous semantic visualization

works [62, 75], for each dataset, we sample 50 documents per class in order to

1http://mlg.ucd.ie/datasets/bbc.html
2http://jwebpro.sourceforge.net/data-web-snippets.tar.gz
3https://code.google.com/archive/p/word2vec/
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create a well-balanced dataset. Therefore, each sample of SearchSnippet has 400

documents, and that of BBC has 250 documents respectively. As the methods are

probabilistic, we create 5 samples for each dataset, and run each sample 5 times.

The reported performance numbers are averaged across 25 runs.

Comparative Methods. We compare our GaussianSV4 model to two classes of

baselines that generate both topic model and visualization coordinates, as listed in

Table 6.1. GLDA [37] modeled a topic as a distribution over word vectors. LCTM

[58] modeled a topic as a distribution of concepts, where each concept defined an-

other distribution of word vectors. GPUDMM [78] and LFDMM [93] extended

DMM [94] that assigned all words in a short text to only one topic. While these

topic models were not meant for visualization, their output topic distributions could

be mapped to a 2D space using the dimensionality reduction meant for probability

distributions, i.e., Parametric Embedding or PE [61]. In Section 6.3, we will com-

pare to such pipelined baselines involving GLDA, LCTM, and GPUDMM (which

had been shown to outperform LF-DMM in [78]).

Visualization Topic model Joint model Word vectors
GaussianSV X X X X
PLSV X X X
SEMAFORE X X X
SSE X X X
GLDA/PE X X X
LCTM/PE X X X
GPUDMM/PE X X X

Table 6.1: Comparative Methods

The first class of baselines are semantic visualization techniques that do not rely

on word vectors. These include PLSV5, SEMAFORE6, and SSE7. Comparison to

these models help to validate the contributions of word vectors.

The second class of baselines are not semantic visualization models per se.

4We choose appropriate values for ρ0 and ρ. ρ0 = 10000 and ρ = 100 work well for most of the
cases in our experiments.

5We use the implementation by https://github.com/tuanlvm/SEMAFORE.
6We use the author implementation in https://github.com/tuanlvm/SEMAFORE.
7We use the implementation obtained from the authors.
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Figure 6.2: kNN Accuracy Comparison on BBC
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Figure 6.3: kNN Accuracy Comparison on SearchSnippet

Rather they are a pipeline of topic models that incorporate word vectors, i.e., GLDA8,

LCTM9, and GPUDMM10, followed by PE [61] for mapping topic distributions into

visualization space. Comparison to these help to validate the contributions of joint

modeling.

6.3.2 Visualization Quality

Metric. A good visualization is expected to keep similar documents close, and keep

different documents far in the visualization space. We rely on k nearest neighbors

8We use the author implementation at https://github.com/rajarshd/Gaussian_
LDA, set degree of freedom ν = 1000p, and use default values for other parameters.

9We use the author implementation at https://github.com/weihua916/LCTM. The
number of concepts is 500, and the noise of each concept is 0.001. Other parameters are set to
default.

10We use the author implementation at https://github.com/NobodyWHU/GPUDMM with
default parameters.
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(kNN) classification accuracy to measure the visualization quality. This is an estab-

lished metric for semantic visualization [62, 74, 75] for objectivity and repeatability.

For each document, we hide its true class and assign it to the majority class deter-

mined by its k nearest neighbors in the visualization space. The accuracy is the

fraction of documents that are assigned correctly to its true class.

Results. We report kNN accuracy on BBC in Figure 6.2 and on SearchSnippet in

Figure 6.3. At first, we set k = 50 as the datasets contain 50 documents from each

class. Later, we also show kNN accuracy at different k.

In Figure 6.2a and Figure 6.3a, we vary the number of topics Z. The results

show that methods with word vectors (i.e., GaussianSV, GLDA/PE, LCTM/PE and

GPUDMM/PE) deal with short texts better than conventional semantic visualization

techniques (i.e., PLSV, Semafore and SSE). The latter suffer due to the sparsity of

word co-occurrences.

Among those leveraging word vectors, our method GaussianSV performs sig-

nificantly better than the others. For BBC, comparing to LCTM/PE that has the

closest performance, we gain 4-5% improvement for 10 to 25 topics. Paired sam-

ples t-test indicate that the improvement is significant at 0.05 level or lower in all

cases, except for Z = 25. At 5 topics, LCTM/PE is slightly better, but it is not sig-

nificant even at 0.1 level. For SearchSnippet, except for Z = 5, we beat the two

closest baselines GLDA/PE and LCTM/PE by 4-14% with statistical significance at

0.05 level or lower. These improvements show that joint modeling to leverage word

embeddings is better for semantic visualization of short texts.

In Figures 6.2b and 6.3b, we vary k while fixing Z = 10. The performances

are not affected much by k. Similar observations regarding the comparisons can be

drawn as before.

Example Visualizations. Figure 6.5 shows the visualization of each method on

BBC. Documents are represented as coloured points placed according to their

coordinates. Topic coordinates are represented as hollow circles. GaussianSV sep-

arates the 5 classes well. PLSV tends to mix the classes together. Semafore is
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better than PLSV, as it produces some clusters, although it cannot differentiate

documents belonging to business and tech. SSE differentiates those two classes

better, but the business documents are spread all over instead of being grouped

together like in GaussianSV’s visualization. SSE also mixes some documents be-

longing to entertainment, politics and sport at the bottom, which is not the case

in GaussianSV’s visualization. The classes are not separated well in GLDA/PE’s

visualization, especially for those documents at the center. GPUDMM/PE sepa-

rates business and tech well, but it divides politics into two sub-clusters which

could reduce the kNN accuracy. In addition, it also mixes some documents of

entertainment and sport, while GaussianSV can differentiate them. LCTM/PE

provides a good visualization, however it still mixes some documents of business

and politics together near the center. GaussianSV is better than LCTM/PE at sepa-

rating them.

The visualization produced by each method on SearchSnippet in Figure 6.6

shows similar trends. PLSV does not visualize well the dataset. Semafore and SSE

are better than PLSV but still mix some documents belonging to different classes

together. GPUDMM/PE, by leveraging word embeddings, provides better clusters

in the visualization but cannot differentiate culture − arts − entertainment and

sports on the top. This is not case in GaussianSV’s visualization. Similar to Gaus-

sianSV, GLDA/PE and LCTM/PE can separate well engineering and health. How-

ever, GLDA/PE does not separate well culture− arts− entertainment by letting

some documents overlap with other documents from other classes at the center.

LCTM/PE has the same problem. It mixes culture − arts − entertainment with

some documents from other classes such as computers.

6.3.3 Topic Coherence

We investigate whether while providing better visualization, our method still main-

tains the quality of the topic model.

Metric. One measure for topic model quality that has some agreement with human
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Figure 6.5: Visualization of BBC for Z = 10 (best seen in colour)

judgment is topic coherence [91], which looks at how the top keywords in each

topic are related to each other in terms of semantic meaning. As suggested by [91],

we rely on Pointwise Mutual Information (PMI) to evaluate topic coherence. PMI

is described in detail in Section 5.3.4.

Results. Figure 6.4 shows the PMI scores for various number of topics Z. Evi-

dently, GaussianSV has comparable PMI score to GLDA/PE, and performs better

than the other methods across different Z, which shows that GaussianSV produces

at least a comparable topic model, while having better visualization. As exam-

ples, Table 6.2 shows the top 5 words of each topic for Z = 10 for BBC and

SearchSnippet.
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Figure 6.6: Visualization of SearchSnippet for Z = 10 (best seen in colour)

BBC SearchSnippet
ID Top 5 words ID Top 5 words
0 government, election, vote, proposal, referen-

dum
0 software, technology, database, computer,

system
1 player, star, boss, manager, director 1 game, sport, football, tournament, basketball
2 film, music, movie, musical, musician 2 democratic, political, democracy, govern-

ment, politics
3 market, company, economy, price, economic 3 engine, cylinder, piston, turbine, compressor
4 internet, mobile, computer, digital, browser 4 health, medical, cancer, diagnosis, doctor
5 win, season, victory, championship, game 5 market, business, export, industry, manufac-

turing
6 gordon, thompson, alex, bryan, bennett 6 science, university, mathematics, academic,

faculty
7 bring, leave, push, accept, seek 7 kind, type, aspect, work, approach
8 big, good, real, great, major 8 usa, carl, bryant, donnie, eric
9 man, woman, girl, boy, teenager 9 news, web, website, blog, online

Table 6.2: Top Words in Each Topic by GaussianSV for Z = 10

6.4 Conclusion

We propose GaussianSV model, a semantic visualization model for short text, which

leverages word vectors obtained from a larger external corpus to supplement the

sparsity of short texts. The model performs well on real-life short text datasets

against semantic visualization baselines, as well as against pipelined baselines, val-

idating both the value of incorporating word embeddings and that of joint modeling.
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Part III

Applications of Semantic

Visualization
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Chapter 7

SemVis: Semantic Visualization for

Interactive Topical Analysis

Exploratory analysis of a text corpus is an important task that can be aided by in-

formative visualization. One spatially-oriented form of document visualization is a

scatterplot, whereby every document is associated with a coordinate, and relation-

ships among documents can be perceived through their spatial distances. Semantic

visualization further infuses the visualization space with latent semantics, by incor-

porating a topic model that has a representation in the visualization space, allowing

users to also perceive relationships between documents and topics spatially. In this

chapter, we illustrate how a semantic visualization system called SemVis could be

used to navigate a text corpus interactively and topically via browsing and search-

ing.

7.1 Introduction

With digitization of content, there are increasingly more tasks that involve explo-

ration of a text corpus for the purpose of building a general understanding of the

corpus, as well as extracting specific information. For instance, a scientist con-

ducts literature review, a financial analyst digests economic reports, a patent officer

examines prior art, a legal researcher looks for precedence, etc. These scenarios
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involve various information needs, e.g., what the corpus is about in general, what

the predominant concepts or topics are, which documents are relevant to a particu-

lar search intent, which other documents are related to the current document. Such

information needs are indeed the subjects of study in various areas of IR. What is

of particular interest to us is the use of visualization.

There are various visualization paradigms. We focus on dimensionality reduc-

tion. The original representation of a document is often a bag of words. It is a

high-dimensional representation, with dimensionality equal to the size of the vo-

cabulary. One way to visualize documents and the relationships among them is to

reduce their high-dimensional representation into a low-dimensional one that pre-

serves their similarities [70, 117]. Each document is associated with a coordinate

in a 2D or 3D scatterplot. Similarities among documents can be perceived spatially

via their close distances.

However, such a visualization, on its own, is not designed for revealing the

main “themes” of a corpus. Understanding the main themes or latent semantics in

a corpus is the objective of topic modeling [14, 57]. A topic model associates each

document with a probability distribution over topics, where the semantics of each

topic can be interpreted by the topic’s word distribution. It is common to model tens

to hundreds of topics in a corpus. In other words, the topical dimensionality is still

too high to be visualized directly.

Our objective is to infuse the visualization with latent semantics. Recent devel-

opments in semantic visualization present methods [62, 74, 75] that jointly model

topics and visualization coordinates. In this paradigm, documents and topics are

respectively associated with latent visualization coordinates (to be learned). A doc-

ument’s topic distribution is a function of the relative distance between the docu-

ment’s coordinate and each topic’s coordinate. As a result, we can visualize the

relationship not only between a pair of documents, but also between a document

and a topic. Moreover, the visualization space is now also a continuous semantic

space, as every coordinate (even an empty spot) codes for a distribution over topics,
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and by extension also a distribution over words, lending semantic interpretation to

any point in the visualization space.

Contributions We showcase SemVis, a semantic visualization system for in-

teractive topical analysis. This is a demonstrable system that is built on, and is

generically compatible with PLSV [62], SEMAFORE (Chapter 3), and SSE (Chap-

ter 5). We illustrate the interactive topical analysis features and the capabilities of

SemVis in browsing and searching scenarios in Section 7.2, and briefly outline the

implementation architecture in Section 7.3.

7.2 Interactive Topical Analysis

We describe the features of the visualization system SemVis, assuming that the

coordinates and the topic distributions have been learned from the corpus as in the

previous section. For the running example, we use a corpus based on 20News1 and

learn 30 topics.

Browsing. Figure 7.1 shows the main screen of SemVis. Item (1) is the black

canvas space for displaying the visualization. In this canvas, we display a 2D scatter-

plot of documents and topics based on their respective coordinates. Each document

is a circle, and each topic is a square. As a visual cue, each topic is associated with a

color. Item (2) is a legend of topics, listing the top words with the highest probabil-

ities for each topic to aid topic intrepretation. While a document’s coordinate codes

for a probability distribution over all topics, for ease of identification, a document

is colored the same as the topic with the largest probability in that document.

The layout as well as the coloring of documents and topics in the canvas reveal

an overview of the corpus, in terms of the various topics that are relevant to the

corpus, as well as the relationship among documents. We can perceive when docu-

ments are similar, both through their close distances as well as similar colors. Each

cluster also tends to be “anchored” by a topic. Intuitively, documents in between

1http://ana.cachopo.org/datasets-for-single-label-text-categorization
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Figure 7.1: Browsing Interface

two topics have significant probabilities for both.

For a detailed view, users can click on a circle (document) to see its content

displayed on item (3), and its topic distribution on item (4). In addition to that, a

list of interactive functions are provided on item (5). This includes magnifying or

zooming in and out of the canvas to focus on a specific region of the space.

Every point x in the visualization space is associated with a topic distribu-

tion P (z|x,Φ) (see Equation 2.3). Taking into account each topic z’s distribution

over words P (w|θz), the point’s word distribution can be obtained via P (w|x) =∑
z P (w|θz)P (z|x,Φ). At any point in this visualization space, the user can right-

click to see the distribution of words corresponding to that point in space. For an

example, item (6) in Figure 7.1 shows the list of top words associated with the

coordinate on the top left corner of the list.

Searching. Other than browsing a corpus for a general understanding, users may

also need to focus on subsets of documents that are relevant to a specific search in-

tent. This role is traditionally served by a search engine that returns a ranked list of

the most relevant documents. While this is a very familiar interface to most search

users today, there are some aspects for which a visualization could be beneficial.

For one, a query may be ambiguous, with a few different senses, e.g., “apple” the
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company vs. “apple” the fruit. A ranked list frequently interleaves results of differ-

ent senses. For another, results within the ranked list may have a natural clustering

structure, e.g., news about the same event. The ranking by relevance alone may not

capture this, requiring additional processing.

Figure 7.2 shows our search interface. Currently, we support two query types.

The first type is textual query. User can type in a query, and the most relevant

results2 are returned and displayed on a 2D visualization space. Here, we indicate

the degree of relevance by the size of the circle, i.e., a more relevant document is

drawn as a larger circle. The left panel of Figure 7.2 shows an example query “fast

drive”. We can see clearly three clusters of results: a red cluster on the bottom right,

a green cluster at the centre, and a blue cluster on the top left. This reveals that the

query is indeed ambiguous, and it can be associated with several topics or senses.

The red topic is about card, problem, scsus, drive, suggesting that the query is

probably interpreted as about a fast driver software for some computer component.

The green topic is about system, disk, mac, software, pointing to a fast hard disk

drive. The blue topic is about car, article, write, bike, implying a fast driving car or

bike.

The user may wish to refine the query to find more documents of a particular

sense or topic. This is where the second query type, spatial query, may be useful.

Because every document is associated with a coordinate in a Euclidean space, the

user can specify any coordinate on the visualization space, and we can return the

“most relevant” or the closest documents within a radius. Continuing the previous

example, if the user decides to focus on any one of the three clusters, she can execute

a spatial query by double-clicking a specific coordinate. On the right-hand side of

Figure 7.2, we show three small panels, illustrating the hypothetical scenarios in

which the user is interested in one of the three localities. Each panel corresponds

to a spatial query, centered at the coordinate marked with an ‘x’. This is akin to a

visual interface for query reformulation.

2We return up to 50 most relevant results, which is a configurable number.
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Figure 7.2: Search Interface: text query (left) and spatial queries (right). Topics of
retrieved documents are shown in the legend.

7.3 Implementation

We briefly discuss the implementation details. Figure 7.3 shows the framework of

SemVis. It has three main modules.

Given a document corpus, the first module, Semantic Visualization, helps to

build a topic model and visualization of the corpus. We use SEMAFORE [75], for

which the implementation is publicly available3. Nevertheless, the SemVis frame-

work outlined in Figure 7.3 is still compatible with other algorithms such as PLSV

[62] or SSE [74], or even pipelines of a topic model, e.g., LDA [14], followed by

embedding, e.g., PE [61].

The second module, Content and Spatial Indexing, provides functions for index-

ing the corpus. We use Apache Lucene 6.4.14 implemented in Java for indexing the

corpus. We index two kinds of information. The first is the document text content.

The second is the visualization coordinates of documents.

The third module, User Interface, provides environment for users to interact and

explore the corpus. It has two main functions which are browsing and searching.

Users are provided with controls for performing these two tasks easily, such as drag-

3https://github.com/tuanlvm/SEMAFORE
4http://lucene.apache.org/core/6_4_1/
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Figure 7.3: Framework of SemVis

ging, selecting, zooming and magnification, as well as a search box. To implement

this module, we rely on Jung Library 2.0.15 written in Java.

Data. We rely on several English corpora. One is 20News1, which is also used

to provide the illustrations in this paper. The documents are newsgroup articles from

20 classes. For 20News, we sample a subset of 1000 documents which contains 50

documents per class. The class labels are not used for generating the topics and

coordinates, but can still be visualized if desired..

We also rely on several text corpora obtained from Cora6, which is a collection

of abstracts of academic publications from various categories. FromCora, we carve

out four smaller text corpora based on categories, namely Data Structure with 570

documents, Hardware and Architecture with 223 documents, Machine Learning

with 1980 documents, and Programming Language with 1553 documents.

7.4 Conclusion

SemVis is a demonstrable system for interactive topical analysis via spatial visual-

5http://jung.sourceforge.net/
6http://people.cs.umass.edu/mccallum/data/cora-classify.tar.gz
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ization, supported by the rigor of the underlying semantic visualization algorithms

in deriving topics and coordinates. We hope to spark a continuing conversation on

the applicability of semantic visualization for text analysis tasks.
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Chapter 8

Word Clouds for Visual Comparison

of Documents

Word cloud is a visualization form for text that is recognized for its aesthetic, social,

and analytical values. Here, we are concerned with deepening its analytical value

for visual comparison of documents. To aid comparative analysis of two or more

documents, users need to be able to perceive similarities and differences among

documents through their word clouds. However, as we are dealing with text, ap-

proaches that treat words independently may impede accurate discernment of sim-

ilarities among word clouds containing different words of related meanings. We

therefore motivate the principle of displaying related words in a coherent manner,

and propose to realize it through modeling the latent aspects of words. Our WORD

FLOCK solution brings together latent variable analysis for embedding and aspect

modeling, and calibrated layout algorithm within a synchronized word cloud gener-

ation framework. We present the quantitative and qualitative results on real-life text

corpora, showcasing how the word clouds are useful in preserving the information

content of documents so as to allow more accurate visual comparison of documents.
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8.1 Introduction

The abundance of text motivates the development of text analysis tools. One such

need is to aid users in comparing several documents. For instance, a user may

go through Web search results to determine how they differ from one another. A

researcher needs to get an overview of various papers within a proceeding or a

journal issue. Similar needs are faced by librarians or analysts. In such scenarios,

users need to quickly gain a sense of whether several documents are similar.

Visualization may help in document comparison, by providing visual represen-

tations that allow users to perceive similarities and differences tangibly. There are

various visualization forms. One is a scatterplot, showing documents as coordi-

nates in a 2 or 3-dimensional space [70]. While it allows easy determination of

whether two documents are similar (based on their distance in the scatterplot), it is

not effective in conveying contents, which are important in providing meaning or

justification to similarities.

Therefore, we focus on another visual representation, i.e., a word cloud display-

ing a subset of words within a document, by assigning greater visual prominence

to more important words. Because a word cloud still displays the actual words, it

is better at conveying the content of the corresponding document than a scatterplot.

In addition, word cloud as a visualization form is extremely popular [121]. For in-

stance, Wordle1 has generated more than 1.4 million publicly posted word clouds

[110].

Problem. We seek effective visual comparison of documents via word clouds.

Ideally, documents with similar contents have word clouds of similar appearances.

Traditional approaches fall short of this ideal, as word clouds of different documents

are generated independently using a layout algorithm [106, 121]. Two documents

may feature similar words that are placed in different colors and positions within

their respective word clouds, placing a burden on the viewer in corroborating their

similarities.
1http://www.wordle.net/
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The state-of-the-art approach, Word Storms [22], employs a synchronized gen-

eration of the word clouds of all documents within a corpus. A word is expected

to have the same color and position across word clouds. This aims to reduce the

cognitive effort needed for comparing word clouds. However, it has two shortcom-

ings. First, it only seeks to synchronize the appearance of each distinct word. This

is problematic, as text frequently uses different words to refer to the same concept.

Second, its synchronization of all word clouds imposes sizeable runtime require-

ment that prevents real-time generation of word clouds.

These issues arise because word clouds are still high-dimensional representa-

tions, with dimensionality the size of the vocabulary. Our insight is that a word

cloud can encode information at several dimensionalities simultaneously. In ad-

dition to the actual words, the position of a word in the two-dimensional canvas

space can reflect some two-dimensional word representation that captures related-

ness among words, such as embedding that assigns nearby coordinates to “related”

words, e.g., [70]. We can also have the word color reflect some k-dimensional word

representation that captures k latent “aspects” of words. Each aspect may capture

words of similar meaning or words often used together to describe a certain concept.

Approach. To realize the vision of multiple dimensionalities within a word

cloud, we propose a technique called WORD FLOCK. The name is inspired by the

idiom “birds of a feather flock together”. In our case, words of a “feather” (similar

aspects/colors) flock together (similar positions).

To illustrate how word clouds could provide effective visual comparison of doc-

uments, Figure 8.1 and Figure 8.2 show example word clouds generated by WORD

FLOCK for documents in the 20News dataset2. The four word clouds in Figure 8.1

are for documents from the comp.os.ms-windows.misc category, pertaining to Win-

dows computing. Words such as “window”, “file”, and “memory” have similar

colors (reddish hue) and positions (top right) across the four word clouds. The four

word clouds in Figure 8.2 are for documents from the rec.sport.baseball category,

2http://web.ist.utl.pt/acardoso/datasets/
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with words such as “hit”, “play”, “game”, and “team” sharing similar greenish hues

and bottom left positions. Quick perusal of them is sufficient to convey which doc-

uments are similar (same category). Note that category labels had not been used in

generating word clouds.

WORD FLOCK is underpinned by a novel approach of employing latent vari-

able analysis for word cloud generation. Given a vocabulary of words, we seek to

learn their latent representations in two forms. The first is coordinate representa-

tion in a two-dimensional space, which is derived from a latent embedding model.

The second is a probability distribution over k latent aspects. This representation

learning phase can be done offline once for a given vocabulary. Thereafter, we gen-

erate a word cloud for a document online, incorporating these representations in a

calibrated layout algorithm.

a. Doc101 by Word Flock b. Doc111 by Word Flock c. Doc132 by Word Flock d. Doc136 by Word Flock

Figure 8.1: Word clouds by WORD FLOCK for 4 documents from comp.os.ms-
windows.misc of 20News (best seen in color)

a. Doc472 by Word Flock b. Doc473 by Word Flock c. Doc495 by Word Flock d. Doc499 by Word Flock

Figure 8.2: Word clouds by WORD FLOCK for 4 documents from rec.sport.baseball
of 20News (best seen in color)

Contributions. We make the following contributions:

• WORD FLOCK is the first to integrate two levels of “synchronization” prin-

ciples for word clouds: similar documents share similar word clouds, and

related words of the same latent aspects are displayed similarly.
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• WORD FLOCK is novel in employing latent variable analysis through joint

usage of embedding (synchronized positioning) and latent aspect modeling

(coloring) among words of similar concepts.

• Comprehensive experiments on real-life document corpora showcase the ef-

fectiveness of WORD FLOCK via an empirical comparison to the baseline

Word Storms [22], on objective quantitative metrics, as well as a user study.

• The two-phase approach attains the synchronization of word representations

offline, so as to obviate the need to generate all word clouds together. This

allows an online generation of individual word clouds at near-instant speed,

which eludes the baseline Word Storms.

8.2 Overview of WORD FLOCK

Problem Statement. We assume that the scope is defined by a vocabularyW , the

set of words that could appear in any word cloud in a corpus. As input, we are given

a corpus of documentsD = {d1, d2, . . . , dN}. Every document dn consists of words

drawn from the vocabulary W . The objective is to generate a set of word clouds

{C1, C2, . . . , CN}, one for each document in D, so as to aid visual comparison of

documents through their respective word clouds.

We display each word in a cloud according to a number of visual attributes.

There are various visual variables within a word cloud, and in general different

visual features may be good for different types of information [7]. Here, we make

use of three visual attributes: font size, color, and position. Each word w in Cn for

dn is associated with a tuple 〈sw, pw, lw〉, where sw is the font size, pw is the word

position in terms of 2D coordinates, and lw is the color. Fixing the orientation to

horizontal prevents the cognitive overload of reading randomly oriented words.

Solution Framework. We now discuss the principles for the design of our word

cloud algorithm WORD FLOCK.

Principle #1: Display related words similarly. Words in a document are not
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independent. Some words may capture a particular concept or aspect. It is far eas-

ier to understand a word cloud in terms of a small number of coherent concepts,

rather than in terms of a large number of independent words. Among the visual

attributes, we rely on position (pw) and color (lw). Through a dimensionality re-

duction task known as embedding, we seek to derive coordinates for each word in a

latent two-dimensional space, such that two related words are nearby in this space.

The continuous spectrum of color is also appropriate to convey the underlying as-

pects or concepts of words. We discover these aspects automatically through latent

aspect modeling. We pursue these tasks jointly, computing them offline once for

the corpus to support the synchronization of positions and colors across all word

clouds.

Principle #2: Similar documents have similar word clouds. Aimed squarely at

aiding visual comparison of documents, this principle motivates the coherent ap-

pearances of word clouds of similar documents. This is achieved by infusing and

calibrating the layout algorithm with the coordinated positions and colors deter-

mined by the embedding and latent aspect. Consequently, the online layout of each

new word cloud requires only a small marginal computational cost.

In the next two sections, we describe the two phases of the WORD FLOCK algo-

rithm. Due to the limitation of canvas space, conventionally only the more important

words are included [106]. Word prominence is indicated by the font size (sw). There

are various notions of “importance” of a word. Without loss of generality, here we

use the well-accepted term frequency (tf ), after removing stop words.

8.3 Embedding and Latent Aspect Modeling

The objective is to derive coordinates in a 2D space, as well as a k latent aspects

of words. To do so, we need to associate words with informative feature space

representation. By feature space representation, we refer to a feature vector w for

each word w, capturing information on how words are associated with one another.
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To express w, each word w is considered as a “pseudo-document” containing all

words that w co-occurs with. Each w is expressed in terms of word counts where

each element of w corresponds to how frequently another word v co-occurs with

w in some reference corpus. This corpus may be a large independent corpus (e.g.,

Wikipedia), or the specific corpus of interest. The co-occurence of two words can

be determined by their appearance within a document or a window. This way of

modeling is consistent with [131]. Intuitively, two different words with similar co-

occurrence counts are likely to share a similar meaning.

The task is to reduce the high-dimensional {w}w∈W to lower-dimensional rep-

resentations. In obtaining 2D coordinates {xw}w∈W for each word, the aim is sim-

ilar to embedding, whereas in obtaining latent aspects of words, it is feasible to

learn it from word cooccurrences [131]. While embedding and latent aspect mod-

eling could be done independently, recent works [62, 72] show that it is beneficial

to join the two tasks into a single joint model to ensure consistency in objectives.

We therefore adapt the state-of-the-art model SEMAFORE (described in Chapter 3),

originally designed for topics in documents, now to model latent word aspects. We

apply the generative process of SEMAFORE to all “pseudo-documents” that repre-

sent for words. The parameters are learned from {w}w∈W based on maximum a

posteriori estimation through EM [39]. The outputs are the coordinates xw, as well

as probability distribution over k latent aspects {P(z|xw,Φ)}kz=1, for every word w

in the vocabularyW . These outputs underpin the online generation of word clouds

described next.

8.4 Word Cloud Layout with Scale Calibration

We include only top M words in a document by weight (e.g., term frequency). The

font size sw is controlled by this weight.

The color of each word lw is determined based on its aspect probabilities {P(z|xw,Φ)}kz=1

from the first phase. lw is expressed in terms of a color representation, such as RGB.
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There are different schemes for transforming the aspect probabilities into word col-

ors. For instance, we could assign each aspect a color, and for each word we take

the weighted average of its aspects’ colors, or that of the strongest aspect. However,

these approaches would require associating a color to each topic, which itself is not

a straightforward task.

A better approach to assign colors to words automatically, which we adopt here,

is to have a color map based on the aspect probabilities. Since RGB colors lie in a

three-dimensional (3D) space (i.e., R, G, and B axes), we employ PE [61] to find the

embedding of the k aspect probabilities of all words into a 3D space. We then map

these 3D coordinates to the RGB space using min-max normalization to find the

word colors. This way, words with similar aspect probabilities would share similar

colors.

The word position pw should be similar, if not identical, to the word coordinate

xw from the first phase. There are two issues. First, the canvas space over which

pw is defined has a different scale from the embeding space of xw. We therefore

introduce a scaling factor Γ, i.e., pw = Γ× xw.

Second, even if the former could be calibrated, some words may have similar

xw’s, causing overcrowding. This is not unique to us. Classically, word clouds

have had to deal with how to position words in a compact and non-overlapping way

[106]. Similarly to Word Storms [22], we build on Wordle’s algorithm. Our layout

algorithm is shown in Algorithm 3. It works in a greedy and incremental manner.

As indicated previously, our requirement is different in having to deal with the scale

calibration issue.

The scaling factor Γ is calibrated so as to optimize an objective function that

captures the aesthetic quality. First, it is desired that a word cloud is compact,

expressed in terms of smaller distances of the final word positions pw ′ from the

origin. Second, it is desired that similar words are placed close to one another.

Suppose that ηw is the set of m closest neighboring words of w in Cn (based on

their embedding coordinates xw’s). We would like w to have a final position pw ′
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Algorithm 3 Spiral Algorithm with Calibration of Scaling
Require: Mn words for each document dn, 2D coordinates {xw}w∈W obtained

from embedding in offline phase, and a set of scaling factors Γ.
Ensure: Final scaling factor γ and for each document dn, positions pn ofMn words

in the word cloud of dn.
1: for each scaling factor γ ∈ Γ do
2: for all document dn, n ∈ {1, . . . , N} do
3: for all words w ∈ {w1, . . . , wMn} do
4: Initialize pw = γ × xw
5: while pw intersects any previous words do
6: Move pw one step along a spiral path
7: end while
8: end for
9: end for

10: Compute the objective function value in Equation 8.1.
11: Store the γ and all pn with the best objective function value so far.
12: end for

that is as close as possible to its neighbors in ηw. To achieve this, we propose the

objective function in Equation 8.1.

|D|∑
n=1

∑
w∈Cn

[
||pw ′||2 +

1

|ηw|
∑
v∈ηw

||pw ′ − pv ′||2
]

(8.1)

During the calibration process, we investigate various scaling factors Γ to mini-

mize Equation 8.1. We further advocate an offline calibration to arrive at a single Γ

for any new document. There is usually a single scaling factor that works for most

documents. This also saves time in the online generation of word cloud that only

needs to run the layout algorithm.

8.5 Evaluation

Evaluating word clouds is challenging because of the various purposes that they

could be aimed at, e.g., gisting, word recall [102]. We focus on the task of visual

comparison of documents. This involves a multi-prong approach, including quali-

tative examples, quantitative metrics involving objective ground truth, as well as a

user study.
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8.5.1 Experimental Setup

First, we describe the experimental setup.

Datasets. We rely on two publicly available datasets of text documents, where

each document has a known category label. These labels are not required for train-

ing. Rather, they are used in evaluation as an objective proxy for defining what con-

stitute “similar” documents (i.e., same category). The two datasets3 are: 20News

containing newsgroup documents partitioned into 20 classes, and Reuters contain-

ing newswire articles from 8 classes. To create a balanced dataset, we sample 50

documents from each class, resulting in 1000 and 400 documents respectively. Af-

ter removing stopwords and infrequent words (< 5 occurrences), the vocabulary

consists of 3744 words for 20News, and 1933 words for Reuters.

Methods. WORD FLOCK incorporates synchronization principles for both doc-

uments and words for visual comparison of documents. The most appropriate base-

line for this task is Word Storm [22], which applies synchronization of word clouds

across documents, but does not address relatedness among words. We use the au-

thors’ implementation in GitHub4.

As longer documents may result in word clouds that are too “busy”, we show

up to twenty five words based on weight. The same words are visualized by the

comparative methods. For WORD FLOCK, we also need to specify the number of

latent aspects of words k. We experiment with k in the range [5, 25]. For each k,

we tune the scaling factor Γ to minimize the Equation 8.1. Γ is tuned with |ηw| = 3.

The optimal Γ ranges from 20 to 25. Through experimentation, we discover that

k = 20 works best for both 20News and Reuters. Note that the number of colors

in a word cloud generated by Word Flock is not directly determined by k. We map

the aspect distribution of words across the full RGB spectrum (see Section 8.4). If

all words in a document were distinctly different, they would show up with different

colors. However, words appearing within a document tend to be related. Usually

3http://web.ist.utl.pt/acardoso/datasets/
4https://github.com/quimcastella/WordStorm

143

http://web.ist.utl.pt/acardoso/datasets/
https://github.com/quimcastella/WordStorm


only a small number of colors are seen in a word cloud by WORD FLOCK due to

the relative coherence of words in a document.

a. Doc762 by Word Storm b. Doc770 by Word Storm c. Doc788 by Word Storm d. Doc790 by Word Storm

Figure 8.3: Word clouds by Word Storm for 4 documents from soc.religion.christian
of 20News (best seen in color)

a. Doc762 by Word Flock b. Doc770 by Word Flock c. Doc788 by Word Flock d. Doc790 by Word Flocka. Doc762 by Word Flock b. Doc770 by Word Flock c. Doc788 by Word Flock d. Doc790 by Word Flock

Figure 8.4: Word clouds by WORD FLOCK for 4 documents from
soc.religion.christian of 20News (best seen in color)

a. Doc165 by Word Storm b. Doc169 by Word Storm c. Doc171 by Word Storm d. Doc199 by Word Storm

Figure 8.5: Word clouds by Word Storm for 4 documents from ship of Reuters
(best seen in color)

8.5.2 Qualitative Analysis

We begin with an exploration of example word clouds from 20News. Figure 8.3

shows Word Storm’s word clouds for four documents from the soc.religion.christian

category. Figure 8.4 shows the corresponding word clouds by WORD FLOCK. There

are several words that capture the semantic meaning of the documents, such as

144



a. Doc165 by Word Flock b. Doc169 by Word Flock c. Doc171 by Word Flock d. Doc199 by Word Flocka. Doc165 by Word Flock b. Doc169 by Word Flock c. Doc171 by Word Flock d. Doc199 by Word Flock

Figure 8.6: Word clouds by WORD FLOCK for 4 documents from ship of Reuters
(best seen in color)

“god”, “christ”, “jesus”, “faith” and “christian”. Word Storm disperses these words

across each word cloud, because it does not address their relatedness and relies

on having the exact same words for comparison, which fails when documents use

different words. In Figure 8.3(a) and Figure 8.3(d), Word Storm uses the same

location and color for “body”, but other words are different across the two clouds.

In contrast, WORD FLOCK groups related words in similar positions and colors,

yielding four strikingly coherent word clouds. This is also evident from the previous

examples of WORD FLOCK’s word clouds for comp.os.ms-windows.misc category

in Figure 8.1 and for rec.sport.baseball in Figure 8.2.

Examples fromReuters also reveal the contrast between Word Storm and WORD

FLOCK. Figures 8.5 and 8.6 shows the respective word clouds by Word Storm and

WORD FLOCK for four documents from the ship category of Reuters. While re-

lated words such as “ship”, “vessel”, “canal”, “port”, “seaman”, and “shipping” are

grouped together by WORD FLOCK, these words are dispersed and have different

colors in Word Storm’s word clouds.

8.5.3 Classification

We seek further evidence through an automatic evaluation that offers a repeatable

and objective validation. Each word cloud is represented as a vector of image pix-

els, where each pixel is represented by its RGB value. We validate how well the

pixel representation of the word cloud images may be used as features in classifi-

cation, with the simple nearest neighbors classifier. For every document, we hide
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Figure 8.8: PreservationAccuracy(t) for various t

its class label. We then identify its t-nearest neighbors based on cosine similarity

over the pixel representations, and assign the document the majority class among

its neighbors. ClassificationAccuracy(t) is the fraction of documents for which

the classification derives the correct labels. We average the accuracies across ten

runs. This is merely for evaluation, and is not meant as a technique for document

classification.

Figure 8.7(a) shows that WORD FLOCK has significantly higher accuracies than

Word Storm on 20News. A random classifier would have an accuracy of 0.05. Word

Storm performs at around 0.08. WORD FLOCK attains more than 100% increase

in accuracy over Word Storm. For Reuters in Figure 8.7(b), WORD FLOCK is

also better. The improvements over Word Storm are statistically significant at 0.01

level. The performance is closer because Reuters is an “easier” dataset (a random

classifier would attain 0.125 accuracy).
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8.5.4 Neighborhood Preservation

Ideally, a word cloud should be a faithful representation of its original document.

In the next evaluation task, given a query document, we seek to retrieve the t most

similar documents. We consider the ground truth to be the most similar documents

over the original text representation of documents (i.e., cosine similarity over the 25-

word term frequency vectors). We define PreservationAccuracy(t) as the fraction

of t ground-truth documents that are “preserved” or identified among the t retrieved

images (based on cosine similarity over the pixel representation). Figure 8.8(a) for

20News and Figure 8.8(b) forReuters show that WORD FLOCK has higher preser-

vation accuracies than Word Storm over various t’s. This indicates that the resulting

word clouds by WORD FLOCK better preserve the similarities among the original

documents. The difference between the two methods is statistically significant at

0.01 level in all cases.

8.5.5 User Study

We conduct a pilot user study on 20News to confirm our results in the quantitative

analyses. The study involves two types of questions/tasks related to visual com-

parison of documents, which were similar to the study conducted in [22]. For the

first type, each user views six clouds, and is asked to identify the most different one.

Among the six, five come from the same category, and one (the ground truth) comes

from a different category. For the second type, each user views one query cloud and

six answer clouds, and is asked to identify which answer cloud is most similar to

the query cloud. Among the six, only one (the ground truth) comes from the same

category as the query.

For each type, a user has to complete 30 multiple-choice questions, with a time

limit of 30 seconds per question. The clouds for each question are generated either

by Word Storm or by WORD FLOCK and each user is randomly presented with

one of the two versions. There are 6 users involved in the study. Therefore, each

question is answered 3 times using Word Storm and 3 times using WORD FLOCK
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Question Accuracy (%) Time (s)
Word
Storm

WORD

FLOCK

Word
Storm

WORD

FLOCK

Type 1: Select the most different cloud 71.1 78.9 15.7 14.6
Type 2: Select the cloud most similar to a

given cloud
63.6 70.0 16.6 16.1

Table 8.1: Results of the user study (bold is better)

. The 6 clouds are sorted randomly and the users do not know how many methods

there are, or which method is used for each question. We track accuracy and average

time to answer each question.

Table 8.1 summarizes the results of the user study. For Type 1 questions, WORD

FLOCK helps users to attain a higher accuracy, 78.9% as compared to 71.1% for

Word Storm, and with less time too (the time spent to answer was reduced by about

a second). For Type 2, WORD FLOCK also has a higher accuracy of 70.0% vs.

63.6% for Word Storm, again with slightly improved timing. The results are quite

consistent among users, with 5 out of 6 users achieving higher accuracy with WORD

FLOCK than with Word Storm for both types.

8.5.6 Brief Comment on Efficiency

We comment briefly on one efficiency advantage of WORD FLOCK over Word

Storm, in our ability to generate individual word clouds in an online fashion. Word

Storm must process all word clouds together. For the 1000 documents in 20News, it

requires 15 minutes on Intel Core i7 2.4Ghz machine with 8GB memory. Adding a

new document requires looping over all the previously generated word clouds again

to ensure consistency. In contrast, WORD FLOCK achieves synchronization offline,

so as to enable online generation of each word cloud independently, which requires

only between 100 to 200 millisecond for every new word cloud.

148



8.6 Conclusion

We are interested in producing effective word clouds for visual comparison of doc-

uments within a corpus. The key idea is to construct word clouds to show related

words with similar appearances, to enhance cognition of aspects across multiple

word clouds. WORD FLOCK achieves this via latent variable analysis, including of-

fline embedding and latent aspect modeling, followed by online generation of word

clouds. Through multi-faceted evaluation on two public datasets, we show evident

outperformance by WORD FLOCK over the baseline.

There are several potential directions for future work. One direction is to fur-

ther enrich the word clouds by encoding some useful information in other visual

attributes such as word orientation. Another direction is to further investigate the

use of word clouds in specific application scenarios such as document retrieval or

document summarization.
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Chapter 9

Conclusion and Future Work

9.1 Summary

This thesis considers the problem of visualizing document similarities on a scatter-

plot. Classical approaches to document visualization treat this as a dimensionality

reduction problem where we want to directly reduce high-dimensional representa-

tion of documents (i.e., bags of words) into visualizable two or three dimensions.

This thesis considers a new approach where documents have an intermediate rep-

resentation in topic space, between original space and visualization space. This

approach seeks to couple visualization with topic modeling by jointly modeling vi-

sualization and topics, which is referred to as the task of semantic visualization.

This dissertation focuses on building probabilistic models for semantic visualiza-

tion by modeling document relationship and document representation in addition to

their texts. The objective is to improve the quality of the scatterplot visualization

while maintaining topic quality.

In the first part for modeling document relationship, we propose two seman-

tic visualization models. The first one, SEMAFORE is for modeling neighborhood

structure (Chapter 3). The second one, PLANE is for modeling networked doc-

uments (Chapter 4). Experiments on real-life datasets show that SEMAFORE and

PLANE significantly outperform the baselines in terms of visualization quality and
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accuracy, while having a similar topic quality. This provides evidence that neigh-

borhood structure and network structure, together with joint modeling of topics and

visualization, are important for semantic visualization.

In the second part for modeling document representation, we consider differ-

ent types of representation. In Chapter 5, we propose SSE, a semantic visualiza-

tion model for spherical representation. Comprehensive experiments on benchmark

datasets show that SSE shows significantly improved performance when compared

to existing state-of-the-art baselines in terms of visualization quality, as well as topic

interpretability. Another type of representation that we consider in Chapter 6 is bag

of word vectors. Word vectors are known for its ability to deal with sparsity prob-

lem in short texts. Therefore, we propose a semantic visualization model called

GaussianSV using word vectors for visualizing short texts. GaussianSV performs

well on real-life short text datasets against semantic visualization baselines, as well

as against pipelined baselines, validating both the value of modeling word vectors

with semantic visualization. The good performance of these two models shows

that by modeling different representations, we can improve scatterplot visualization

quality for different types of dataset.

Finally, we attempt to find application of semantic visualization in various prob-

lems. In Chapter 7, we develop a system called SemVis for navigating a text corpus

interactively and topically via browsing and searching. SemVis is supported by

the rigor of the underlying semantic visualization algorithms in deriving topics and

coordinates. Another application of semantic visualization is for single document

visualization. In Chapter 8, we propose a new framework called WORD FLOCK

for visual comparison of documents using word clouds. In this framework, a se-

mantic visualization method is used to visualize words which are represented as

pseudo-documents.
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9.2 Future Work

For future work, we will explore different ways to combine proposed approaches,

which simultaneously model neighborhood and network structures and different

document representations. Another future work is to explore more use cases for

SemVis. From this exploration, we may have new ideas to improve the usability of

SemVis for supporting interactive topical exploration.

There are other interesting directions for future work. One direction is to focus

on applications of semantic visualization. We could make use of semantic visual-

ization for building an interactive topic model where users can provide feedback for

learning a better topic model. The interface provided by semantic visualization, in

which each document and topic have a coordinate, could be a promising way for

users to provide feedback. By changing coordinates of documents and topics, users

can tune the underlying topic model for achieving a more relevant output. Other

potential applications of semantic visualization are to support a document organizer

system or an augmented retrieval system. The visualization could potentially help

in assigning categories to documents, by showing how closely related documents

have been labeled. For augmented retrieval system, given a query, the results may

include not just relevant documents, but also other similar documents (neighbors in

the visualization).

Another interesting direction for future work is to extend semantic visualization

for dealing with large scale dataset. To perform large scale semantic visualization,

one approach we can take is to use faster algorithms for inference such as stochastic

variational inference [56] to improve the training speed of the visualization algo-

rithms. Other approaches such as online learning or creating an implementation to

run on a cloud of computers to speed up the algorithm could be promising.

Another way to extend semantic visualization is focusing on its visualization

form. Currently, we visualize a document collection on a single scatterplot. Given

that the document collection is large, the curse of dimensionality can cause prob-

lems of representation and preservation where we cannot express and preserve faith-
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fully all the relationships among documents by just using only one scatterplot.

Therefore, one promising extension is using multiple scatterplots for semantic vi-

sualization. This extension may provide a way to solve the large scale problem

as well. For example, we can visualize multiple scatterplots at the same time in a

parallel fashion.
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